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1 Introduction

Solving high-dimensional partial differential equations (PDE) numerically is usually a tough ques-
tion dut to the curse of dimensionality. If we apply traditional finite difference or finite element
methods, then the number of grid points will be O(h−d), where h is the space step and d is the
spatial dimensional. Such large complexity is unacceptable when d is large.

In this note we aim to access solution of high-dimensional parabolic equations via the Feynman-
Kac formula [1], which represents the solution u(x, t) of the parabolic equation as the expectation
related to a stochastic process Xt. Theoretically, one needs to choose the time step sufficiently
small and the number of independent samples sufficiently large to obtain the accurate result, which
thus requires huge computation cost. In this note we show that, in order to ahieve O(ε2) mean
square error (MSE), the computational cost is at least O(ε−3).

For this reason, we employ the multilevel Monte Carlo [2] to accelerate the computation. Al-
though multilevel Monte Carlo is usually applied in finance [3, 4], this method is also effective for
high dimensional PDEs. We will show that multilevel Monte Carlo is able to reduce the computa-
tional cost from O(ε−3) to O(ε−2(log ε)2). These results are also verified in numerical tests, where
two specific parabolic equations are considered.

In Section 2, we briefly review the Feynman-Kac formula to represent the solutions of parabolic
equations. In Section 3, we introduce the multilevel Monte Carlo with complexity analysis. In
Section 4, we present the numerical experiments of multilevel Monte Carlo and compare the results
with standard Monte Carlo.

2 Feynman-Kac Formula

The Feynman-Kac formula provides an approach to access high dimensional PDEs using stochastic
processes. For simplicity, consider the stochastic process {Xt}t>0 in Rd governed by the following
time-homogeneous stochastic differential equation (SDE):

dXt = b(Xt)dt+ σ(Xt)dWt, t > 0 (2.1)

with the following assumptions:

1. b(x) : Rd 7→ Rd is Lipschitz continuous and of linear growth, i.e.,

|b(x)− b(y)| 6 L|x− y|, |b(x)| 6 K(1 + |x|), ∀x, y ∈ Rd. (2.2)
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2. σ(x) : Rd 7→ Rd×n is Lipschitz continuous and globally bounded, i.e.,

|σ(x)− σ(y)| 6 L|x− y|, |σ(x)| 6 K, ∀x, y ∈ Rd. (2.3)

3. Wt is the standard Brownian process in Rn.

The assumptions above ensure that the stochastic process {Xt}t>0 exists and is unique for t ∈
[0,+∞). The (time-independent) backforward operator L∗ for the stochastic process {Xt}t>0 is

L∗u = b(x) · ∇u+
1

2
(σσT) : ∇2u (2.4)

for any u ∈ C2(Rd).

2.1 Solution Representation of Parabolic Equations

Consider the linear parabolic equation for u(x, t) in Rd × R+:

∂tu = b(x) · ∇u+
1

2
(σσT) : ∇2u+ q(x)u+ f(x, t) (2.5)

with initial data u(x, 0) = u0(x) and the following assumptions:

1. q(x) : Rd 7→ R is continuous and globally bounded;

2. f(x, t) : Rd×R+ 7→ R is continuous in (x, t), globally bounded and Lipschitz continuous in t.
Also, f(x, t) vanishes as x→∞.

3. u0(x) : Rd 7→ R is C2 differentiable, globally bounded and vanishes as x→∞.

The assumptions above ensure that the solution u(x, t) exists for t ∈ [0,+∞). The Feynman-Kac
formula for the homogeneous parabolic equation, i.e., f(x, t) ≡ 0 is given by:

Theorem 1 (Feynman-Kac formula) Let {Xt}t>0 be the stochastic process defined in (2.1) with
the initial data X0 = x. Define the stochastic process {Qt}t>0 by

Qt =

∫ t

0

q(Xs)ds, t > 0, (2.6)

then the function
u(x, t) = Ex

(
eQtu0(Xt)

)
, x ∈ Rd, t > 0 (2.7)

satisfies the parabolic equation (2.5) with f(x, t) ≡ 0, i.e.,

∂tu = b(x) · ∇u+
1

2
(σσT) : ∇2u+ q(x)u.

