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1 Brownian dynamics
Consider the simple Brownian dynamics:
dX =b(X)dt 4 o(X)dW

where o € R¥™ and W is the m-dimensional Wiener process.

1.1 Fokker-Planck equation

Define a = oo™ € R¥*?_ then the generator of the SDE is

1
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and the forward Kolmogorov operator is
1
ﬁmx:—vmmﬂ+§v24wm

which leads to the Fokker-Planck equation
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The invariant distribution 7(z) of the SDE is defined as

Lp(z,t), zeRY t>0

Lim(z) =0

1.2 Detailed balance
1.2.1 Formal definition

The detailed balance can be defined in several ways.

Definition 1.1 Suppose the Fokker-Planck equation can be written as

op L
@Jrvj(p)—()

where j(p) € R? is a functional of p. The detailed balance is given by the relation

where 7(x) is the invariant distribution.

For the Brownian dynamics, the flux is given by

. 1
i) =bp =5V (ap)
so the condition for detailed balance becomes

M@M@Z%V(d@ﬂw% z € R (%)

1.2.2 Derivation from the definition

We can also derive the relation (x) from the definition of detailed balance.

Let Ty(x,y) be the transition probability density of the SDE from x € R to y € R? in time
t. Using the Fokker-Planck equation, T;(z,y) can be represented as

Ti(x,y) = € 8(y — )



The detailed balance of the SDE is

(@) Ty (z,y) = m(y)Ti(y, ) (1)
or
m(x)Ly6(y — x) = 7(y)L36(x —y) (2)
where the subscript z means that the operator acts on a function of x.

To simply (2), pick a test function ¢ € C%(R?) and integrate (2) with ¢(y):

o) [ etgat o= [ ates - )

m(x)(p(y), £,6(y — x)) = L (p(x)7(x))
() (Lye(y), 6y — ) = Ly (p(x)(2))

m(2)Lo(x) = L (p(x)7(2)) (3)

Now using the formulation of £, £*, (3) becomes

1 1
b - Vi + 3ma: Vip = -V (bor)+ §V2 : (apm)

or

1
21th - Vo = —pV - (7b) + 5(,0V2 : (ma) + Vo - (V- (1a)) (4)
Since m(x) is the invariant distribution, £L*w(z) = 0, i.e.,
1
~V - (7b) + 5v2 : (ma) =0

hence (4) becomes

27b =V - (ma)
This is just (x).
1.3 Examples
In some cases the detailed balance is automatically satisfied. If b(z) = —VV(z) and

o(x) = v/2, then the invariant distribution is

In this case the detailed balance becomes

—VV(z)e V@ = (e V@)



2 Langevin dynamics

2.1 Theorem of detailed balance

Consider the second order Langevin dynamics:

dg = vdt
dv = f(q)dt — yvdt + odW

where ¢,v € R? are the position and velocity of the particle, f(q) is the force, v > 0 is
the friction constant, o € R¥™™ is a constant matrix and W is the m-dimensional Wiener
process. The detailed balance can also be established for Langevin dynamics.

Theorem 2.1 Consider the general Langevin dynamics

dg = vdt
dv = f(q)dt — yvdt + odW

for q,v € RY. Assume m(q,v) is the invariant distribution with symmetry in v

Tr(Q? U) = ﬂ-(Qa _U)

Let Ty((q,v), (¢',v")) be the transition probability in time t, then the detailed balance

W(CL v)ﬂ((qv U)v (q', UI)) = ﬂ—(q/? _’U/)Tt((q/7 —1)’), (Q7 _U))

holds if and only if
+ 0
ov
Note: The detailed balance presented in the Langevin dynamics is closely related to the
reversibility in the Hamiltonian dynamics.

