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1 Banach 代数

1.1 Banach 代数的定义

可除代数: 代数 A 称为可除的, 若 ∀a 6= 0, a ∈ A, a−1 存在.
理想: J 6= A, JA ⊂ A 且 AJ ⊂ A.
商代数: B = A/J , 其上的代数运算为加法和乘法.
定理 5.1.9: A 的理想 J 是极大的, 当且仅当商代数 A/J 是可除代数. Banach 代数: 代数 A 称

为 Banach 代数, 如果 A 上有完备的范数 ‖·‖ 满足不等式 ‖ab‖ ⩽ ‖a‖‖b‖.

例 (多项式函数空间) 设 A = C[x], 则 A 是一个没有逆元的代数. 对任何多项式 p(x),

J = {f(x) ∈ A : p(x) | f(x)}

是一个理想. J 是极大理想当且仅当 p(x) 为不可约多项式. 此时

A/J = {q(x) ∈ C[x] : deg q(x) ⩽ n− 1}

其中 n = deg p(x). 因此 A/J 是除以 p(x) 得到的余数构成的商空间. 根据 Bèzout 定理, 对每
个 q(x) ∈ A/J 存在一个 r(x) ∈ A 使得

q(x)r(x) ≡ 1, mod p(x)

因此 r(x) 是 q(x) 的逆元. 因此 J 是 A 的极大理想, A/J 是可除代数.

例 (连续函数空间) A = C[0, 1], 其上定义着连续函数的加法和乘法. 在 A 上赋以范数

‖f‖∞ = max
x∈[0,1]

|f(x)|

则 A 是一个 Banach 代数. 此时

J = {f ∈ C[0, 1] : f(0) = 0}

是 A 的极大理想.

例 (线性算子) 设 H 是一个 Hilbert 空间, A = L(H) 是 H 上所有连续线性算子的集合, 并按
照复合运算定义乘法. 则 A 是一个 Banach 代数.
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定理 5.2.7 (Gelfand-Mazur) 设 A 是一个可除的 Banach 代数, 则 A 等于同构于 C.
因此, 若 J 是 Banach 代数 A 的极大理想, 则 J 是闭的, 且 A/J ' C.
如果 J 是一个极大理想, 则可以定义一个 A 到 C 上的连续同态:

φJ : A 7→ C

使得 φJ(a) = [a] ∈ A/J ' C. 对任何一个极大理想 J , 都可以定义一个这样的连续同态.
反过来, 如果存在一个这样的连续同态, 就可以定义相应的极大理想:
引理 5.2.10 设 A 是一个有单位元的交换 Banach 代数, φ 是 A 到 C 的一个连续同态, 非退化,
则 J = kerA 是 A 的一个极大理想.

1.2 C∗ 代数

简单来说, C∗ 代数是具有共轭运算的代数结构. 最典型的例子是 Hilbert 空间 H 上的全部连

续线性算子 L(H). 特别的, C∗ 代数满足以下性质:

‖a∗a‖ = ‖a‖2, ∀a ∈ A

我们可以在 L(H) 当中验证类似的结论. 当 A ∈ L(H) 为线性算子时, A∗ 总是可以定义的, 且

‖A∗A‖ = ‖A‖2

这是因为, 对任何 x ∈ H, 有

‖Ax‖2 = (Ax,Ax) = (A∗Ax, x)

注意 A∗A 是自伴算子, 因此两边对 x 取上确界有

‖A‖2 = sup
∥x∥=1

‖Ax‖2 = sup
∥x∥=1

(A∗Ax, x) = ‖A∗A‖

从而 L(H) 构成一个 C∗ 代数. 但是需要注意, L(H) 并非一个交换的 C∗ 代数.

1.3 Hilbert 空间上的正常算子

设 H 是 Hilbert 空间, N ∈ L(H) 是一个正常算子, 即 NN∗ = N∗N . 定义 AN 是一切二元

多项式 P (z, z̄) 对应的算子 P (N,N∗) 在 L(H) 中生成的子代数. 简单来说, AN 中的元素就是

P (N,N∗) 的极限. 对于算子 A = P (N,N∗), 它的对合运算 (共轭) 是

A∗ = P̄ (N∗, N)

当 N 是正常算子时, AN 是一个交换的 C∗ 代数. 这非常有利于我们研究 N 的谱结构.
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1.3.1 连续算符演算

推论 5.5.4 AN 与 C(σ(N)) 等距 ∗ 在上同构.

这意味着, 对任何 f ∈ C(σ(N)), 都可以定义算子 f(N) ∈ L(H), 且

‖f(N)‖ = sup
λ∈σ(N)

|f(λ)|

因此, 我们也可以用下面的方法来刻画 f(N). 设 fn(z) ∈ P (z, z̄) 在 C(σ(N)) 上 (注意 σ(N)

是 C 上的紧集) 一致收敛到 f(z), 则 fn(N) 在强意义下为 Cauchy 列, 因此可以定义

f(N) := lim
n→∞

fn(N)

从这个等距同构可以得到一些有趣的结论:

1. f(N) ∈ L(H) 可逆当且仅当 0 6∈ f(σ(N)).

• 若 0 6∈ f(σ(N)), 则 f−1(z) 在 σ(N) 上为连续函数. 因此 f−1(N) ∈ L(H) 满足

f−1(N)f(N) = f(N)f−1(N) = I

因此 f−1(N) 是 f(N) 的逆算子.

