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1 Introduction

Solving high-dimensional partial differential equations (PDE) numerically is usually a tough ques-
tion dut to the curse of dimensionality. If we apply traditional finite difference or finite element
methods, then the number of grid points will be O(h~%), where h is the space step and d is the
spatial dimensional. Such large complexity is unacceptable when d is large.

In this note we aim to access solution of high-dimensional parabolic equations via the Feynman-
Kac formula [1], which represents the solution u(z,t) of the parabolic equation as the expectation
related to a stochastic process X;. Theoretically, one needs to choose the time step sufficiently
small and the number of independent samples sufficiently large to obtain the accurate result, which
thus requires huge computation cost. In this note we show that, in order to ahieve O(g?) mean
square error (MSE), the computational cost is at least O(73).

For this reason, we employ the multilevel Monte Carlo [2] to accelerate the computation. Al-
though multilevel Monte Carlo is usually applied in finance [3,4], this method is also effective for
high dimensional PDEs. We will show that multilevel Monte Carlo is able to reduce the computa-
tional cost from O(e73) to O(e2?(loge)?). These results are also verified in numerical tests, where
two specific parabolic equations are considered.

In Section 2, we briefly review the Feynman-Kac formula to represent the solutions of parabolic
equations. In Section 3, we introduce the multilevel Monte Carlo with complexity analysis. In
Section 4, we present the numerical experiments of multilevel Monte Carlo and compare the results
with standard Monte Carlo.

2 Feynman-Kac Formula

The Feynman-Kac formula provides an approach to access high dimensional PDEs using stochastic
processes. For simplicity, consider the stochastic process {X;}¢>0 in R¢ governed by the following
time-homogeneous stochastic differential equation (SDE):

with the following assumptions:
1. b(z) : R? + R? is Lipschitz continuous and of linear growth, i.e.,

[b(x) —b(y)| < Llz —yl,  [b(x)] < K1 +z]), Va,yeR? (2.2)



2. o(z) : R? s R4 is Lipschitz continuous and globally bounded, i.e.,
lo(z) —o(y)l < Llz —yl, |o(2)| <K, Va,yeR" (2.3)

3. W, is the standard Brownian process in R™.

The assumptions above ensure that the stochastic process {X;}¢>0 exists and is unique for t €
[0,400). The (time-independent) backforward operator £L* for the stochastic process {X;}i>0 is

L' =b(z)  Vu+ %(O’UT) : V3 (2.4)

for any u € C?(R%).

2.1 Solution Representation of Parabolic Equations

Consider the linear parabolic equation for u(z,t) in R% x R*:
1
Ou = b(z) - Vu + i(O'O'T) V24 q(2)u + f(x,t) (2.5)

with initial data u(x,0) = ug(x) and the following assumptions:

1. g(x) : R — R is continuous and globally bounded;

2. f(z,t) : R x RT = R is continuous in (x,), globally bounded and Lipschitz continuous in ¢.
Also, f(x,t) vanishes as  — oo.

3. up(z) : R+ R is C? differentiable, globally bounded and vanishes as z — oo.

The assumptions above ensure that the solution u(x,t) exists for ¢ € [0,400). The Feynman-Kac
formula for the homogeneous parabolic equation, i.e., f(z,t) = 0 is given by:

Theorem 1 (Feynman-Kac formula) Let {X;};>0 be the stochastic process defined in (2.1) with
the initial data Xo = z. Define the stochastic process {Q¢}i=0 by

t
Qi = / ((X)ds,  t3>0, (2.6)
0

then the function
u(z,t) = E*(e®ug(Xy)), xeR t>0 (2.7)

satisfies the parabolic equation (2.5) with f(x,t) =0, i.e.,
1. 2
Ou = b(x) - Vu + 5(00 ) : Viu + g(z)u.

The proof of this result can be seen from [5] or Prof Li’s notes'. For general f(x,t), the solution
representation can be derived from the Duhamel’s principle.

lhttp://dsec.pku.edu.cn/~tieli/notes/appl_stoch/lect14.pdf



Theorem 2 (Feynman-Kac formula with source) Let {X;}i>0,{Q:}i>0 be the stochastic pro-
cesses defined in (2.6), then the function

u(z,t) = B (e%tug(Xy)) + E® ( /Ot e f(X,,t — s)ds> (2.8)

satisfies the parabolic equation with source (2.5).

