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1 Brownian dynamics

Consider the simple Brownian dynamics:

dX = b(X)dt+ σ(X)dW

where σ ∈ Rd×m and W is the m-dimensional Wiener process.

1.1 Fokker-Planck equation

Define a = σσT ∈ Rd×d, then the generator of the SDE is

Lφ = b · ∇φ+
1

2
a : ∇2φ
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and the forward Kolmogorov operator is

L∗φ = −∇ · (bφ) + 1

2
∇2 : (aφ)

which leads to the Fokker-Planck equation

∂p

∂t
= L∗p(x, t), x ∈ Rd, t > 0

The invariant distribution π(x) of the SDE is defined as

L∗π(x) = 0

1.2 Detailed balance

1.2.1 Formal definition

The detailed balance can be defined in several ways.

Definition 1.1 Suppose the Fokker-Planck equation can be written as

∂p

∂t
+∇ · j(p) = 0

where j(p) ∈ Rd is a functional of p. The detailed balance is given by the relation

j(π) ≡ 0

where π(x) is the invariant distribution.

For the Brownian dynamics, the flux is given by

j(p) = bp− 1

2
∇ · (ap)

so the condition for detailed balance becomes

b(x)π(x) =
1

2
∇ · (a(x)π(x)), x ∈ Rd (∗)

1.2.2 Derivation from the definition

We can also derive the relation (∗) from the definition of detailed balance.

Let Tt(x, y) be the transition probability density of the SDE from x ∈ Rd to y ∈ Rd in time
t. Using the Fokker-Planck equation, Tt(x, y) can be represented as

Tt(x, y) = etL
∗
δ(y − x)
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The detailed balance of the SDE is

π(x)Tt(x, y) = π(y)Tt(y, x) (1)

or
π(x)L∗

yδ(y − x) = π(y)L∗
xδ(x− y) (2)

where the subscript x means that the operator acts on a function of x.

To simply (2), pick a test function φ ∈ C2(Rd) and integrate (2) with φ(y):

π(x)

∫
Rd

φ(y)L∗
yδ(y − x)dy = L∗

x

(∫
Rd

π(y)φ(y)δ(x− y)dy

)
or

π(x)⟨φ(y),L∗
yδ(y − x)⟩ = L∗

x(φ(x)π(x))

or
π(x)⟨Lyφ(y), δ(y − x)⟩ = L∗

x(φ(x)π(x))

or
π(x)Lφ(x) = L∗(φ(x)π(x)) (3)

Now using the formulation of L,L∗, (3) becomes

πb · ∇φ+
1

2
πa : ∇2φ = −∇ · (bφπ) + 1

2
∇2 : (aφπ)

or

2πb · ∇φ = −φ∇ · (πb) + 1

2
φ∇2 : (πa) +∇φ · (∇ · (πa)) (4)

Since π(x) is the invariant distribution, L∗π(x) = 0, i.e.,

−∇ · (πb) + 1

2
∇2 : (πa) = 0

hence (4) becomes
2πb = ∇ · (πa)

This is just (∗).

1.3 Examples

In some cases the detailed balance is automatically satisfied. If b(x) = −∇V (x) and
σ(x) =

√
2, then the invariant distribution is

π(x) = e−V (x)

In this case the detailed balance becomes

−∇V (x)e−V (x) = ∇(e−V (x))
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2 Langevin dynamics

2.1 Theorem of detailed balance

Consider the second order Langevin dynamics:

dq = vdt

dv = f(q)dt− γvdt+ σdW

where q, v ∈ Rd are the position and velocity of the particle, f(q) is the force, γ > 0 is
the friction constant, σ ∈ Rd×m is a constant matrix and W is the m-dimensional Wiener
process. The detailed balance can also be established for Langevin dynamics.