• 若 f(N) 是可逆的, 在二元多项式集合中 P (z, z̄) 取一列 fn(z) 使得

fn(z) → f(z), 在 σ(N) 上一致收敛

根据 AN 和 C(σ(N)) 的同构, 有

f(N) = lim
n→∞

fn(N)

由于 f(N) 可逆, 故对充分大的 n 有 fn(N) 可逆, 且∥∥∥(fn(N)
)−1

∥∥∥ ⩽ C

对某个常数 C 恒成立. 此时, 多项式 fn(z) = Pn(z, z̄) 一定在 σ(N) 上没有零点, 否
则 fn(λ) = 0 意味着

g(z) =
fn(z)

z − λ

在 σ(N) 上连续有界, 因此

fn(N) = (N − λI)g(N)
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不是可逆算子, 因为 N − λI 不是可逆的. 因此有∥∥f−1
n (N)

∥∥ ⩽ C

下面来验证 fn(z) 的一致极限 f(z) 没有零点. 否则设 f(λ) = 0, 则 lim
n→∞

fn(λ) = 0,

lim
n→∞

|f−1
n (λ)| = +∞

进而我们有

lim
n→∞

∥∥f−1
n (N)

∥∥ ⩾ lim
n→∞

|f−1
n (λ)| = +∞

这与 ‖f−1
n (N)‖ 有界矛盾! 因此 f(λ) 没有零点.

2. 若 φ ∈ C(σ(N)), 则 σ(φ(N)) = φ(σ(N)).

λ ∈ σ(φ(N)) ⇐⇒ φ(N)− λI 是 H 上可逆算子

⇐⇒ (φ− λ)(N) 是 H 上可逆算子

⇐⇒ (φ− λ)(N) 是 H 上可逆算子

⇐⇒ φ(z)− λ 在 σ(N) 上有零点

⇐⇒ λ = φ(z), ∃z ∈ σ(N)

⇐⇒ λ ∈ φ(σ(N))

从上面的结论可以看出, 如果 φ 是实值函数, 则 φ(N) 的特征值为实数, 从而 φ(N) 是自

伴算子. 如果 φ ⩾ 0 恒成立, 则 φ(N) 是非负的自伴算子.

3. 若 ϕ ∈ C(σ(N)), ψ ∈ C(σ(φ(N))), 则

(ψ ◦ ϕ)(N) = ψ(ϕ(N))

注意当 N 是正常算子时, ϕ(N) 也是正常算子, 因此 ψ(ϕ(N)) 可以定义.

4. N 是自伴的当且仅当 σ(N) ⊂ R. N 是正算子当且仅当 σ(N) ⊂ R+. N 是酉算子当且仅
当 σ(N) ⊂ S1.

5. 若 P ∈ L(H) 是一个正算子, 则它有唯一的正平方根.

例 设 N 是 Hilbert 空间 H 上一个正常算子, 则当 λ ∈ ρ(N) 时,∥∥(N − λI)−1
∥∥ =

1

d(λ, σ(N))

其中 d(λ, σ(N)) 表示 λ ∈ C 到紧集 σ(N) 的距离.
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当 λ ∈ ρ(N) 时, 容易看出
f(z) = z − λ, g(z) =

1

z − λ

是 σ(N) 上的连续函数, 并且 fg = 1. 因此有

I = f(N)g(N) = (N − λI)g(N)

从而 g(N) = (N − λI)−1. 于是∥∥(N − λI)−1
∥∥ = sup

µ∈σ(N)

|g(µ)| = 1

d(λ, σ(N))

故命题成立.

1.3.2 谱族理论

首先我们来证明投影算子的一个简单性质. Hilbert 空间 H 上的连续线性算子 E 称为投影, 若

E2 = E, E = E∗

一个直接的结果是: R(E) 是闭集. 事实上, 假设序列 (xn) ⊂ H 使得

Exn → y, 在 H 中强收敛

则我们来证明 y ∈ R(E). 事实上, 由于 E 是有界算子, 故

E2xn → Ey, 在 H 中强收敛

但 E2xn = Exn, 故其极限 y = Ey ∈ R(E). 故 R(E) 是闭集.

根据上面的讨论, 一个投影算子 E 可以由其值域 R(E) 完全确定:

• 若 E 是投影算子, 则 R = R(E) 是 H 中的闭子空间.

• 若 R 是 H 中的闭子空间, 则由 R 可以唯一确定正交投影

Ex = arg min
y∈R

‖y − x‖H , ∀x ∈ H

也就是说, Ex ∈ R 是 R 中离 x ∈ H 最近的那个点.

于是, H 上全部的投影 P (H) 和 H 的全部闭子空间一一对应. 特别的, 恒等算子和零算子都
是投影算子. 对于 H 中的闭子空间 A, 记 E(A) 是 H 到 A 的正交投影. 如果投影算子 E,F ,
使得 R(E) ⊂ R(F ), 则称 E 是 F 的子投影, 并记 E ⊂ F . 显然, 当闭子空间 A ⊂ B 时,
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E(A) ⊂ E(F ).

谱族是描述无界和有界算子的谱结构的重要工具. 从数学本质上来说, 谱族 E(·) 是一种算子值
测度, 即对任何可测集合 A, E(A) 是一个算子. 实际上, 它是 Hilbert 空间上 H 上的一个投影.
下面是一个严格的数学定义:

设 X 是一个局部紧的拓扑空间, B(X) 是 X 上所有 Borel 子集组成的集合类. 设 H 是一个

Hilbert 空间, P (H) 是 H 上的所有投影算子构成的集合.

谱族 E(·) 定义为 B(X) 到 P (H) 的一个映射, 满足:

1. E(X) = I;

2. 对于 B(X) 中任意不相交的 Borel 集序列 {An}, 有

E

( ∞⋃
n=1

An

)
=

∞∑
i=1

E(An)

显然, 对于任意 x, y ∈ H,
(E(·)x, y)

是 X 上的一个 Borel 测度. 这个算法被称为谱族 E(·) 对应的谱测度. 特别的, 如果 x = y, 则

(E(·)x, x)

是 X 上的非负测度. 谱族最重要的应用是给出有界正常算子和无界自伴算子的谱分解. 给定
一个无界自伴算子 A, 我们有 σ(A) ⊂ R, 因此可以取 X = R 或 σ(A). 谱族 E(·) 的定义为: 对
任何 Ω ⊂ σ(A), 定义

E(Ω) := χΩ(A), ∀Ω ⊂ B(R)

直观地想, E(Ω) 是 Ω 中的特征值对应的特征子空间上的正交投影, 不过这样的描述是不准确
的, 因为 σ(A) 除了点谱还有其他复杂的谱结构. 不过, 特别的有

R(E({λ})) = ker(λI −A)

注意 Ax = λ0x =⇒ ψ(A)x = ψ(λ0)x 以及自伴算子的谱分解. 设

A =

∫
R
λdE(λ)

则当 x ∈ R(E({λ0})) 时, 有 E(R\{λ0})x = 0. 故

Ax =

∫
R
λdE(λ)x

= λ0E({λ0})x

= λ0x
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对于有界正常算子的讨论是类似的. 根据谱分解定理, H 上的无界自伴算子和谱族是一一对应
的.