The equation (2.5) can be written as dyu = L*u + f(x,t), whose solution is
¢
u(-,t) = e“ug +/ e=9Lf (. 5)ds
0
¢
= E% (e up(Xy)) + E® </ Qs (X, s)ds)
0

= E% (e ug(Xy)) + E”C(/Ot Qs f( Xt — s)ds)

by the Duhamel’s principle.

2.2 Numerical discretization

The discretization scheme for the Feynman-kac formula is given as follows. Fixing z € R%, t > 0
and the number of iterations M € N, then the time step h = t/M. The stochastic process {X;}1>0
is approximated by the Euler-Maruyama scheme

XM= X 40X h+o(X)eVRh, k=0,1,--- M —1 (2.9)
with initial data X = x, where &, ~ N(0,1) are independent Gaussian random variables. The
stochastic process {Q;}:>0 is approximated by the numerical integral

k—1

Qr=hY_qX!), k=01,---,M (2.10)
=0

and the numerical solution is represented as

M
ul(x,t) = B (eQMug(X 1)) + E* <hz ek f(XI, (M — k)h)) (2.11)
k=1
Now we analyze the error of the discretization (2.9)—(2.11). Define the random variables
¢
W = e%tug(X,) + / e f(X,,t — s)ds (2.12)
0
h M h
War = e@irug(X}) +h Y e@ f(Xp, (M = k)h) (2.13)
k=1

then the solution of the parabolic equation is represented as
u(z,t) = B W], u(z,t) = E*[Wy] (2.14)

Therefore, the quality of the numerical solution u"(x,t) relies on how well the random variable Wy
approximates W. Under the assumption g(x) = 0, we have the following results for W and Wj;:



Theorem 3 (Error analysis) Assume q(z) = 0 and let the random variables W, Wy, be defined
as in (2.12)(2.13), then we have

B W — Wyl Sh,  E* W -Wy[>Sh (2.15)

The proof of the result is left in Appendix.

2.3 Numerical Examples

We present two parabolic equations for numerical treatment and verify the weak convergence order
of the discretized Feynman-Kac formula (2.9)-(2.11) numerically.

Heat Equation with Source Consider the heat equation with source in R¢
uy = Au+ f(x,t) (2.16)
with initial data ug(x) = 0, where the source term is
Fla,t) = e~tlal’ ((1 bt 2d82 — |22(t + 43)) cos 1y — 4t2a, sinxl) (2.17)

The exact solution is )
u(z,t) = te”1*1" cos x4 (2.18)

Heat Equation with Linear Growth Consider the heat equation with linear growth in R¢
us = Au+ (2 + coszy)u + f(x,t) (2.19)
with initial data ug(z) = e“’“"z7 where the source term is
fz,t) = e~ lel* ttcosa (2d — 4|x|* + tcosxy — 4tz sinzy — t*sin® ) (2.20)

The exact solution is ,
u(z,t) = "ol Htoosm (2.21)

We employ the discretized Feynman-Kac formula (2.9)—(2.11) to solve the equations above.
For the heat equation source with source (2.16), set d = 8 and evaluate the numerical solution
at
x = (0.2303,0.1940, 0.2095, 0.1305, 0.1156, 0.0629, 0.12890.0588) € R®

and t =1, 2.
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Figure 1: The numerical solution of the heat equation with source (2.16) with different number of
iterations M. The left and right figures correspond to the evolution time t = 1, 2.

M | 32 64 128 256 512
t=112243% 11.71% 6.11%  3.11% 1.68%
t=2|60.64% 37.65% 21.03% 11.08% 5.80%

Table 1: Relative error of the numerical solution (converged result as N — co) of the heat equation
with source (2.16) with ¢t = 1, 2.

