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Problem Setting

@ Basic goal: optimization & sampling without the use of gradient.
o Inverse problem: find 6 € R from y € RX where
y=G0) +n (1.1)
Here G is the forward mapping and 7 is the observational noise.
@ Assume 6 ~ N(0,%) and n ~ N(0,T"). The posterior distribution is

 ep(—(0)
PO) = Texp(—f(6))d0 (12)

where 1 1
10) = Sl - GO + 5101
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Problem Setting

e Sampling: sample the posterior distribution p(#) o exp(—f(6)).
e Optimization: find the minimal point §* of f(6).

Evaluation of f(6) is a black box, and the gradient of f(#) is not available.
Therefore, a gradient-free optimization or sampling method is required.
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@ Sequential Monte Carlo (Dashti & Stuart, 2015)

e Target distribution approximated by a Dirac distribution.
o Dirac distribution evolved by weighting and resampling.
e Requires additional proposal step.

@ Ensemble Kalman inversion (Kovachki & Stuart, 2018)
Ensemble Kalman sampling (Hoffmann & Stuart, 2019)

o Approximate the gradient by the difference in the ensemble.
e Sampling is accurate only for linear problems.

© Consensus-Based Optimization (Carrillo & Jin, 2020)
e The ensemble attracted by the consensus.
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https://arxiv.org/pdf/1302.6989.pdf
https://arxiv.org/pdf/1808.03620.pdf
https://arxiv.org/pdf/1903.08866.pdf
https://arxiv.org/pdf/1909.09249.pdf

Consensus-Based Sampling (CBS)

CBS (Carrillo, Hoffmann & Stuart, 2021) has the following properties:

© The mean-field equation is exact in the linear case (linear mapping &
Gaussian prior), and the explicit convergence rate is obtained.

@ When G is nonlinear, the mean-field equation admits a Gaussian
distribution as the steady state, whose bias from the exact posterior
distribution is estimated.

© Numerical experiments show that CBS is competitive with EKI/EKS.
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https://arxiv.org/pdf/2106.02519.pdf

Consensus-Based Sampling (CBS)

CBS begins with the McKean difference equation®.

Given tha parameters A >0, 8> 0 and a € (0, 1),

i1 = Ma(pn) + a6 — Ma(pa)) + /(1 — a)A1Cs(p)€
pn = Law(6,,)

(2.1)

where &, ~ N(0,1) and Mpg,Cs denote the mean and covariance of the
[-reweighted distribution:

pe=bS

S pe=Pi

Mg :pr> M(Lgp), Cg:p—C(Lgp), Lg:prr (2.2)

Coefficients depend on the solution itself.
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Consensus-Based Sampling (CBS)

Parameters in the equation (2.1):
@ 3 > 0: inverse temperature;
@ A > 0: controlling the diffusion;
e o €[0,1): how much 6, is attracted by the consensus Mg(p).

Understanding the equation (2.1):

o [-reweighted distribution: p(f) is weighted by e=#f(?)  Positions with
low potential (small f(#)) is assigned with larger weight.

e Mpg(py) serves as the consensus of the distribution py,(6).
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Consensus-Based Sampling (CBS)

The continuous-time limit (o = 1) of (2.1) is the McKean SDE:

46, = (0, — Ma(p)dt + /22~1C (o) AW,

(2.3)
Pt = Law(@t)

Use (2.1)(2.3) to solve the sampling/optimization problem:
e Sampling: A= (1+3)~%
e Optimization: A = 1.

The reason for the choices of A will be stated heuristically.
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Consensus-Based Sampling (CBS)

For convenience, let

o(6:m,C) = ~5lo-mp) )

1
Jemnidet() Y <

be the probability density of the Gaussian distribution N(m, C').
mg(m, C) := Mg(N(m, C)),  Cs(m,C) :=C3(N(m,C))

are the mean and covariance of the S-reweighted distribution for N(m, C).
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Consensus-Based Sampling (CBS)

Taking expectation and covariance in (2.1), we obtain?