The proof of this result can be seen from [5] or Prof Li’s notes1. For general f(x, t), the solution
representation can be derived from the Duhamel’s principle.

1http://dsec.pku.edu.cn/~tieli/notes/appl_stoch/lect14.pdf
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Theorem 2 (Feynman-Kac formula with source) Let {Xt}t>0, {Qt}t>0 be the stochastic pro-
cesses defined in (2.6), then the function

u(x, t) = Ex(eQtu0(Xt)) + Ex
(∫ t

0

eQsf(Xs, t− s)ds
)

(2.8)

satisfies the parabolic equation with source (2.5).

The equation (2.5) can be written as ∂tu = L∗u+ f(x, t), whose solution is

u(·, t) = etLu0 +

∫ t

0

e(t−s)Lf(·, s)ds

= Ex(eQtu0(Xt)) + Ex
(∫ t

0

eQt−sf(Xt−s, s)ds

)
= Ex(eQtu0(Xt)) + Ex

(∫ t

0

eQsf(Xs, t− s)ds
)

by the Duhamel’s principle.

2.2 Numerical discretization

The discretization scheme for the Feynman-kac formula is given as follows. Fixing x ∈ Rd, t > 0
and the number of iterations M ∈ N, then the time step h = t/M . The stochastic process {Xt}t>0

is approximated by the Euler-Maruyama scheme

Xh
k+1 = Xh

k + b(Xh
k )h+ σ(Xh

k )ξk
√
h, k = 0, 1, · · · ,M − 1 (2.9)

with initial data Xh
0 = x, where ξk ∼ N (0, 1) are independent Gaussian random variables. The

stochastic process {Qt}t>0 is approximated by the numerical integral

Qhk = h

k−1∑
i=0

q(Xh
i ), k = 0, 1, · · · ,M (2.10)

and the numerical solution is represented as

uh(x, t) = Ex
(
eQ

h
Mu0(Xh

M )
)

+ Ex
(
h

M∑
k=1

eQ
h
kf(Xh

k , (M − k)h)

)
(2.11)

Now we analyze the error of the discretization (2.9)–(2.11). Define the random variables

W = eQtu0(Xt) +

∫ t

0

eQsf(Xs, t− s)ds (2.12)

WM = eQ
h
Mu0(Xh

M ) + h

M∑
k=1

eQ
h
kf(Xh

k , (M − k)h) (2.13)

then the solution of the parabolic equation is represented as

u(x, t) = Ex[W ], uh(x, t) = Ex[WM ] (2.14)

Therefore, the quality of the numerical solution uh(x, t) relies on how well the random variable WM

approximates W . Under the assumption q(x) ≡ 0, we have the following results for W and WM :
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Theorem 3 (Error analysis) Assume q(x) ≡ 0 and let the random variables W,WM be defined
as in (2.12)(2.13), then we have

|Ex[W −WM ]| . h, Ex|W −WM |2 . h (2.15)

The proof of the result is left in Appendix.

2.3 Numerical Examples

We present two parabolic equations for numerical treatment and verify the weak convergence order
of the discretized Feynman-Kac formula (2.9)–(2.11) numerically.