1.3.3 正常算子的谱分解

我们已经证明, 对于 f ∈ C(σ(N)), 总可以定义算子 f(N) ∈ AN . 一般的, 定义 B(σ(N)) 为

σ(N) 上的有界 Borel 可测函数的集合, 则对任何 ψ ∈ B(σ(N)), 可以定义算子 ψ(N). 对任何
x, y ∈ H, 存在一个谱测度 mx,y 使得

(ψ(N)x, y) =

∫
σ(N)

ψ(z)mx,y(dz)

一般的, 对于 Hilbert 空间上的正常算子 N , 可以定义 C 上的算子值测度

E(Ω) = χΩ∩σ(N)(N) ∈ L(N)

可以证明 E(Ω) 构成一个谱族. 直观上看, E(Ω) 可以视为特征值在 Ω 区域上的特征子空间的

投影. 对于任何 x, y ∈ H, 容易看出
(E(·)x, y)H

构成 C 上的一个测度. 下面给出如下的谱分解定理:

定理 5.5.14 (正常算子的谱分解) 设 N 是 Hilbert 空间 H 上的正常算子, E(Ω) 是 N 所定义的

谱族, 则对任意的 ψ ∈ B(σ(N)), 存在唯一的算子 ψ(N) ∈ L(H) 使得对任何 x, y ∈ H, 有

(ψ(N)x, y)H =

∫
σ(N)

ψ(z)d(E(z)x, y)H

对给定的 ψ ∈ B(σ(N)), 若取 ϕ(z) = ψ(z)ψ(z) = |ψ(z)|2, 则可得

ϕ(N) = (ψ(N))∗ψ(N) =⇒ (ϕ(N)x, x) = ‖ψ(N)x‖2

因此可得

‖ψ(N)x‖2 =
∫
σ(N)

|ψ(z)|2d(E(z)x, x)

注意到, 由于 E(z) 是正交投影算子, 故对任何 Borel 集合 Ω ⊂ C 有

(E(z)x, x) = ‖E(z)x‖2 ⩾ 0

因此 (E(·)x, x) 是一个非负的测度.

在弱的意义下, 形式上有
ψ(N) =

∫
σ(N)

ψ(z)dE(z)

下面是两个重要的应用: 自伴算子和酉算子的谱分解.
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• 设 A 是 H 上的自伴算子, 则 σ(A) ⊂ R, 且

A =

∫
σ(A)

λdEλ

其中 Eλ = E((−∞, λ] ∩ σ(A)), 即特征值不超过 λ 的特征子空间上的正交投影.

• 设 U 是 H 上的酉算子, 则 σ(U) ⊂ S1, 且

U =

∫
σ(A)

eiθdFθ

其中 Fθ = E(S1 ∩ ei[0,θ]).

这里的积分在 Stieltjes 积分的意义下理解.

尽管 Lebesgue 积分和 Stieltjes 积分的形式不同, 但它们对应的 Riemann 和是相同的. 以自伴
算子为例, 在 Lebesgue 积分和 Stieljes 积分的意义下, A 可以表示为

A =

∫
C
λdE(λ), A =

∫
C
λdEλ

假设 σ(A) 所在的闭区间有一剖分 {λn}, 并且 λ′
n ∈ [λn, λn+1], 则两者对应的 Riemann 和为∑

n

λ′
nE((λn, λn+1]),

∑
n

λ′
n

(
Eλn+1

− Eλn

)
注意到当 a < b 时,

χ((a, b]) = χ((−∞, b])− χ((−∞, a]) =⇒ E((a, b]) = Eb − Ea

因此上面的两个 Riemann 和是相同的.

1.3.4 正常算子的谱集

设 N 是 Hilbert 空间 H 上的正常算子, 我们来对 N 的谱集进行分类. 设 T 是一个一般的连

续线性算子, 定义其预解集为

ρ(T ) = {λ ∈ C : T − λI 是 H 上的一一映射}

注意当 T − λI 是满射时, 由开映射定理知 (T − λI)−1 是连续线性泛函. 将 σ(T ) 分为三类:

• 点谱 σp(T ) = {λ ∈ C : ker(T − λI) 6= 0}.

任取非零元素 x ∈ ker(T − λI), 可知 Tx = λx, 因此 σp(T ) 是 T 的全部特征值的集合.
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• 连续谱 σc(T ) = {ker(λI − T ) = 0, R(T − λI) = H}.

这意味着 (T −λI)−1 是无界算子,且是从 R(T −λI)到 H 的一一映射. 如果 R(T −λI) =
H, 则 (T − λI)−1 是 H 上的有界线性算子.

• 剩余谱 σr(T ) = {λ ∈ C : ker(T − λI) = 0, R(T − λ) 6= H}.

一般点谱和剩余谱是较为常见的谱.

下面是常见的例子. 设 Ω 是 Rn 一个具有光滑边界的开区域, H = L2(Ω) 是 Hilbert 空间. 我
们知道 Dirichlet 边值条件下的 Laplace 算子为

−∆D : H2(Ω) ∩H1
0 (Ω) 7→ L2(Ω)

注意

R(T ) = H1
0 (Ω) ∩H2(Ω) ⊃ C∞

0 (Ω)

因此 R(T ) 在 L2(Ω) 中稠密. 因此 0 ∈ σc(T ).