For the heat equation with linear drift (2.19), set d = 8 and evaluate the numerical solution at
z = (0.2102,0.1792, 0.2868, 0.1832, 0.2321, 0.07420.2222, 0.0102) € R®

and t =1, 2.
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Figure 2: The numerical solution of the heat equation with linear drift (2.19) with different number
of iterations M. The left and right figures correspond to the evolution time ¢t = 1, 2.
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=

‘ 32 64 128 256 512

t=1]21.8% 11.57% 5.82% 2.94% 1.60%
t=214041% 22.35% 11.86% 6.32% 3.10%

Table 2: Relative error of the numerical solution (converged result as N — o0) of the heat equation
with linear drift (2.19) with ¢t = 1,2.

These numerical results verify the weak convergence order in (2.15). Approximately, one has
E*[W — Wy = Ch (2.22)

for some constant C. To obtain the accurate estimation of u(z,t) = E*[W], one thus needs to
choose the number of iterations M sufficiently large.

3 Multilevel Monte Carlo

In the Feynman-Kac formula, the solution wu(z,t) to the parabolic equation is represented as the
expectation E[WW] (the superscript z is omitted), and can be approximated by the limit of E[W),],

E[W] = lim E[Wy] (3.1)

M —o00
In a general setting, we assume

Assumption 1 For the random variables W, Wy, there exists constants a, 5,7 > 0 and a constant
C' (independent of the number of iterations M) such that

1. (weak error) |[E[W — Wy]| S M~
2. (strong error) E|W — W2 < M—F;
3. (complexity) C(Wyr) S M7.

In the case of Feynman-Kac formula and its discretization (2.9)-(2.11), a = f=~v = 1.

To compute E[IW], we employ a random variable Wy, to estiamte E[Wy,] with no bias, i.e., E[W] =
E[Ws]. The mean square error (MSE) of the estimator Wy, is thus

MSE = [E[W — Wi]|* + Var(Way) (3.2)

Now we discuss various approaches to construct the estimator W Using multilevel Monte Carlo
technique, we are able to reduce the computational cost from O(e~3) (standard Monte Carlo) to
O(e72(log¢)?) (multilevel Monte Carlo).

3.1 Standard Monte Carlo

Standard Monte Carlo uses the empirical average of independent samples to construct WM, ie.,
N

oo (i)
W =+ ; W,y (3.3)



where {W]E}[)}fvzl are N independent samples of the random variable Wj,. Standard Monte Carlo

is the simplest choice to construct WM, and is employed in the numerical tests in Section 1. The
MSE of standard Monte Carlo is

MSE = [E[W — Wy]? + %Var(WM) < h2 4 % (3.4)
To achieve O(2) MSE, one need to choose
M>e s, N2e? (3.5)
and the computational cost is thus
C-(Qu) 2 e/ (3.6)

In the case of the Feynman-Kac formula, the complexity is at least O(s73).

3.2 Multilevel Monte Carlo

Multilevel Monte Carlo employs consecutive levels of estimators to approximate E[Wj,]. Introduce
an increasing sequence My < M7 < --- < My, := M such that

My=1, My =sM_y, l=1,---,L (3.7)

where s € N is a given integer (s = 2 in numerical tests), and L denotes the number of levels. The
idea of multilevel Monte Carlo is to write E[IWy,] as the summation of consecutive levels,

M L
EWn] = E[War,] + Y E[Wa, — Wi, _,] = Y _E[Y]] (3.8)

=1 =0
where the random variables {Y;}[, of different levels are defined by

Yo=Wu,, Yi=Wy —Wiy,, l=1,--,L (3.9)

Multilevel Monte Carlo does not approximate E[Wy,| as a whole, but approximates different levels
{E[Vi]}, separately. At the I-th level, E[Y]] is approximated by Y}, the empirical average of N,
independent samples, i.e.,

N
. 1 ;
Yl:ﬁzyl()’ 1=01,---,L (3.10)
L
and the overall estimator of multilevel Monte Carlo is
L
Wiy = Z Y, (3.11)
1=0

Let C; = C(Y;) be the complexity at the I-th level, and V; = Var(Y;) be the variance of Y;. Then
C; < M;', and Y] has the upper bound

Vi <E[Vi? < 2<E|WML — W2 +EW - WMHP) < Ch? (3.12)