Theorem 2.1 Consider the general Langevin dynamics

dq = vdt

dv = f(q)dt− γvdt+ σdW

for q, v ∈ Rd. Assume π(q, v) is the invariant distribution with symmetry in v

π(q, v) = π(q,−v)

Let Tt((q, v), (q
′, v′)) be the transition probability in time t, then the detailed balance

π(q, v)Tt((q, v), (q
′, v′)) = π(q′,−v′)Tt((q

′,−v′), (q,−v))

holds if and only if

−2γπv = σσT∂π

∂v

Note: The detailed balance presented in the Langevin dynamics is closely related to the
reversibility in the Hamiltonian dynamics.

Proof : To make the notations more compact, introduce the phase x = (q, v) ∈ R2d and
its conjugate x∗ = (q,−v). Then the symmetry of π becomes

π(x) = π(x∗)

We can compactly write the SDE as

dx = b(x)dt+ΣdW (1)

where

b(x) =

[
v

f(q)− γv

]
∈ R2d, Σ =

[
0
σ

]
∈ R2d×m
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Define the diffusion matrix

A = ΣΣT =

[
0 0
0 σσT

]
∈ R2d×2d

then the Kolmogorov operators L,L∗ of SDE (1) are

Lφ(x) = b(x) · ∇φ(x) +
1

2
A : ∇2φ(x)

L∗φ(x) = −∇ · (b(x)φ(x)) + 1

2
∇2 : (Aφ(x))

(2)

and the Fokker-Planck equation of SDE (1) is

∂p

∂t
= L∗p(x, t) (3)

Now we consider the detailed balance

π(x)Tt(x, y) = π(y∗)Tt(y
∗, x∗) (4)

Observing that Tt(x, y) can be represented as

Tt(x, y) = exp
(
tL∗

yδ(y − x)
)

we can equivalently write the detailed balance (4) as

π(x)L∗
yδ(y − x) = π(y∗)L∗

x∗δ(x∗ − y∗) (5)

Multiply (5) with a test function φ(y) ∈ C2(R2d) and integrate in R2d:

π(x)

∫
R2d

φ(y)L∗
yδ(y − x)dy = L∗

x∗

(∫
R2d

φ(y)π(y∗)δ(x∗ − y∗)dy

)
which immediately reduces to

π(x)Lxφ(x) = L∗
x∗(φ(x)π(x∗)) (6)

Substituting the formulation of L,L∗, we obtain

π(x)Lxφ(x) = π(x)
(
b(x) · ∇φ(x) +

1

2
A : ∇2φ(x)

)
= π(x)b(x) · ∇φ(x) +

1

2
π(x)A : ∇2φ(x) (7)

Let ∇∗ be the gradient with respect to x∗, then

L∗
x∗(φ(x)π(x∗)) = −∇∗ · (π(x∗)b(x∗)φ(x)) +

1

2
∇2

∗ : (π(x
∗)Aφ(x))

5



Using the equations

−∇∗ · (π(x∗)b(x∗)φ(x)) = −π(x∗)b(x∗) · ∇∗φ(x)−∇∗ · (π(x∗)b(x∗))φ(x)
1

2
∇2

∗ : (π(x
∗)Aφ(x)) =

1

2
∇2

∗ : (π(x
∗)A)φ(x) +

1

2
π(x∗)A : ∇2

∗φ(x) +∇∗ · (Aπ(x∗)) · ∇∗φ(x)

We obtain

L∗
x∗(φ(x)π(x∗)) =

(
−∇∗ · (π(x∗)b(x∗)) +

1

2
∇2

∗ : (π(x
∗)A)

)
φ(x)

+
(
− π(x∗)b(x∗) +∇∗ · (Aπ(x∗))

)
· ∇∗φ(x)

+
1

2
π(x∗)A : ∇2

∗φ(x) (8)

Terms in (8) correspond to different order of gradients of φ(x). Note that π(x) is the
invariant distribution of (1), we have