对于正常算子 N , 我们可以通过它的谱族 E 对它的谱集作充分的刻画. 对于点谱, 我们有如下
结论: 对任何 λ ∈ C,

R(E({λ})) = ker(N − λI)

因此 E({λ}) 是 Hilbert 空间 H 到 ker(N − λI) 的正交投影. 一个简单的证明:

• 若 x ∈ ker(N − λI), 我们来证明 E({λ})x = x, 从而自然有 x ∈ R(E({λ})). 事实上,

Nx = λx

因此对任何 φ ∈ C(σ(N)) 和 y ∈ H, 有

(φ(N − λI)x, y)H = 0

于是, N − λI 对应的谱测度 mx,y 恒为 0, 因此对任何 ψ ∈ B(σ(N)), 有

ψ(N)x = ψ(λ)x

特别取 ψ = χ{λ}, 有 E({λ})x = x, 因此 x ∈ R(E{λ}).

• 若 x ∈ R({λ}), 我们来证明 Nx = λx. 事实上, 此时容易看出

E({λ})x = x

因此仿照课本 p49 的证明有 Nx = λx.
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另外, λ ∈ ρ(N) 当且仅当存在存在 λ 的邻域 U 使得 E(U) = 0. 证明:

• 若 λ ∈ ρ(N), 则存在一个邻域 U ⊂ ρ(N). 对一切 x, y ∈ H, 设 mx,y 是正常算子 N 对应

的谱测度, 则
(E(U)x, y)H =

∫
σ(N)

χU (z)mx,y(dz) = 0

从而 E(U) = 0.

• 仿照课本的证明.

1. 点谱: λ ∈ σp(N).

2. 连续谱: λ ∈ σc(N) =⇒ 存在序列 (xn) 满足 ‖xn‖ = 1 而 ‖(N − λI)xn‖ → 0.

3. 谱: λ ∈ σ(N) ⇐⇒ ∀λ 的邻域 U , E(U) 6= ∅.

正常算子还有另外一种对谱进行分类的方式. 之前我们是对 E(U) 是否为空进行分类, 现在我
们可以对 E(U) 的维数进行分类.

• 本质谱: 如果对 λ ∈ σ(N)的任何 Borel邻域 U ,有 dimR(E(U)) = +∞,则 λ ∈ σess(N);

• 离散谱: 如果对 λ ∈ σ(N) 的某个 Borel 邻域 U , 有 dimR(E(U)) < +∞, 则 λ ∈ σd(N).

当 N 是正常算子时, 其离散谱有如下判定: λ ∈ σd(N) 当且仅当:

• λ 是 σ(N) 中的孤立点;

• λ 的几何重数有限, 即 dim(T − λI) < +∞.

我们还是以 T = (−∆D)
−1 的为例进行分析. 由于 T 是紧算子, 故对任何 λ 6= 0, T − λI 是

Fredholm 算子, 从而
dim ker(T − λI) < +∞

故 λ ∈ σd(N). 而 0 不是孤立的, 因此 0 是本质谱.

1.4 正常算子的谱理论总结

设 H 是 Hilbert 空间, N 是 H 上的正常算子, 即 NN∗ = N∗N .

1. 设 AN 是二元多项式 P (N,N∗) 生成的交换 C∗ 代数, 则 AN 与 C(σ(N)) 等距同构. 因
此对 φ ∈ C(σ(N)), 都可以自然定义 φ(N) ∈ AN , 并且

‖φ(N)‖ = sup
z∈σ(N)

|φ(z)|

当 φn ∈ C(σ(N)) 在紧集 σ(N) 上一致收敛到 φ 时, φn(N) 在 L(H) 中收敛到 φ(N).
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2. 对于任何 x, y ∈ H,
φ 7→ (φ(N)x, y)H

可以视为 C(σ(N)) 上的连续线性泛函, 因此存在 σ(N) 上的 Borel 测度 mx,y 使得

(φ(N)x, y)H =

∫
σ(N)

φ(z)mx,y(dz), ∀φ ∈ C(σ(N))

对任何有界的 Borel 可测函数 ψ ∈ B(σ(N)), 定义 ψ(N) ∈ L(H) 满足

(ψ(N)x, y)H =

∫
σ(N)

ψ(z)mx,y(dz), ∀ψ ∈ B(σ(N))

3. 对任何 Borel 可测集 Ω ⊂ C, 定义谱族 (算子值测度)

E(Ω) = χΩ∩σ(N)(N)

直观上, E(Ω) 是 Ω 中特征值对应的特征子空间上的正交投影.

4. 正常算子 N 的谱分解

N =

∫
σ(N)

zdE(z)

对于 ψ ∈ B(σ(N)), 有 ψ(N) ∈ L(H) 满足

ψ(N) =

∫
σ(N)

ψ(z)dE(z)

并且

‖ψ(N)‖ = sup
z∈σ(N)

|ψ(z)|

以上积分在弱的意义下理解.

2 无界算子

2.1 Cayley 变换与自伴算子的谱分解

2.1.1 Cayley 变换

我们之前已经讨论过 Hilbert 空间 H 上的有界正常算子 N 的谱分解. 当 N 是有界算子, 我们
可以定义算子值函数 φ(N) 和 ψ(N), 当 φ ∈ C(σ(N)) 和 ψ ∈ B(σ(N)) 时. 对于一般的无界算
子 T , 一般没有这样的好处. 但是, 如果 T 是一个无界的自伴算子, 我们可以引入其 Cayley 变
换 U , 它是 H 上的一个等距算子! 一般的, 我们有如下结论:
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定理 6.2.6 设 A 是 Hilbert 空间上 H 上的对称算子, 令

U := (A− iI)(A+ iI)−1

则 U 是从 R(A+ iI) 到 R(A− iI) 的等距闭线性一一算子. 注意 A± iI 都是单射, 因为 A 是

对称算子. 特别的, 若 A 是 H 上的自伴算子, U 是酉算子. 下面来证明: 1 6∈ σp(U), 即

ker(U − I) = 0

否则, 假设 y ∈ H 使得 Uy = y, 令 x = (A+ iI)−1y 有

(A− iI)x = (A+ iI)x =⇒ x = 0

因此我们得到 1 6∈ σp(U).