Heat Equation with Source Consider the heat equation with source in Rd

ut = ∆u+ f(x, t) (2.16)

with initial data u0(x) ≡ 0, where the source term is

f(x, t) = e−t|x|
2
(

(1 + t+ 2dt2 − |x|2(t+ 4t3)) cosx1 − 4t2x1 sinx1

)
(2.17)

The exact solution is
u(x, t) = te−t|x|

2

cosx1 (2.18)

Heat Equation with Linear Growth Consider the heat equation with linear growth in Rd

ut = ∆u+ (2 + cosx1)u+ f(x, t) (2.19)

with initial data u0(x) = e−|x|
2

, where the source term is

f(x, t) = e−|x|
2+t cos x1(2d− 4|x|2 + t cosx1 − 4tx1 sinx1 − t2 sin2 x1) (2.20)

The exact solution is
u(x, t) = e−|x|

2+t cos x1 (2.21)

We employ the discretized Feynman-Kac formula (2.9)–(2.11) to solve the equations above.
For the heat equation source with source (2.16), set d = 8 and evaluate the numerical solution

at
x = (0.2303, 0.1940, 0.2095, 0.1305, 0.1156, 0.0629, 0.12890.0588) ∈ R8

and t = 1, 2.
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Figure 1: The numerical solution of the heat equation with source (2.16) with different number of
iterations M . The left and right figures correspond to the evolution time t = 1, 2.

M 32 64 128 256 512

t = 1 22.43% 11.71% 6.11% 3.11% 1.68%
t = 2 60.64% 37.65% 21.03% 11.08% 5.80%

Table 1: Relative error of the numerical solution (converged result as N →∞) of the heat equation
with source (2.16) with t = 1, 2.

For the heat equation with linear drift (2.19), set d = 8 and evaluate the numerical solution at

x = (0.2102, 0.1792, 0.2868, 0.1832, 0.2321, 0.07420.2222, 0.0102) ∈ R8

and t = 1, 2.
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Figure 2: The numerical solution of the heat equation with linear drift (2.19) with different number
of iterations M . The left and right figures correspond to the evolution time t = 1, 2.
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M 32 64 128 256 512

t = 1 21.88% 11.57% 5.82% 2.94% 1.60%
t = 2 40.41% 22.35% 11.86% 6.32% 3.10%

Table 2: Relative error of the numerical solution (converged result as N →∞) of the heat equation
with linear drift (2.19) with t = 1, 2.

These numerical results verify the weak convergence order in (2.15). Approximately, one has

Ex[W −WM ] ≈ Ch (2.22)

for some constant C. To obtain the accurate estimation of u(x, t) = Ex[W ], one thus needs to
choose the number of iterations M sufficiently large.

3 Multilevel Monte Carlo

In the Feynman-Kac formula, the solution u(x, t) to the parabolic equation is represented as the
expectation E[W ] (the superscript x is omitted), and can be approximated by the limit of E[WM ],

E[W ] = lim
M→∞

E[WM ] (3.1)

In a general setting, we assume

Assumption 1 For the random variables W,WM , there exists constants α, β, γ > 0 and a constant
C (independent of the number of iterations M) such that

1. (weak error) |E[W −WM ]| .M−α;

2. (strong error) E|W −WM |2 .M−β;

3. (complexity) C(WM ) .Mγ .

In the case of Feynman-Kac formula and its discretization (2.9)–(2.11), α = β = γ = 1.

To compute E[W ], we employ a random variable ŴM to estiamte E[WM ] with no bias, i.e., E[ŴM ] =
E[WM ]. The mean square error (MSE) of the estimator ŴM is thus

MSE = |E[W −WM ]|2 + Var(ŴM ) (3.2)

Now we discuss various approaches to construct the estimator ŴM . Using multilevel Monte Carlo
technique, we are able to reduce the computational cost from O(ε−3) (standard Monte Carlo) to
O(ε−2(log ε)2) (multilevel Monte Carlo).