L∗
x∗π(x∗) = 0 =⇒ −∇∗ · (π(x∗)b(x∗)) +

1

2
∇2

∗ : (π(x
∗)A) = 0

hence (8) reduces to

L∗
x∗(φ(x)π(x∗)) =

(
− π(x∗)b(x∗) +∇∗ · (Aπ(x∗))

)
· ∇∗φ(x) +

1

2
π(x∗)A : ∇2

∗φ(x) (9)

Combine (6)(7)(9), the detailed balance becomes

π(x)b(x) · ∇φ(x) +
1

2
π(x)A : ∇2φ(x) =(

− π(x∗)b(x∗) +∇∗ · (Aπ(x∗))
)
· ∇∗φ(x) +

1

2
π(x∗)A : ∇2

∗φ(x) (10)

Note that in (10) we have π(x) = π(x∗) and

A : ∇2φ =

[
0 0
0 σσT

]
:

[
φqq φqv

φvq φvv

]
= σσT : φvv =

[
φqq −φqv

−φvq φvv

]
= A : ∇2

∗φ(x)

hence
1

2
π(x)A : ∇2φ(x) =

1

2
π(x∗)A : ∇2

∗φ(x)

Using π(x) = π(x∗) again, (10) reduces to

π(x)
(
b(x) · ∇φ(x) + b(x∗) · ∇∗φ(x)

)
= ∇∗ · (Aπ(x∗)) · ∇∗φ(x) (11)

On the one hand,

b(x) =

[
v

f(q)− γv

]
,∇φ(x) =

[
φq

φv

]
=⇒ b(x) · ∇φ(x) = v · φq + f(q) · φv − γv · φv
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b(x∗) =

[
−v

f(q) + γv

]
,∇∗φ(x) =

[
φq

−φv

]
=⇒ b(x∗) · ∇∗φ(x) = −v · φq − f(q) · φv − γv · φv

Hence
b(x) · ∇φ(x) + b(x∗) · ∇∗φ(x) = −2γv · φv (12)

On the other hand,

∇∗ · (Aπ(x∗)) · ∇∗φ(x) = (A∇∗π(x)) · ∇∗φ(x)

=

([
0 0
0 σσT

] [
πq
−πv

])
·
[
φq

−φv

]
=

[
0

−σσTπv

]
·
[
φq

−φv

]
= (σσTπv) · φv (13)

Combine (11)(12)(13) and the detailed balance becomes

−2γπv · φv = (σσTπv) · φv (14)

Since φv is arbitrary, (14) is just

−2γπv = σσT∂π

∂v

Theorem 2.2 If the detailed balance

π(q, v)Tt((q, v), (q
′, v′)) = π(q′,−v′)Tt((q

′,−v′), (q,−v))

holds for some symmetric π(q, v) = π(q,−v), then π(q, v) is the invariant distribution.

Integrating the detailed balance in q ∈ Rd, we obtain∫
R2d

π(q, v)Tt((q, v), (q
′, v′))dqdv = π(q′,−v′) = π(q′, v′)

hence π(q, v) is the invariant distribution.

2.2 Applications in thermal equilibrium

Let U(q) be the potential function and assume the mass of the particle is 1. Consider the
Langevin dynamics

dq = vdt

dv = −∇U(q)dt− γvdt+

√
2γ

β
dW

7



and the invariant distribution is

π(q, v) = exp

(
− β

(
|v|2

2
+ U(q)

))
It’s easy to verify

σσTπv =
2γ

β
πv = −2γπv

hence the Langevin dynamics of a classical system satisfies the detailed balance.

Now consider the pmmLang:

dq = vdt

dv = −qdt− (Lα)−1∇Uα(q)dt− γvdt+

√
2γ(Lα)−1

βN
dW

The invariant distribution is

π(q,v) = exp

(
− βN

(
1

2
vTLαv + U(q)

))
It’s easy to verify the detailed balance condition.