反过来, 当 U 是酉算子且 1 6∈ σp(U) 时, 可以定义算子

A = i(I + U)(I − U)−1

且 D(A) = R(I − U). 注意到 1 6∈ σp(U) 时, I − U 是单射, 因此 (I − U)−1 是良定义的. 我们
来证明以上定义的 A 是自伴的无界算子:

• A 是对称算子. 事实上, 假设 y1, y2 ∈ R(I − U), 可以证明

(Ay1, y2) = (y1, Ay2) ⇐⇒ ((I + U)x1, (I − U)x2) + ((I − U)x1, (I + U)x2) = 0

其中 x1 = (I − U)−1y1, x2 = (I − U)−1y2. 上式等价于

(x1, x2) = (Ux1, Ux2)

根据 U 是酉算子即可直接得到.

• A 是自伴算子. 只需验证 R(A± iI) = H. 注意到

A+ iI = 2i(I − U)−1, A− iI = 2iU(I − U)−1

它们显然都是满射. 从而 A 是自伴算子.

按照这种方式, 我们得到了自伴算子 A和满足 1 6∈ σp(U)的酉算子的一一对应关系. 更进一步,
如果 1 ∈ ρ(U), 那么 A 是有界的自伴算子. 对于一般的情况: 1 ∈ σc(U), 我们有 R(I − U) 在

H 中稠密, 从而 A 则是无界的自伴算子, 并且其定义域 D(A) = R(I − U) 在 H 中稠密.
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2.1.2 无界自伴算子的谱集

设 T 是 Hilbert 空间 H 上的闭算子, 定义 λ ∈ ρ(T ) 当且仅当 λI − T 是从 D(T ) 到 H 的一

一映射. 换句话说, 存在一个线性算子 R(λ) = (λI −A)−1 满足

R(λ)(λI − T ) = ID(A), (λI −A)R(λ) = IH

注意到, 当 A 是闭算子时, λI − T 也是闭算子, 从而其逆映射 (λI − T )−1 是闭算子. 由闭图像
定理, (λI − T )−1 是 H 上的有界线性算子. ρ(T ) 称为预解集, 其余集 σ(T ) 为谱点. σ(T ) 是 C
中的闭集, 但不一定是紧集. 我们可以证明如下结论:

如果 A 是 Hilbert 空间 H 上的自伴算子, 且 σ(A) 有界, 则 A 是有界线性算子.

设 Eλ 是 A 对应的谱族, 则由谱分解定理, 对任何 x ∈ H 有

Ax =

∫
R
λdEλx =

∫
R
1σ(A)λdEλx

设 σ(A) 包含于半径为 R 的开球, 则

‖Ax‖2 =
∫
R
1σ(A)|λ|2d(Eλx, x) ⩽ R2

∫
R

d(Eλx, x) = R2‖x‖2

因此 ‖Ax‖ ⩽ R‖x‖ 对任何 x ∈ H 成立, 从而 A 是有界线性算子.

类似于有界正常算子的情形, 可以将谱集划分为点谱 σp(T ), 连续谱 σc(T ) 和剩余谱 σr(T ). 对
于自伴算子 A, 它的谱集 σ(A) ⊂ R, 且其刻画于有界的情形类似.

一般的, 自伴算子的谱可以用下面的过程刻画:

自伴算子 -> 谱分解 - > 谱集

2.1.3 自伴算子的谱分解

对于无界自伴算子 A, 我们知道其对应的 Cayley 变化换 U 是酉算子且 1 6∈ σp(U). 因此, 通过
U 的谱族 Fθ 能够得到 A 的谱族 Eλ. 因此, 对于有界的 Borel 可测函数 ϕ ∈ B(R), 可以定义
ϕ(A) ∈ L(H) 满足

ϕ(A) =

∫
R
ϕ(λ)dEλ, ϕ ∈ B(R)

并且

‖ϕ(A)‖ ⩽ sup
λ∈σ(A)

|ϕ(λ)|

注意当 A 是无界自伴算子时, σ(A) 不一定是紧集, 因此最大值不一定取得到, 等号也不一定成
立. 在这里我们没有使用谱测度的语言, 而是直接谱族直接来研究无界算子.
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特别的, 如果取 ϕ(x) = χ(−∞,λ], 则得到 (−∞, λ] 对应的特征子空间上的正交投影:

Eλ = χ(−∞,λ](A)

对于一般的 Borel 可测函数 ϕ, 应该如何定义 ϕ(A) 呢? 方法是构造一族有界的可测函数

ϕn(λ) =

ϕ(λ), |ϕ(λ)| ⩽ n

0, else

然后用一族有界算子 An = ϕn(A) 来逼近 ϕ(A). 这样所得到的

ϕ(A) =

∫
R
ϕ(λ)dEλ

是一个无界闭算子, 并且其定义域为

Dϕ = {x ∈ H :

∫
R
|ϕ(λ)|2d(Eλx, x) < +∞}

一个特别的结果是, 对一切 (无界)Borel 可测函数 ϕ(λ), Dϕ 在 H 中稠密. 由此可以得到一个
有趣的结果:

设 A 是 Hilbert 空间上的无界自伴算子, 则 D(A2) 在 H 中稠密, 且 A2 是自伴的.

对于自伴算子, 设 A 的谱分解为

A =

∫
R
λdEλ

考察实值函数 ϕ(λ) = λ2, 并定义

Dϕ = {x ∈ H :

∫
R
λ4d(Eλx, x) < +∞}

则 Dϕ = D(A2) 在 H 中稠密. 由 ϕ 是实值函数知 ϕ(A) = A2 是自伴算子.