3.1 Standard Monte Carlo

Standard Monte Carlo uses the empirical average of independent samples to construct ŴM , i.e.,

ŴM =
1

N

N∑
i=1

W
(i)
M (3.3)
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where {W (i)
M }Ni=1 are N independent samples of the random variable WM . Standard Monte Carlo

is the simplest choice to construct ŴM , and is employed in the numerical tests in Section 1. The
MSE of standard Monte Carlo is

MSE = |E[W −WM ]|2 +
1

N
Var(WM ) . h2α +

1

N
(3.4)

To achieve O(ε2) MSE, one need to choose

M & ε−
1
α , N & ε−2 (3.5)

and the computational cost is thus
Cε(Q̂M ) & ε−2−γ/α (3.6)

In the case of the Feynman-Kac formula, the complexity is at least O(ε−3).

3.2 Multilevel Monte Carlo

Multilevel Monte Carlo employs consecutive levels of estimators to approximate E[WM ]. Introduce
an increasing sequence M0 < M1 < · · · < ML := M such that

M0 = 1, Ml = sMl−1, l = 1, · · · , L (3.7)

where s ∈ N is a given integer (s = 2 in numerical tests), and L denotes the number of levels. The
idea of multilevel Monte Carlo is to write E[WM ] as the summation of consecutive levels,

E[WM ] = E[WM0 ] +

M∑
l=1

E[WMl
−WMl−1

] =

L∑
l=0

E[Yl] (3.8)

where the random variables {Yl}Ll=0 of different levels are defined by

Y0 = WM0
, Yl = WMl

−WMl−1
, l = 1, · · · , L (3.9)

Multilevel Monte Carlo does not approximate E[WM ] as a whole, but approximates different levels
{E[Yl]}Ll=0 separately. At the l-th level, E[Yl] is approximated by Ŷl, the empirical average of Nl
independent samples, i.e.,

Ŷl =
1

Nl

Nl∑
i=1

Y
(i)
l , l = 0, 1, · · · , L (3.10)

and the overall estimator of multilevel Monte Carlo is

ŴM =

L∑
l=0

Ŷl (3.11)

Let Cl = C(Yl) be the complexity at the l-th level, and Vl = Var(Yl) be the variance of Yl. Then
Cl .Mγ

l , and Yl has the upper bound

Vl 6 E|Yl|2 6 2
(
E|WMl

−W |2 + E|W −WMl−1
|2
)
6 Chβ (3.12)
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The MSE of this estimator is

MSE = |E[W −WM ]|2 +

L∑
l=0

N−1l Vl, (3.13)

and the total computational cost is

C(ŴM ) =

L∑
l=0

NlCl (3.14)

To achieve O(ε2) MSE, it is required that

(A) M = sL is sufficiently large so that |E[W −WM ]| 6 ε√
2

;

(B) The numbers of samples {Nl}Ll=0 satisfies

L∑
l=0

N−1l Vl 6
ε2

2
.

and we aim to minimize the total computational cost C(ŴM ). Using Cauchy’s inequality, {Nl}Ll=0

can be chosen as

Nl =

⌈
2ε−2

√
Vl/Cl

( L∑
l=0

√
ClVl

)⌉
∝ s−(β+γ)l/2 (3.15)

Based on the discussion above, the complexity of multilevel Monte Carlo method is concluded in
the following theorem [6]:

Theorem 4 (complexity) Suppose there are constants α, β, γ > 0 such that α > 1
2 min(β, γ) and

1. |E[W −WMl
]| .M−αl ;

2. Vl := Var(Yl) .M−βl ;

3. Cl := C(WMl
) .Mγ

l .

Then for any ε < e−1, there exists L ∈ N and a sequence {Nl}Ll=0 such that

MSE = E[ŴM − E[W ]]2 6 ε2 (3.16)

and the total computational cost of generating a sample ŴM is

Cε(ŴM ) .


ε−2, β > γ

ε−2(log ε)2, β = γ

ε−2−(γ−β)/α, β < γ

(3.17)

We perform a simple discussion on the complexity of multilevel Monte Carlo:

1. As long as β > 0, the complexity of multilevel Monte Carlo is less than O(ε−2−γ/α), the
complexity of standard Monte Carlo.