—2y7mv = o0

Proof: To make the notations more compact, introduce the phase = = (¢,v) € R?? and
its conjugate z* = (¢, —v). Then the symmetry of 7 becomes

We can compactly write the SDE as
dz = b(x)dt + XdW (1)

where

1= o s [er



Define the diffusion matrix

A — EZT — |:8 O_(O)_T:| c RQdXZd

then the Kolmogorov operators £, L* of SDE (1) are
1
Lo(z) =b(x) Vo(x) + §A : V3(x)
" 1
Lo(x) = =V - (b(@)p(@)) + 5V : (Ap(2))
and the Fokker-Planck equation of SDE (1) is

Op .
_— = t
5 = £ p(z,1)

Now we consider the detailed balance
m(@)Ti(z,y) = n(y")Te(y", 27)
Observing that T;(z,y) can be represented as
Ti(x,y) = exp (tﬁ;é(y - :v))
we can equivalently write the detailed balance (4) as
m(2)Ly0(y —x) = w(y") Lo 0(2" —y")

Multiply (5) with a test function ¢(y) € C2(R??) and integrate in R?¢:

W(x)/ () Ly6(y — x)dy = L3 (/ e(y)m(y*)o(a” — y*)dy)
R2d R2d
which immediately reduces to

m(x)Lop(x) = Lo (p(x)m ("))
Substituting the formulation of £, £L*, we obtain
w(2) Lasp(z) = n(2) (b(z) - Vi) + 342 V()
= m(z)b(x) - Vo(x) + %W(.%’)A : V2p(2)
Let V. be the gradient with respect to x*, then

v (p@)m(27)) = =V - (m(2")b(z")p(x)) + %Vf H (") Ap(z))
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Using the equations
Ve - (r(@)b(a () = ~m(x (") - Vaspla) = V- (e )bla*) ()
SV (r(a*) Ap(e)) = 592+ (m(a*) AYp(w) + 5m(x)A  Voiple) + Vi - (Am(a”)) - Vosp(a)
We obtain
Lo lp@n(e) = (= Vo (w(@)ba") + 572 (x(a")4) ) o(a)
( — r(a*)b(z*) + V, - (Aw(x*)))  V.po(x)

+ %71’(.%'*)14 1 Vip(2) (8)

_l’_

Terms in (8) correspond to different order of gradients of ¢(z). Note that 7(z) is the
invariant distribution of (1), we have

T

Lrm(x*) =0 = =V, (m(z")b(z")) + %Vz t(m(z*)A) =0
hence (8) reduces to

Lo (p(a)m (7)) = (— m(2")b(x") + Vs - (AW@*))) Vap(z) + %W(l‘*)A :Vie(z)  (9)
Combine (6)(7)(9), the detailed balance becomes

m(x)b(x) - Vo(x) + %W(%)A :Vip(z) =

(~ (@")ble) + V.- (An(x))) - Vapla) + Sr(@?)A: V2pla)  (10)

Note that in (10) we have 7(z) = 7(2*) and

0 0 Paq ¥ T { % U} 2
A:V3ip= R e e e =| " Wl =A:Vip(z
¥ [0 UO_T] L%q @vv] Pov —Psg Pov o(z)

hence 1 1
gT(@)A: V() = Sr(a") A Vip()

Using 7(z) = m(z*) again, (10) reduces to
7(2) (b() - V() + b(a") - Vop(@)) = V. - (An(2%)) - Voip(a) (11)
On the one hand,

[f(‘I)v W} Velo) = m = b(z) - Vp(z) = v g+ f(@) - v — 70 pu

v

b(x) =
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[f(Q)_+ W} Vel = [ (p;v] = b(a") - V(@) = —v- g = f(a) v — 70 0

Hence
b(z) - V(z) +b(x") - Vip(x) = =290 - ¢y (12)

On the other hand,
Vi (An(27)) - Vip(x) = (AVar(2)) - V()
_ 0 0 Tq | ¥q
“\|0 oot| |-m, — Py
= 0 . (pq
—ootm,| |—ou
= (o0Tm,) - @u (13)
Combine (11)(12)(13) and the detailed balance becomes
—2ym0 - @y = (00" ) - Py (14)

Since ¢, is arbitrary, (14) is just

von
ov

—2y7v = o0
Theorem 2.2 If the detailed balance
(g, v)Ti((g,v), (¢, v")) = 7(d', ") Ti((d, =v"), (¢, —v))
holds for some symmetric m(q,v) = 7(q, —v), then w(q,v) is the invariant distribution.

Integrating the detailed balance in ¢ € R?, we obtain
[, @ 0T, 0. (¢ )dgde = (g, —) = n(d )
R
hence 7(q,v) is the invariant distribution.