The MSE of this estimator is

L
MSE = [E[W — Wy + > N7 'V, (3.13)
=0

and the total computational cost is
L
C(Wur) =Y _ NG (3.14)
1=0

To achieve O(g?) MSE, it is required that

(A) M = st is sufficiently large so that [E[W — Wy]| < %;
L 22
(B) The numbers of samples {N,} £ satisfies ZNl_lvl < 5

=0

and we aim to minimize the total computational cost C (WM) Using Cauchy’s inequality, {N;} £,
can be chosen as

N, = [%A/W( zL: \/(Wﬂ oc s~ (BENY2 (3.15)
=0

Based on the discussion above, the complexity of multilevel Monte Carlo method is concluded in
the following theorem [6]:

Theorem 4 (complexity) Suppose there are constants «, 8,7 > 0 such that a > %min(ﬂ,’y) and
1 [EB[W = Wi ]| S M
2. Vi = Var(V)) < M;?;
3. Cl = C(W]\/[l) S MZ’Y

Then for any € < e, there exists L € N and a sequence {Nl}leo such that

MSE = E[W); — E[W]]? < &2 (3.16)
and the total computational cost of generating a sample W is
e7?, B>~
C.(Wn) S e ?(loge)?, B=x (3.17)

E**(V*ﬂ)/a7 B <~
We perform a simple discussion on the complexity of multilevel Monte Carlo:

1. As long as # > 0, the complexity of multilevel Monte Carlo is less than O(s=277/%), the
complexity of standard Monte Carlo.

2. At the I-th level, the number of samples N; oc s~ (#+7/2 That is, the number of samples
N decreases as the level number [ increases. Intuitively, when [ is large, the random variable
Y, = Wiy, — Way,_, has small variance, thus fewer samples are needed to estimate E[Y]].

3. In the case of Feynman-Kac formula, o = 8 = v = 1, hence the complexity of multilevel
Monte Carlo is O(e~2(loge)?), which is much more efficient than standard Monte Carlo.



3.3 Algorithm Design

The complexity theorem above provides a theoretical result to show that multilevel Monte Carlo is
more efficient. To implement multilevel Monte Carlo in practice, one should choose the number of
levels L and the numbers of samples {Y;}£, according to the requirements (A)(B).

In (A), the number of iterations M = s should satisfy [E[Wy; — W]| < £/v/2. However, E[W]
itself is unknown, hence (A) cannot be used directly. Inspired from the numerical results of standard
Monte Carlo, we may assume

C
E[W]V[l _W} %ﬁl’ 12071527"' (318)
then o o
s
E[W]\/]’171 - W] =~ Mlil == Ml (319)
Taking the differece, we obtain
1-9)C
1
hence (A) can be replaced by
—1
[E[YZ]| < (s—1e (3.21)

V2

Since Y7, has small variance, the expectation E[Y7] can be computed conveniently.

In (B), we may compute the variance V; = Var(Y;) numerically and choose {N;}£, as in (3.15). In
summary, the multilevel Monte Carlo can be implemented as follows:
Algorithm 1: Multilevel Monte Carlo
Input: error tolerance ¢, initial number of samples N
Output: estimator W)y, with O(e?) MSE
for L=0,1,2,--- do -
Compute Ep, := E[Y.] and Vp, := Var(Yy) using N independent samples.
if L>1 and |Er| < (s —1)¢/V/2 then
Calculate the optimal numbers of samples {Y;}/; by

L
N, = [252\/14/01(2\/01%)} o s~ (B2
=0

Output the multilevel estimator

end
end




As a comparison, the standard Monte Carlo is implemented by
Algorithm 2: Standard Monte Carlo

Input: error tolerance ¢, initial number of samples N

Output: estimator Wy, with O(e?) MSE

for L=0,1,2,--- do -
Compute Ey, :=E[Y;] and V] := Var(Wj,, ) using N independent samples.
if L>1 and |Er| < (s —1)¢/V/2 then
Choose the numbers of samples as

Np = [2e72V]]

Output the standard estimator

TR
W 2 :”r(i)

M = ——
Ny, ~ M

end
end

Choices of the number of samples {N;}%, (multilevel Monte Carlo) and N, (standard Monte Carlo)
ensure that the variance of the estimator Wy, is less than &2 /2.