3 Potential splitting method

3.1 Methodology

Suppose we want to sample the Boltzmann distribution

π(q, v) = exp

(
− β

(
|v|2

2
+ U(q)

))
for some potential function U(q). Decompose

U(q) = U1(q) + U2(q)

and consider the following update scheme in timestep ∆t:
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Algorithm 1: Potential splitting method

1. Given the state (q, v), evolve the following SDE

dq = vdt

dv = −∇U1(q)dt− γvdt+

√
2γ

β
dW

with initial value (q, v) in time ∆t to obtain (q∗, v∗).

2. Set (q, v) = (q∗, v∗) with probability

a(q, q∗) = min{1, e−β(U2(q∗)−U2(q))}

otherwise (q, v) = (q,−v).

Theorem 3.1 Let T ((q, v), (q′, v′)) be the transition probability of Algorithm 1, then the
detailed balance holds:

π(q, v)T ((q, v), (q′, v′)) = π(q′,−v′)T ((q′,−v′), (q,−v))

A direct consequence is that∫
R2d

π(q, v)T ((q, v), (q′, v′))dqdv = π(q′, v′)

i.e., the scheme preserves π(q, v).

Proof Define the distributions

π1(q, v) = exp

(
− β

(
|v|2

2
+ U1(q)

))
, π2(q) = exp

(
− βU2(q)

)
Let T1((q, v), (q

′, v′)) be the transition probability of Step 1, and a(q, q′) be the acceptance
probability in Step 2, then

π1(q, v)T1((q, v), (q
′, v′)) = π1(q

′,−v′)T1((q
′,−v′), (q,−v)) (1)

π2(q)a(q, q
′) = π2(q

′)a(q′, q) (2)

Notice that π(q, v) = π1(q, v)π2(q), and the transition probability of Algorithm 1 is

T ((q, v), (q′, v′)) = T1((q, v), (q
′, v′))a(q, q′) + δ(q′ − q)δ(v′ + v)(1−A(q, v)) (3)
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where A(q, v) is the total acceptance probability

A(q, v) =

∫
T1((q, v), (q

′, v′))a(q, q′)dq′dv′

To verify the detailed balance, we need

π(q, v)T ((q, v), (q′, v′)) = π(q′,−v′)T ((q′,−v′), (q,−v))

or
π(q, v)T1((q, v), (q

′, v′))a(q, q′) = π(q′,−v′)T1((q
′,−v′), (q,−v))a(q′, q) (4)

π(q, v)δ(q′ − q)δ(v′ + v)(1−A(q, v)) = π(q′,−v′)δ(q′ − q)δ(v′ + v)(1−A(q′,−v′)) (5)

It’s easy to see (4) is the product of (1)(2), and (5) holds from the Dirac function. In
conclusion, the detailed balance holds.

3.2 Application in pmmLang

For pmmLang, assume the effective potential U(q) is decomposed into

U(q) = U1(q) + U2(q)

and define Uα
1 (q) = U(q)− α

2 |q|
2. Similarly we have

Algorithm 2:

1. Given the initial state (q,v), evolve the following SDE in ∆t time

dq = vdt

dv = −qdt− (Lα)−1∇Uα
1 (q)dt− γvdt+

√
2γ(Lα)−1

βN
dW

to obtain (q∗,v∗).

2. Set (q,v) = (q∗,v∗) with probability

a(q, q∗) = min{1, e−β(U2(q∗)−U2(q))}

otherwise (q,v) = (q,−v).

Theorem 3.2 Let T ((q,v), (q′,v′)) be the transition probability of the scheme, then the
detailed balance holds:

π(q,v)T ((q,v), (q′,v′)) = π(q′,−v′)T ((q′,−v′), (q,−v))

A direct consequence is that∫
R2dN

π(q,v)T ((q,v), (q′,v′))dqdv = π(q′,v′)

i.e., the update scheme preserves π(q,v).
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