2.2 自伴算子的扰动

设 A 是一个给定的算子. 如果 B 具有一定的有界性, A + B 是否具有某些类似的性质? 我们
引入如下的定义来刻画算子 B 关于 A 的有界性:

设 A,B 是 Hilbert 空间上的无界稠定算子, 且 D(A) ⊂ D(B). 算子 B 称为 A-有界的, 是指映
射

B : (D(A), · ) 7→ (H, ‖·‖)

是有界的. 换句话说, 存在常数 a, b > 0 使得

‖Bx‖ ⩽ a‖Ax‖+ b‖x‖
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B 关于 A 的界定义为常数 a 的下确界. 这个定义对常数 b 没有作限制, 因为有界算子的性质
是简单的.

算子 B 称为 A-紧的, 是指映射

B : (D(A), · ) 7→ (H, ‖·‖)

是紧的. 换句话说, 若序列 (xn) ⊂ D(A) 使得 ‖xn‖ 和 ‖Axn‖ 都是有界的, 则 Bxn 在 H 中有

收敛子列. 算子的紧性能够得到它的有界性:

命题 6.5.7 设 B 是可闭化算子, B 是 A 紧的, 则对于任意 ε > 0, 存在常数 bε > 0 使得

‖Bx‖ ⩽ ε‖Ax‖+ bε‖x‖, ∀x ∈ D(A)

上述命题在 A 是可闭化算子时也成立. 上述命题意味着 B 关于 A 的界实际上是 0.

算子的闭性 设 B 关于 A 的界小于 1, 则 A+B 是 (可) 闭的当且仅当 A 是 (可) 闭的.

算子的自伴性 算子的自伴性在扰动下的变化是一个重要的命题, 相应的结果被称为 Kato-
Rellich 定理.

(Kato-Rellich) 设 H 是 Hilbert 空间, A 是 (本质) 自伴算子, B 是对称算子, B 关于 A 的界

a < 1, 则 A+B 是 (本质) 自伴算子.

证明是通过研究 A+ B + µi 的值域来进行的. 即便是在 a = 1 的情形, 也可以得到 A+ B 是

本质自伴的.

算子的谱集 一般来说这是比较困难的. 在这里将谱集划分为 σd(A) 和 σess(A). 点谱的扰动
参见定理 6.1.18. 本质谱的扰动参见 Weyl 定理:

设 A 是自伴的, B 是对称的, B 是关于 A 是紧的, 则

σess(A+B) = σess(A)

由于 B 是可闭的且关于 A 的界小于 1, 故 A + B 实际上是自伴算子.jk 这些性质用来研究
Schrödinger 算子的谱时非常有用.

2.3 一般闭算子的谱集分类

设 T 是 Hilbert 空间 H 上的闭算子, 则 T 的预解集定义为

ρ(T ) = {λ ∈ C : λI − T 是 D(T ) 到 H 的一一对应}
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其余集 σ(T ) 称为 T 的谱集. 当 λ ∈ σ(T ) 时, λI − T 不是一一对应, 它要么不是单射, 要么不
是满射. 一般的, 谱集有如下分类:

• 点谱 σp(T ): N(λI − T ) 6= 0, 即 λI − T 不是单射;

• 连续谱 σc(T ): N(λI − T ) = 0, 且 R(λI − T ) = H. 此时 (λI − T )−1 是一个 R(λI − T )

到 D(T ) 的一一对应, 且是稠定的.

• 剩余谱 σr(T ): N(λI − T ) = 0, 且 R(λI − T ) 6= H. 此时 (λI − T )−1 不是稠定的.

2.3.1 无界自伴算子的谱族刻画

当 T 是一个自伴算子时, 其谱集具有特殊的结构, 并且可以通过谱族来刻画.

• 点谱 σp(T ): λ ∈ σp(T ) 当且仅当 E({λ}) 6= 0.

• 剩余谱 σr(T ): σr(T ) = ∅.

• 谱 σ(T ): λ ∈ σ(T ) 当且仅当对任意 ε > 0, U(λ, ε) ∩ σ(T ) 6= ∅.

这里一个有趣的结果是 σr(T ) = ∅. 换句话说, 对一切 λ 6∈ σp(T ), 都有 R(λI − T ) = H.

2.3.2 无界自伴算子的算子刻画

仍然假设 T 是一个自伴算子.

• 离散谱 σd(T ): λ ∈ σp(T ) 且 dimN(λI − T ) < +∞. 即离散谱是有限几何重数的特征值.

• 本质谱 σess(T ): 离散谱的余集.

本质谱有以下简单的刻画: (Weyl 判别准则)

λ ∈ C 在本质谱中当且仅当存在序列 (xn) 使得 ‖xn‖ = 1 而

(λI − T )xn → 0

本质谱 =∞ 重特征值 + 谱集的聚点

3 算子半群

3.1 无穷小生成元

我们主要考虑强连续的算子半群和无穷小生成元的关系. T (t) 称为强连续的算子半群, 如果

17



1. T (0) = I;

2. T (t+ s) = T (t)T (s), ∀t, s ⩾;

3. lim
t→0

‖T (t)x− x‖ = 0.

前两条说明 T (t) 的确是一个半群, 第三条说明 T 是连续的. 下面考虑从 T (t) 出发定义它的无

穷小生成元 A, 即形式上有
T (t) = exp(tA), ∀t ⩾ 0

注意: 这里出现的 exp(tA) 的确只是形式上的表示, 因为 A 并非一定是自伴的算子, 因此算子
函数 exp(tA) 无法被定义. 我们的任务包括:

(i) 从强连续算子伴群 T (t) 出发定义无穷小生成元 A;

(ii) 从无穷小生成元 A 出发定义算子半群 T (t).

这其实是 Hille-Yosida 定理要回答的内容. 设 T (t) 是给定的强连续算子半群, 定义

At = t−1(T (t)− I), ∀t > 0

因此可以定义

D(A) = {x ∈ H : lim
t→0

Atx在 H 中存在}

接着就可以定义

Ax = lim
t→0

Atx

这样定义的 A 称为无穷小生成元, 则 A 是稠定的闭算子.