M(pn+1) = aM(pn) + (1 - O‘)M,B(pn)

- (2.6)
Clpns1) = a®Clpn) + A (1 = a?)Cs(pn)
If poo is the steady state, we have
M(psc) = Ma(pso),  Clpso) = A'Cal(p) (%)

For the linear problem, assume the posterior distribution is N(a, A), i.e.,

7(6) = 510 —al?

then the steady state poo = N(my, C) is Gaussian.

2(2.6) is independent of the parameter .
Xuda Ye (PKU)
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Consensus-Based Sampling (CBS)

For the linear mapping G, we have

mg(m,C) = (C~' + A" ) (BA 'a+ C 'm)

2.7
Cs(m,C) = (C~ 14+ At 27)
Insert poo = N(moo, Cs) and we obtain

m,, = (C' + BA™) 1 (BA 'a+ C™'m)
Coo =X"HCH+pA™HT

whose solution is

1—A
me=a Cy,o=—-A

AB

e Optimization: A = 1.
e Sampling: A = (14 8)7%.
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Consensus-Based Sampling (CBS)

CBS directly inspires from the CBO.
@ Original version (Pinnau & Totzeck, 2017):

df = —(6 — Mg(p))dt + |6 — Mps(pe)|dW,

@ Modified version (Carrillo & Jin, 2020):

d
o = —M\(0 — Mgs(p) +0 > ei(0 — Mg(pr))idW;

i=1

© This version:

To optimize the target function, the diffusion coefficient vanishes as the
ensemble collapses.
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https://arxiv.org/pdf/1604.05648.pdf
https://arxiv.org/pdf/1909.09249.pdf

Key Properties

The equations (2.1) and (2.3) are essentially the evolution of the
probability denisty p.
e (2.1) is governed by

prs1(6) = / 9(8: M(6,) +alu=Ms(pn)). (1=a?)A"Ca(pn) ) pu(u)du

(2.11)
@ (2.3) is governed by
0
8{ =V ((0 —Ms(p))p+ A_lcﬁ(p)vp) (2.13)
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Key Properties

Lemma 2.1 (Gaussian steady state)

Let probability distribution p., have finite second moment and be a
steady-state of (2.11) or (2.13). Then

poo(8) = 9(0; M (pso), A~ Ca(poc)) (2.15)

Conversely, all probability distributions solving (2.15) are steady states of
(2.11) or (2.13).

The lemma implies the steady state po, must be Gaussian, and

M(po) = Ms(poo),  Clpoo) = A'Cs(pc)
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Convergence Analysis (Linear)

In the linear case, assume the posterior distribution is N(a, A), i.e., the
corresponding potential is f(6) = 1[0 — a[%.

@ Let po = N(myg, Cy) be the initial distribution and define the constant

ko = ||Cy

T = | atcrral

The convergence rate is shown in the following table:

Sampling Optimization

Mean Covariance Mean Covariance
n n
_ 1 1 ko ko
a=0 (1+d) (1+ﬁ) Fo+5n Fo+An
1
ae (0 1) 1+af 1+a28\" ko+83 1+o ko+p8
; 113 118 kot+p+8(1—a?)n ko+p+B(1—a?)n

a=1 e_(ldlf)t e_<12_ﬁﬁ>t ( ko{#ﬁ )

Wl

ko+8

ko+B+28L ko+8+25L

TABLE 1: Convergence rates for CBS in sampling and optimization modes, in the case of
a Gaussian target distribution and a Gaussian initial condition with Cy € Si +- This table
summarizes the results in Propositions 2.4 to 2.6. All rates arc sharp, see Remark 2.4.
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Convergence Analysis (Linear)

The convergence rate is deduced from the update formula of (m,,C),):

Mpy1 —a=[aly+ (1 — a)A(A + BC,) " )(m,, — a)
Cop1 =[0I+ (1 = o®)ANTTA(A + 8C) NGy,

In the limit @ — 1, (m(¢), C(t)) is evolved by
m = —C(A+ BC) " (m - a)

C = —-28C(A+pC)! (C — (K‘)A)
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Convergence Analysis (Nonlinear)

In the nonliear case, there are several assumptions on the potential
function f(0).

Assumption 1, 2 (Convexity & Boundedness of Hessian)
f € C%(R?) and

g < LS Vf(0) <U<uly

for some I,u > 0 and L,U € S%.