2. At the l-th level, the number of samples Nl ∝ s−(β+γ)l/2. That is, the number of samples
Nl decreases as the level number l increases. Intuitively, when l is large, the random variable
Yl = WMl

−WMl−1
has small variance, thus fewer samples are needed to estimate E[Yl].

3. In the case of Feynman-Kac formula, α = β = γ = 1, hence the complexity of multilevel
Monte Carlo is O(ε−2(log ε)2), which is much more efficient than standard Monte Carlo.
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3.3 Algorithm Design

The complexity theorem above provides a theoretical result to show that multilevel Monte Carlo is
more efficient. To implement multilevel Monte Carlo in practice, one should choose the number of
levels L and the numbers of samples {Yl}Ll=0 according to the requirements (A)(B).

In (A), the number of iterations M = sL should satisfy |E[WM −W ]| 6 ε/
√

2. However, E[W ]
itself is unknown, hence (A) cannot be used directly. Inspired from the numerical results of standard
Monte Carlo, we may assume

E[WMl
−W ] ≈ C

Ml
, l = 0, 1, 2, · · · (3.18)

then

E[WMl−1
−W ] ≈ C

Ml−1
=
sC

Ml
(3.19)

Taking the differece, we obtain

E[Yl] ≈
(1− s)C
Ml

, l = 1, 2, · · · (3.20)

hence (A) can be replaced by

|E[YL]| 6 (s− 1)ε√
2

(3.21)

Since YL has small variance, the expectation E[YL] can be computed conveniently.

In (B), we may compute the variance Vl = Var(Yl) numerically and choose {Nl}Ll=0 as in (3.15). In
summary, the multilevel Monte Carlo can be implemented as follows:

Algorithm 1: Multilevel Monte Carlo

Input: error tolerance ε, initial number of samples N̄
Output: estimator ŴM with O(ε2) MSE

for L = 0, 1, 2, · · · do
Compute EL := E[YL] and VL := Var(YL) using N̄ independent samples.
if L > 1 and |EL| 6 (s− 1)ε/

√
2 then

Calculate the optimal numbers of samples {Yl}Ll=0 by

Nl =

⌈
2ε−2

√
Vl/Cl

( L∑
l=0

√
ClVl

)⌉
∝ s−(β+γ)l/2

Output the multilevel estimator

ŴM =

L∑
l=0

(
1

Nl

Nl∑
i=1

Y
(i)
l

)
end

end
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As a comparison, the standard Monte Carlo is implemented by

Algorithm 2: Standard Monte Carlo

Input: error tolerance ε, initial number of samples N̄
Output: estimator ŴM with O(ε2) MSE

for L = 0, 1, 2, · · · do
Compute EL := E[YL] and V ′L := Var(WML

) using N̄ independent samples.
if L > 1 and |EL| 6 (s− 1)ε/

√
2 then

Choose the numbers of samples as

NL = d2ε−2V ′Le

Output the standard estimator

ŴM =
1

NL

Nl∑
i=1

W
(i)
M

end

end

Choices of the number of samples {Nl}Ll=0 (multilevel Monte Carlo) and NL (standard Monte Carlo)

ensure that the variance of the estimator ŴM is less than ε2/2.

4 Numerical Experiments

We compare the performance of standard Monte Carlo and multilevel Monte Carlo in the two
parabolic equations (2.16)(2.19). The initial sample size N̄ is fixed at 100. Different error tolerance
ε are employed.

For the heat equation with source (2.16) with d = 8 and t = 1, we report the CPU time of two
Monte Carlo methods and the variance sequence {Vl}Ll=0 in multilevel Monte Carlo.

CPU time/s ε = 1/32 ε = 1/64 ε = 1/128 ε = 1/256

standard MC 0.293 3.61 23.8 149
multilevel MC 0.213 0.857 2.78 11.66

Table 3: CPU time of standard Monte Carlo and multilevel Monte Carlo with different error
tolerance ε for the heat equation with source (2.16).
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Figure 3: Number of samples {Nl}Ll=0 of multilevel Monte Carlo with different error tolerance ε for
the heat equation with source (2.16).