• A 是稠定的, 是因为对任何
xs =

1

s

∫ s

0

T (t)xdt

有极限

lim
r→0

Arxs = Asx

成立. 因此 xs ∈ D(A). 注意到对任何 x ∈ H, 有

lim
s→0

xs = x

故 D(A) 在 H 中稠密. 这个结果也可以得到:

Axs = lim
r→0

Arxs = Asx, ∀s > 0, x ∈ H

这也就是说, 关于时间 s 的偏移量从 s 转移到了 A 身上.
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• A 是闭算子. 设 xn → x, Axn → y, 则可以证明

lim
r
Arx = lim

r,n
Arxn

= lim
r,n

1

r
(T (r)− I)xn

= lim
r,n

1

r

∫ r

0

T (s)Axnds (算子的有界性)

= lim
r

1

r

∫ r

0

T (s)y (强连续性)

= y

因此, 从任何强连续半群出发都可以定义相应的无穷小生成元 A. 此外还有

d
dtT (t)x = T (t)Ax = AT (t)x, ∀x ∈ D(A)

注意到, 对任何 x ∈ D(A), 有

ArT (t)x =
T (t+ r)− T (r)

r
x = T (t)Arx

因此对任何 r > 0, 算子 Ar 和 T (t) 是可以交换的. 令 r → 0, 有 Ar → Ax, 因此

lim
r→0

ArT (t)x = T (t)Ax

故 T (t)x ∈ D(A), 且
AT (t)x = T (t)Ax

因此 T (t) 和 A 在 D(A) 上是可以交换的.

尽管无穷小生成元 A 是 Banach 空间 X 上的一个无界算子, 但它是稠定且闭的, 因此具有一
些良好的性质. 一般的, 无穷小生成元有两种有用的刻画方式:

• 当 A 和 T (t) 同时出现时, 有 AT (t) = T (t)A, 且

d
dtT (t)x = AT (t)x = T (t)Ax

对一切 x ∈ D(A) 成立. 一般的, 当 x 6∈ D(A) 时, T (t)x 对时间 t 的导数未必存在.

• 当 A 单独出现时, 按照定义, 对 x ∈ D(A) 有

Ax = lim
r→0

Arx
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算子半群和算子微分方程的解有密切联系. 设 A 是强连续算子半群 T (t) 的无穷小生成元, 则
微分方程 

d
dtx(t) = Ax(t)

x(t) = x0 ∈ D(A)

在 C(R+, D(A)) ∩ C1(R+, X) 中有唯一的解

x(t) = T (t)x0, ∀t ⩾ 0

注意 T (t) : D(A) 7→ D(A), 故 x(t) ∈ D(A) 恒成立. 接着,

T (t)x0 = x0 +

∫ t

0

AT (s)x0ds =⇒ x(t) = x0 +

∫ t

0

Ax(s)ds

故 x(t) 的确是微分方程的解. 唯一性的证明稍微复杂一点.

3.2 压缩半群的刻画

现在假设 T (t) 是一个压缩半群. 形式上, 当 Reλ > 0 时, 可以定义积分

Rλ(A) =

∫ ∞

0

e−λtT (t)dt

此时还有

‖Rλ(A)‖ ⩽ 1

Reλ
关于压缩半群的生成元 A, 我们有如下定理:

(Hille-Yosida) 为了一个线性稠定算子 A 是一个压缩半群的生成元, 必须且仅须

1. (0,+∞) ⊂ ρ(A);

2. ‖Rλ(A)‖ ⩽ 1/λ, ∀λ > 0.

也就是说, A 的预解算子和 T (t) 的 Laplace 变换一一对应. 当 A 是压缩半群的生成元时, T (t)
还有如下的表示:

T (t) = lim
n→∞

(
I − t

n
A

)−n

注意, 这样的算子可以被定义是因为 (0,+∞) ⊂ ρ(A), 因此

(I − tA)−1 : H 7→ D(A)

总是一个连续线性算子.
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3.3 无穷小生成元的例子

考虑 Banach 空间
X = {u ∈ C[0,+∞) : lim

x→+∞
u(x) = 0}

其上的模定义为

‖u‖ = sup
x∈[0,+∞)

|u(x)|

考虑平移算子

T (t) : u(x) 7→ u(x+ t)

则 T (t) 是一个强连续压缩半群. 它的生成元为何?

对于 u ∈ X, 极限
lim
t→0

Atu(x) = lim
t→0

u(x+ t)− u(x)

t

在 X 中存在要求对任何 x ∈ [0,+∞), 极限

u(x+ t)− u(x)

t

存在, 从而 u(x) 是可导函数, 且
lim
t→0

Atu(x) = u′(x)

因此

D(A) = {u ∈ X : u′ ∈ X}

从 A 出发也可以构造相应的算子半群.

下面的例子是关键的. 设 A 是 Hilbert 空间 H 上的一个正自伴算子, 则 −A 一定是某个压
缩半群的无穷小生成元. 首先我们来验证无穷小生成元的判定准则. 因为 A 是自伴的, 因此
σ(−A) ⊂ [0,+∞]. 从而

(0,+∞) ⊂ ρ(−A)

下面再来验证: 对任何 λ > 0, 有 ∥∥(λI +A)−1
∥∥ ⩽ 1

λ

由于 (λI +A)−1 : H 7→ D(A) 是一一映射, 因此等价于

‖(λI +A)x‖ ⩾ λ‖x‖, ∀x ∈ D(A)

这是显然成立的. 事实上, A 对应的强连续算子半群可以通过 A 的谱分解构造出来. 设

A =

∫ ∞

0

λdEλ
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则可以定义

T (t) =

∫ ∞

0

e−λtdEλ

我们可以这样理解 T (t) 的含义: 对给定的 x ∈ H, 首先计算它的投影 Eλx, 然后对相应的向量
乘以 e−λt. 显然 T (t) 满足

‖T (t)‖ ⩽ sup
λ⩾0

e−λt ⩽ 1

下面我们来验证 T (t) 构成一个强连续的算子半群.