2.2 Applications in thermal equilibrium

Let U(q) be the potential function and assume the mass of the particle is 1. Consider the
Langevin dynamics

dg = vdt
/27
dv = —-VU(q)dt — yvdt + FdW



and the invariant distribution is

m(q,v) =eXp<—B<’v2’2 +U(q))>

2
oo, = %

hence the Langevin dynamics of a classical system satisfies the detailed balance.

It’s easy to verify

My = —2Y7V

Now consider the pmmLang:
dqg = vdt

2y(L) !

dv = —qdt — (L)~ 'VU*(q)dt — yodt + 3
N

dW

The invariant distribution is
1
7(q,v) = exp ( — BN (2'UTL°"U + U(q))>

It’s easy to verify the detailed balance condition.

3 Potential splitting method

3.1 Methodology

Suppose we want to sample the Boltzmann distribution

(g, v) :exp(_5<“’2|2 +U(Q))>

for some potential function U(q). Decompose

Ulq) = Ui(q) + U2(q)

and consider the following update scheme in timestep At:



Algorithm 1: Potential splitting method

1. Given the state (q,v), evolve the following SDE
dg = vdt
2y
dv = —=VU;(q)dt — ~yodt + ?dW
with initial value (¢,v) in time At to obtain (¢*,v*).
2. Set (gq,v) = (¢*,v*) with probability
a(g, ¢*) = min{1, e P20~ U2(a))

otherwise (¢,v) = (¢, —v).

Theorem 3.1 Let T'((q,v),(q',v")) be the transition probability of Algorithm 1, then the
detailed balance holds:

Tr(Q7 ’U)T((q, U)? (q/7 Ul)) = 71-(q/7 _U/)T((qlv _U/)v (q7 _U))
A direct consequence is that
[ @ 0T (a0, () = (/)
i.e., the scheme preserves m(q,v).

Proof Define the distributions

Jol®

mg) e (~5(1+00) ). 7l = e (- 0a(0)

Let T1((q,v), (¢’,v")) be the transition probability of Step 1, and a(q, ¢') be the acceptance
probability in Step 2, then

m1(q,v)T1((g,0), (¢, 0") = m(q', =) T (¢, =), (¢, —v)) (1)

ma(q)alq, ') = m2(d)ald’, q) (2)
Notice that 7(q,v) = m1(q,v)m2(q), and the transition probability of Algorithm 1 is

T((g,v), (d",v) = Ti((q,v), (¢, v"))alq,¢') + (¢ — )o(v" +v)(1 = A(q,v))  (3)



where A(q,v) is the total acceptance probability

Alg,0) = [ Tilla.0). (¢ ))ala. g/ d
To verify the detailed balance, we need

W(Q? U)T((‘L U)? (q/7 U/)) = 7T(q/, _UI)T((qlv _UI)’ (Q7 _U))
(g, v)T1((g,v), (¢',v"))alg, ¢') = 7(¢, =" )T1((d', —v'), (¢, —v))a(d, q)
7(q,v)(q — q)0(v" +v)(1 = A(g,v)) = 7(q', —v")d(¢" — )0 (v" + v)(1 — A(¢, —"))

It’s easy to see (4) is the product of (1)(2), and (5) holds from the Dirac function.

conclusion, the detailed balance holds.

3.2 Application in pmmLang
For pmmLang, assume the effective potential U(q) is decomposed into
U(q) = Ui(q) + U2(q)
and define U{*(q) = U(q) — $|qg|*. Similarly we have
Algorithm 2:
1. Given the initial state (g, v), evolve the following SDE in At time
dqg = vdt

Iv( L)1
dv = —qdt — (LY)"'VU (q)dt — yvdt + ’Y(B)dW
N

to obtain (g*,v*).
2. Set (g,v) = (q*,v*) with probability
a(g,q*) = min{1, e AU2(@)-U2(a)y

otherwise (g,v) = (q, —v).

(4)
(5)

In

Theorem 3.2 Let T((q,v),(q',v")) be the transition probability of the scheme, then the

detailed balance holds:
7(q,v)T((q,v),(q',v")) = n(q', —v")T((¢', '), (¢, —v))

A direct consequence is that

/]R?dl\] 7T(q7 U)T(((L 'U)v (qlv U’))dqdv = 7r(q’, ’U/)

i-e., the update scheme preserves 7(q,v).
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