For the heat equation with linear drift (2.19) with d = 8 and t = 1, we report the CPU time of
two Monte Carlo methods and the variance sequence {Vl}Ll=0 in multilevel Monte Carlo.

CPU time/s ε = 1/32 ε = 1/64 ε = 1/128 ε = 1/256

standard MC 5.39 45.5 578 >3600
multilevel MC 0.96 4.28 14.4 55.6

Table 4: CPU time of standard Monte Carlo and multilevel Monte Carlo with different error
tolerance ε for the heat equation with linear drift (2.19).
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Figure 4: Number of samples {Nl}Ll=0 of multilevel Monte Carlo with different error tolerance ε for
the heat equation with linear drift (2.19).
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5 Conclusion

The multilevel Monte Carlo provides a simple technique to accelerate the stochastic simulation in
the Feynman-Kac formula, and can be applied to solve high-dimensional parabolic equations at a
given point (x, t) ∈ Rd × R+. Numerical results show that the multilevel Monte Carlo is able to
reduce the computational cost from O(ε−3) to O(ε−2(log ε)2).

A Proof of Error Analysis

Under the assumption q(x) ≡ 0, the random variables W,WM are given by

W = u0(Xt) +

∫ t

0

f(Xs, t− s)ds, WM = u0(Xh
M ) + h

M∑
k=1

f(Xh
k , (M − k)h) (A.1)

Since the weak convergence order of the Euler-Maruyama scheme is 1, we immediately obtain

|Eu0(Xt)− Eu0(Xh
M )| 6 Ch (A.2)

In order to show |EW − EWM | 6 Ch, we only need to verify∣∣∣∣hE[f(Xh
k , (M − k)h)]− E

∫ kh

(k−1)h
f(Xs, t− s)ds

∣∣∣∣ 6 Ch2, k = 1, · · · ,M (A.3)

Again from the weak order of convergence, (A.3) is equivalent to∣∣∣∣hE[f(Xkh, (M − k)h)]− E
∫ kh

(k−1)h
f(Xs, t− s)ds

∣∣∣∣ 6 Ch2 (A.4)

Let v(s) = Ef(Xs, t− s), then (A.4) reduces to∣∣∣∣v(kh)−
∫ kh

(k−1)h
v(s)ds

∣∣∣∣ 6 Ch2 (A.5)

Since v(s) is differentiable in s, we have∣∣∣∣v(kh)−
∫ kh

(k−1)h
v(s)ds

∣∣∣∣ 6 ∫ kh

(k−1)h
|v(kh)− v(s)|ds 6

∫ kh

(k−1)h
Chds = Ch2, (A.6)

and we finally obtain |EW − EWM | 6 Ch. Since u0(x) is Lipschitz continuous,

E|u0(Xt)− u0(Xh
M )|2 6 L2E|Xt −Xh

M |2 6 Ch (A.7)

In order to show E|W −WM |2 6 Ch, we only need to verify

E
∣∣∣∣ M∑
k=1

(
hf(Xh

k , (M − k)h)−
∫ kh

(k−1)h
f(Xs, t− s)ds

)∣∣∣∣2 6 Ch (A.8)
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Using Cauchy’s inequality, we only need to prove

E
∣∣∣∣hf(Xh

k , (M − k)h)−
∫ kh

(k−1)h
f(Xs, t− s)ds

∣∣∣∣2 6 Ch2, k = 1, · · · ,M (A.9)

Again using Cauchy’s inequality, we only need to prove

E
∣∣∣∣f(Xh

k , (M − k)h)− f(Xs, t− s)
∣∣∣∣2 6 Ch (A.10)

which is obvious from the strong convergence order 1/2.
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