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Problem Setting

Basic goal: optimization & sampling without the use of gradient.

Inverse problem: find θ ∈ Rd from y ∈ RK where

y = G(θ) + η (1.1)

Here G is the forward mapping and η is the observational noise.

Assume θ ∼ N(0,Σ) and η ∼ N(0,Γ). The posterior distribution is

ρ(θ) =
exp(−f(θ))∫
exp(−f(θ))dθ

(1.2)

where

f(θ) =
1

2
|y −G(θ)|2Γ +

1

2
|θ|2Σ
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Problem Setting

Sampling: sample the posterior distribution ρ(θ) ∝ exp(−f(θ)).

Optimization: find the minimal point θ∗ of f(θ).

Evaluation of f(θ) is a black box, and the gradient of f(θ) is not available.
Therefore, a gradient-free optimization or sampling method is required.
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Previous Work

1 Sequential Monte Carlo (Dashti & Stuart, 2015)

Target distribution approximated by a Dirac distribution.
Dirac distribution evolved by weighting and resampling.
Requires additional proposal step.

2 Ensemble Kalman inversion (Kovachki & Stuart, 2018)
Ensemble Kalman sampling (Hoffmann & Stuart, 2019)

Approximate the gradient by the difference in the ensemble.
Sampling is accurate only for linear problems.

3 Consensus-Based Optimization (Carrillo & Jin, 2020)

The ensemble attracted by the consensus.
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Consensus-Based Sampling (CBS)

CBS (Carrillo, Hoffmann & Stuart, 2021) has the following properties:

1 The mean-field equation is exact in the linear case (linear mapping &
Gaussian prior), and the explicit convergence rate is obtained.

2 When G is nonlinear, the mean-field equation admits a Gaussian
distribution as the steady state, whose bias from the exact posterior
distribution is estimated.

3 Numerical experiments show that CBS is competitive with EKI/EKS.
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Consensus-Based Sampling (CBS)

CBS begins with the McKean difference equation1.

Given tha parameters λ > 0, β > 0 and α ∈ (0, 1),θn+1 =Mβ(ρn) + α(θn −Mβ(ρn)) +
√

(1− α2)λ−1Cβ(ρn)ξn

ρn = Law(θn)
(2.1)

where ξn ∼ N(0, 1) and Mβ, Cβ denote the mean and covariance of the
β-reweighted distribution:

Mβ : ρ 7→ M(Lβρ), Cβ : ρ 7→ C(Lβρ), Lβ : ρ 7→ ρe−βf∫
ρe−βf

(2.2)

1Coefficients depend on the solution itself.
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Consensus-Based Sampling (CBS)

Parameters in the equation (2.1):

β > 0: inverse temperature;

λ > 0: controlling the diffusion;

α ∈ [0, 1): how much θn is attracted by the consensus Mβ(ρ).

Understanding the equation (2.1):

β-reweighted distribution: ρ(θ) is weighted by e−βf(θ). Positions with
low potential (small f(θ)) is assigned with larger weight.

Mβ(ρn) serves as the consensus of the distribution ρn(θ).
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Consensus-Based Sampling (CBS)

The continuous-time limit (α = 1) of (2.1) is the McKean SDE:dθt = −(θt −Mβ(ρt))dt+
√

2λ−1Cβ(ρt)dWt

ρt = Law(θt)
(2.3)

Use (2.1)(2.3) to solve the sampling/optimization problem:

Sampling: λ = (1 + β)−1.

Optimization: λ = 1.

The reason for the choices of λ will be stated heuristically.
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Consensus-Based Sampling (CBS)

For convenience, let

g(θ;m, C) =
1√

(2π)d det(C)
exp

(
− 1

2
|θ −m|2C

)
(2.4)

be the probability density of the Gaussian distribution N(m, C).

mβ(m, C) :=Mβ(N(m, C)), Cβ(m, C) := Cβ(N(m, C))

are the mean and covariance of the β-reweighted distribution for N(m, C).
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Consensus-Based Sampling (CBS)

Taking expectation and covariance in (2.1), we obtain2

M(ρn+1) = αM(ρn) + (1− α)Mβ(ρn)

C(ρn+1) = α2C(ρn) + λ−1(1− α2)Cβ(ρn)
(2.6)

If ρ∞ is the steady state, we have

M(ρ∞) =Mβ(ρ∞), C(ρ∞) = λ−1Cβ(ρ∞) (∗)

For the linear problem, assume the posterior distribution is N(a, A), i.e.,

f(θ) =
1

2
|θ − a|2A

then the steady state ρ∞ = N(m∞, C∞) is Gaussian.

2(2.6) is independent of the parameter α.
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Consensus-Based Sampling (CBS)

For the linear mapping G, we have

mβ(m, C) = (C−1 + βA−1)−1(βA−1a + C−1m)

Cβ(m, C) = (C−1 + βA−1)−1
(2.7)

Insert ρ∞ = N(m∞, C∞) and we obtain

m∞ = (C−1
∞ + βA−1)−1(βA−1a + C−1m)

C∞ = λ−1(C−1
∞ + βA−1)−1

whose solution is

m∞ = a, C∞ =
1− λ
λβ

A

Optimization: λ = 1.

Sampling: λ = (1 + β)−1.
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Consensus-Based Sampling (CBS)

CBS directly inspires from the CBO.