4 Numerical Experiments

We compare the performance of standard Monte Carlo and multilevel Monte Carlo in the two
parabolic equations (2.16)(2.19). The initial sample size N is fixed at 100. Different error tolerance
€ are employed.

For the heat equation with source (2.16) with d = 8 and ¢ = 1, we report the CPU time of two
Monte Carlo methods and the variance sequence {V;}~ ; in multilevel Monte Carlo.

CPU time/s |e=1/32 e=1/64 e=1/128 e=1/256

standard MC 0.293 3.61 23.8 149
multilevel MC 0.213 0.857 2.78 11.66

Table 3: CPU time of standard Monte Carlo and multilevel Monte Carlo with different error
tolerance ¢ for the heat equation with source (2.16).
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Figure 3: Number of samples {Nl}lL:O of multilevel Monte Carlo with different error tolerance ¢ for
the heat equation with source (2.16).

For the heat equation with linear drift (2.19) with d = 8 and ¢t = 1, we report the CPU time of
two Monte Carlo methods and the variance sequence {V;}£, in multilevel Monte Carlo.

CPU time/s |e=1/32 e=1/64 £=1/128 e=1/256

standard MC 5.39 45.5 578 >3600
multilevel MC 0.96 4.28 14.4 55.6

Table 4: CPU time of standard Monte Carlo and multilevel Monte Carlo with different error
tolerance € for the heat equation with linear drift (2.19).

number of samples N

0 2 4 6 8 10 12 14
level number |

Figure 4: Number of samples { N}~ of multilevel Monte Carlo with different error tolerance e for
the heat equation with linear drift (2.19).
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5 Conclusion

The multilevel Monte Carlo provides a simple technique to accelerate the stochastic simulation in
the Feynman-Kac formula, and can be applied to solve high-dimensional parabolic equations at a
given point (z,t) € R? x R*. Numerical results show that the multilevel Monte Carlo is able to
reduce the computational cost from O(e73) to O(e~2(loge)?).

A Proof of Error Analysis

Under the assumption g(x) = 0, the random variables W, W), are given by

t M
WZUo(Xt)+/ F(Xot—s)ds,  War =uo(Xjy) +h Y fX[, (M = k)h) (A1)
0 k=1

Since the weak convergence order of the Euler-Maruyama scheme is 1, we immediately obtain
|Euo(X;) — Buo(X%,)| < Ch (A.2)

In order to show |[EW — EWj,| < Ch, we only need to verify

kh

‘hE[f(X{J, (M — k)b~ E /(k_m (Xt 8)ds

gChQ» k:]-»aM (A?))

Again from the weak order of convergence, (A.3) is equivalent to

kh

ELF (X (0 = O] B [ (Xt )] < O (A4)
(k=1)h
Let v(s) = Ef(Xs,t — s), then (A.4) reduces to
kh
v(kh) — / v(s)ds| < Ch? (A.5)
(k—1)h
Since v(s) is differentiable in s, we have
kh kh kh
v(kh) — / v(s)ds| < / [v(kh) —v(s)|ds < / Chds = Ch?, (A.6)
(k=1)h (k—1)h (k—1)h

and we finally obtain [EW — EW),| < Ch. Since ug(z) is Lipschitz continuous,
Eluo(X;) — uo(X5)|? < L’E|X, — X}, > < Ch (A7)

In order to show E[W — Wj,|? < Ch, we only need to verify

5 (hf(X,?, (=) - |

| (k=1)h

2
< Ch (A.8)

kh

E f(Xs,t— S)ds)

12



Using Cauchy’s inequality, we only need to prove

kh

E‘hf(X;?,(Mk)h) - /(kl)hf(X&tS)ds

<Ch:, k=1,

Again using Cauchy’s inequality, we only need to prove

2

E‘f(X;’J, (M — k)h) — f(Xont—s)| < Ch

which is obvious from the strong convergence order 1/2.
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