17 /27
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The convergence rate is shown in the following table:

Sampling Optimization
Mean (d =1) Covariance (d =1) | Mean (d =1) | Covariance (any d)
_ k)" E\" < log(n) ko

a=0 (*‘?) ([3) ~oon ko+8n
ae(0,1) ((}'4»(17042)&) ((H(l,az)k) Snta _ R
’ s B (not optimal) ko+B+8(1—a)n

a=1 (%) (=) St _Futs

(not optimal) ko+B+26t

TABLE 2: Sharp upper bounds on the convergence rates for CBS in sampling and optimization
modes, in the case of a non-Gaussian target distribution and a Gaussian initial condition with
strictly positive definite covariance matrix Cp. Here k is a positive constant independent of
n, t, o and B, and ko = ||LY2Cy LY/2||, where L is the symmetric positive definite matrix
from Assumption 1, and ¢ is any constant strictly greater than 2max(2, u/¢), where £ and u are
the constants from Assumption 1 and Assumption 2, respectively. Obtaining sharp convergence
rates for the mean in the non-Gaussian case for o # 0 in optimization mode is an open problem.
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Convergence Analysis (Nonlinear)

Theorem 3.5. Let A\ =1, 8> 0, C) € Si+, and suppose that Assumptions 1 and 2 hold. If
there exists 0 € RY such that m, — 6 for some a € [0,1) or m(t) — 0 for o = 1, then
n—o0 t—o0

6 = 0, is the minimizer of f.

Proposition 3.7 (Convergence in the one-dimensional case). Let d = 1, A = 1, 3 > 0,
Cy € Sﬂh, and suppose that Assumptions 1 and 2 are satisfied. Then it holds that my, T> 0.

n—oo
for a € [0,1) and, likewise, m(t) P 0. for a=1.
[— 00

Proposition 3.8 (Rate of convergence). Let d =1, A =1, >0, a =0, Cy € SLr and
suppose that Assumptions 1 and 2 are satisfied. Suppose additionally that ¢ is, together with

all its derivatives, bounded from above uniformly in R. Then there exists a positive constant

k = k(mo, Co) such that, for sufficiently large n,

1
)
n

The convergence result holds when f(6) is convex and 5 > 0 is a fixed constant.

Xuda Ye (PKU) Consensus Based Sampling August 24, 2021 19 /27



Convergence Analysis (Nonlinear)

The proof of this result relies on the fact that the ensemble collapse to a Dirac
distribution as time evolves.
Proposition 3.4 (Collapse of the ensemble in optimization mode). Let A =1 and 8 > 0 and
assume that Assumption 1 holds. Then we have

(i) Discrete time o = 0. If Cy € S%.,, then

o< (ARG 31
"o ‘|L*1/20071L*1/2H+[3n o (8:1)

(i) Discrete time o € (0,1). If Co € 8%, then

H[—1/2CO—1[71/2H 8
c, < Co. 3.2
<|L1/2001L1/2|+ﬁ+ﬁ(1a2)n 0 (32)

(iti) Continuous time o = 1. If C(0) € 8¢, then

|L-12C(0) L2 + 8
c® < <|L1/20(0)1L1/2|| + B+ 26t . (3:3)
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Convergence Analysis (Nonlinear)

Comparison with Jin's result:

Theorem 3.1. If 5, \,0 and the initial distribution are chosen such that

5 e BLm
=2\ — g% — 202 > 0,
a M,(0)
2V(0) . _oar 3
Vi= —Be mer, 2\ + o2 -
,UML( ) ( )< 4’

then V(t) — 0 exponentially fast and there exists & such that z*(t) — &, EX — &

exponentially fast. Moreover, it holds that

L(z) < _E log M1,(0) — log(l —v)

28
log 2

ﬂ )

<Ly +7(8) +

where
r(B) = —%logML(O) — Ly —0, 8= o0

The result does not require the convexity of f(6) but requires 8 — co.
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nce Analysis (Nonlinear)

Theorem 3.9 (Existence of steady states). Let A = (1+ )"}, 8> 0 and a € [0,1]. Sup-
pose Assumptions 1 and 2 are satisfied. Then there ewists 3 such that, for all 3 > B, the
dynamics (2.11) and (2.13) admit a Gaussian steady state g(o;mo(8), Coo(B)) satisfying

U< Cu(B) <L and  |mac(B) -0, = O (%) .
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Convergence Analysis (Nonlinear)

@ In the nonlinear case, the posterior distribution is non-Gaussian in
general, but the steady state of CBS is always Gaussian. Therefore,
we cannot expect the steady state approaching the exact posterior as
we adjust the parameters 3, .