1 Original version (Pinnau & Totzeck, 2017):

dθ = −(θ −Mβ(ρt))dt+ |θ −Mβ(ρt)|dWt

2 Modified version (Carrillo & Jin, 2020):

dθ = −λ(θ −Mβ(ρt)) + σ

d∑
i=1

ei(θ −Mβ(ρt))idW
i
t

3 This version:

dθt = −(θt −Mβ(ρt))dt+
√

2Cβ(ρt)dWt

To optimize the target function, the diffusion coefficient vanishes as the
ensemble collapses.
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Key Properties

The equations (2.1) and (2.3) are essentially the evolution of the
probability denisty ρ.

(2.1) is governed by

ρn+1(θ) =

∫
Rd

g
(
θ;Mβ(θn)+α(u−Mβ(ρn)), (1−α2)λ−1Cβ(ρn)

)
ρn(u)du

(2.11)

(2.3) is governed by

∂ρ

∂t
= ∇ ·

(
(θ −Mβ(ρ))ρ+ λ−1Cβ(ρ)∇ρ

)
(2.13)
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Key Properties

Lemma 2.1 (Gaussian steady state)

Let probability distribution ρ∞ have finite second moment and be a
steady-state of (2.11) or (2.13). Then

ρ∞(θ) = g(θ;Mβ(ρ∞), λ−1Cβ(ρ∞)) (2.15)

Conversely, all probability distributions solving (2.15) are steady states of
(2.11) or (2.13).

The lemma implies the steady state ρ∞ must be Gaussian, and

M(ρ∞) =Mβ(ρ∞), C(ρ∞) = λ−1Cβ(ρ∞)
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Convergence Analysis (Linear)

In the linear case, assume the posterior distribution is N(a, A), i.e., the
corresponding potential is f(θ) = 1

2 |θ − a|2A.

Let ρ0 = N(m0, C0) be the initial distribution and define the constant

k0 =
∥∥C−1

0

∥∥
A−1 =

∥∥∥A 1
2C−1

0 A
1
2

∥∥∥
The convergence rate is shown in the following table:
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Convergence Analysis (Linear)

The convergence rate is deduced from the update formula of (mn, Cn):

mn+1 − a = [αId + (1− α)A(A+ βCn)−1](mn − a)

Cn+1 = [α2Id + (1− α2)λ−1A(A+ βCn)−1]Cn

In the limit α→ 1, (m(t), C(t)) is evolved by

ṁ = −βC(A+ βC)−1(m− a)

Ċ = −2βC(A+ βC)−1

(
C −

(
1− λ
βλ

)
A

)
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Convergence Analysis (Nonlinear)

In the nonliear case, there are several assumptions on the potential
function f(θ).

Assumption 1, 2 (Convexity & Boundedness of Hessian)

f ∈ C2(Rd) and
lId 6 L 6 ∇2f(θ) 6 U 6 uId

for some l, u > 0 and L,U ∈ Sd.
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Convergence Analysis (Nonlinear)

The convergence rate is shown in the following table:
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Convergence Analysis (Nonlinear)

The convergence result holds when f(θ) is convex and β > 0 is a fixed constant.
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Convergence Analysis (Nonlinear)

The proof of this result relies on the fact that the ensemble collapse to a Dirac
distribution as time evolves.
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Convergence Analysis (Nonlinear)

Comparison with Jin’s result:

The result does not require the convexity of f(θ) but requires β →∞.
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Convergence Analysis (Nonlinear)
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Convergence Analysis (Nonlinear)

In the nonlinear case, the posterior distribution is non-Gaussian in
general, but the steady state of CBS is always Gaussian. Therefore,
we cannot expect the steady state approaching the exact posterior as
we adjust the parameters β, α.

In the 1D case (d = 1), we are able to estimate the difference of
mean and covariance between the steady state and the exact posterior
distribution.
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Convergence Analysis (Nonlinear)

The proof is based on the update formula of mean and covariance:

mn+1 = αmn + (1− α)mβ(mn, Cn)

Cn+1 = α2Cn + λ−1(1− α2)Cβ(mn, Cn)
(2.6)

where ρn = N(mn, Cn) is the distribution at the n-th timestep. Now it’s
useful to introduce the mapping

Φβ :

(
m
C

)
7→
(

mβ(m,C)
λ−1Cβ(m,C)

)
, λ = (1 + β)−1

The convergence of (mn, Cn) now relies on the contractivity of Φβ.
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Convergence Analysis (Nonlinear)

In the 1D case (d = 1), existence of the fixed point and the local contractivity.
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Particle Approximation

In practice, the distribution ρn is approxiamted as a Dirac distribution of J

particles {θ(j)n }Jj=1, and the equation (2.1) becomes

θ
(j)
n+1 =Mβ(ρJn)+α(θ(j)n −Mβ(ρJn))+

√
(1− α2)λ−1Cβ(ρJn)ξ(j)n , j = 1, · · · , J

where

ρJn :=
1

J

J∑
j=1

δ
θ
(j)
n

is the Dirac distribution. The continuous time dynamics is approximated as

θ̇(j) = −(θ(j) −Mβ(ρJt )) +
√

2λ−1Cβ(ρt)Ẇ
(j)
t

where {W(j)
t }Jj=1 are indepedent Brownian motions in Rd.
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