@ In the 1D case (d = 1), we are able to estimate the difference of
mean and covariance between the steady state and the exact posterior
distribution.
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Theorem 3.10 (Convergence to the steady state). Let d = 1 and A = (1+ 3)~", and suppose
Assumptions 1 and 4 hold. For any R € (0,C.), there evists 3 = B(f, R) and k = k(f, R) such
that the following ts hold for all B = B:

o Steady state. There exists a pair (moo(83), Coo(B)), unique in Br(0.,C.), such that the
Gaussian density ps = g(*; Moo, Cno) satisfies (2.15), and this pair satisfies

Moo(B)\ [
Cx(B) Co

2 of both the iterative

k
<

S5

By Lemma 2.1, the densi
any « € [0,1) and the nonline

scheme (2.11) with
P

: equation (2.13), corre ing to v =1.

e Discrete time « € [0,1). If Assumption 3 holds and the moments of the initial (Gaus-
sian) law satisfy (mo,Co) € Br(0«,C.), then the solution to the iterative scheme (2.11)

s geometrically to the steady state ps provided that o + (1 — 1)2)§ < 1. More

Ys
g o\ .
Mo\ Moo (B) < ({er (- {yg)i) mo\ Mmoo (8) )
Cy Cx(B) 8 Co Coo(B)
o Continuous time o = 1. If Assumption 3 holds and the moments of the initial (Gaus-

sian) law satisfy (mo,Co) € Br(0s,C.), then the solution to the mean field Fokker Planck
equation (2.13) converges exponentially to the steady state po, provided that 1 — % > 0.

m(t) Moo(fB) 2k mo Moo ()
e ‘(cm) - (cxw)) <ew(-(1-%)1) ‘(@) B (cx(ﬁ)) ‘

Vn € N,
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Convergence Analysis (Nonlinear)

The proof is based on the update formula of mean and covariance:

m, 1 = am, + (1 — a)mg(m,,C,)

2.6
Cpy1 = o?Cyp + )\71(1 — aZ)Cg(mn, Chn) (2:6)

where p, = N(my,,, C,) is the distribution at the n-th timestep. Now it's
useful to introduce the mapping

w0 (2) > (iacy,) . A=

The convergence of (m,,, Cy,) now relies on the contractivity of ®g.
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nce Analysis (Nonlinear)

In the 1D case (d = 1), existence of the fixed point and the local contractivity.

Proposition 5.6 (Existence of a fixed point of ®g). Let d =1 and assume that Assumptions 1
and 4 hold. Then there ewist k = E(f) and B = E(f) such that, for all B > B, there ewists a
fiwed point (meo(B), Coo(B)) of @y satisfying

2

k
B
Proposition 5.7 (® is a contraction). Under the same assumptions as in Proposition 5.6 and
for any R € (0,C,), there exists a constant B = B(ﬂ R) and k= %(f, R) such that, for all
B> ﬁ, the map ®g is a contraction with constant Z/ B for the Fuclidean norm over the closed

ball of radius R centered at (0., Cy): for all (my1,C1) and (mz,Ca) in Br(6, Cy), it holds that

(@)@l

Moo (B) = 0ul* + |Coo(B) — Cul* <

[®5(m1, C1) — Pg(me, Co)| <
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Particle Approximation

In practice, the distribution p,, is approxiamted as a Dirac distribution of J
particles {Q(J)}] 1» and the equation (2.1) becomes

0L = M0 +a(05) = Malpl)) + /(1= 02N 1Co(p ). G =1 T
where
1
Py = 7 Z%g)
j=1
is the Dirac distribution. The continuous time dynamics is approximated as
1) — _(pl) _ -1 57(9)
0 = —(09) — Mg(p)) + /22" 1Cs(pr) W,

where {W,; J)} _, are indepedent Brownian motions in RY.
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