• T (0) = I. 这是显然的.

• T (t+ s) = T (t)T (s). 对于 x ∈ H, 有

T (t)T (s)x =

∫ ∞

0

e−λtdEλ

(∫ ∞

0

e−µsdEµx

)
=

∫ ∞

0

e−λtdEλ

(
e−λsEλx

)
=

∫ ∞

0

e−λ(s+t)dEλx

= T (t+ s)

因此 T (t) 是算子半群.

• 对任何 x ∈ H, 有 lim
t→0

‖T (t)x− x‖ = 0. 注意到

x− T (t)x =

∫ ∞

0

(1− e−λt)dEλx

定义函数

ft(λ) = min{λt, 1} ⩽ 1

则

‖x− T (t)x‖2 ⩽
∫ ∞

0

|ft(λ)|2d(Eλx, x)

注意到, 当 t→ 0 时, ft(λ) 逐点收敛到 0, 因此由控制收敛定理

lim
t→0

‖x− T (t)x‖2 = 0

故 T (t) 是强连续的.

综合以上结果, T (t) 是一个压缩半群. 例子: 考察无界算子

−∆ : H2(Rn) 7→ L2(Rn)
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则 −∆ 是 L2(Rn) 上的正自伴算子, 故方程
∂u

∂t
= ∆u

u(x, 0) = u0(x)

对于初始值 u0 ∈ H2(Rn) 有唯一的解

u(x, t) ∈ C(R+,H2(Rn)) ∩ C1(R+, L2(Rn))

并且相应的压缩半群 T (t) = exp(t∆) 的积分核为

G(x, t) =
1

(4πt)
n
2
e−

|x|2
4t , x ∈ Rn, t > 0

即

u(x, t) =

∫
Rn

G(x− y, t)u0(y)dy

对于有界区域的情形是类似的. 设 Ω 是 Rn 上的有界区域, 且边界光滑. 考察无界算子

−∆ : H1
0 (Ω) ∩H2(Ω) 7→ L2(Ω)

则 −∆ 是 L2(Ω) 上的自伴算子, 从而

T (t) = exp(t∆)

是压缩半群. 此时 T (t) 的表达式需要通过 −∆ 的特征分解来表示.

4 习题

1. 设 T 是 Hilbert 空间 H 上的自伴算子. 证明: T 只有离散谱当且仅当 T 有紧预解算子.

证明 若 T 有紧预解算子, 即假设 λ0 ∈ R 使得 (λ0I − T )−1 : H 7→ D(T ) 是紧算子, 我们来证
明 T 只有离散谱. 注意到, 当 λ 6= λ0 时,

λ ∈ ρ(T ) ⇐⇒ 1

λ0 − λ
∈ ρ

(
(λ0I − T )−1

)
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这是因为,
1

λ0 − λ
∈ ρ

(
(λ0I − T )−1

)
⇐⇒ 1

λ0 − λ
I − (λ0I − T )−1是 H 7→ H 的一一映射

⇐⇒ (λ0I − T )− (λ0 − λ)I是 D(T ) 到 H 的一一映射

⇐⇒λI − T是 D(T ) 到 H 的一一映射

⇐⇒λ ∈ ρ(T )

因此, T 的谱集 σ(T )通过映射 λ 7→ 1/(λ0−λ)一一对应于 σ((λ0I−T )−1)\{0}. 由于 σ((λ0I−
T )−1) 除 0 外均为有限重数的孤立点谱, 因此 T 只包含有限重数的孤立点谱. 这恰好是离散谱
的判定准则, 因此 σ(T ) = σd(T ).

若 T 只有离散谱, 考察 T 的自伴分解

T =

∫
σ(T )

λdE(λ)

其中 E(·) 是 σ(T ) ⊂ R 上的一个算子值测度, 是 T 对应的谱族. 由于 T 仅有有限重数的孤立

点谱, 故 σ(T ) 是孤立点集, E(·) 是 σ(T ) 上的 Dirac 测度. 当 λ ∈ σ(T ) 时,

R(E({λ})) = N(λI − T ) =⇒ dimR(E({λ})) < +∞

因此 E({λ}) 一定是一个有限秩的算子.

下面考察 T 的预解算子. 取定实数 λ0 ∈ ρ(T ), 设

d = dist(σ(T ), λ0) > 0

对任何 n ∈ N, 考察算子

Kn =

∫
|λ|⩽n

1

λ0 − λ
dE(λ), K =

∫
σ(T )

1

λ0 − λ
dE(λ)

注意到 f(λ) = 1/(λ0 − λ) 是 σ(T ) 上的有界 Borel 可测函数, 因此

K = (λ0I − T )−1

是 H 上的有界算子, 也恰好是 T 的预解算子. 下面来证明 K 是紧算子. 我们需要

1. 对任何 n ∈ N, Kn 是有限秩的算子.

注意 σ(T ) 是 R 上的孤立点集, 因此对任何正整数 n, {|λ| ⩽ n} ∩ σ(T ) 是一个有限集. 于
是此时 Kn 是一些有限秩算子的线性组合, 因此 Kn 也是有限秩的.
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2. lim
n→∞

‖Kn −K‖ = 0. 对任意 x ∈ H, 我们有

(K −Kn)x =

∫
|λ|>n

1

λ0 − λ
dE(λ)x

故

‖(K −Kn)x‖2 ⩽
∫
|λ|>n

1

|λ0 − λ|2
d‖E(λ)x‖2

⩽ 1

d2

∫
|λ|>n

d(E(λ)x, x)

=
1

d2
(E({|λ| > n})x, x)

⩽ 1

d2
‖E({|λ| > n})‖‖x‖2

从而

‖K −Kn‖2 ⩽
1

d2
‖E({|λ| > n})‖

当 n→ ∞ 时, 投影算子 E({|λ| > n}) 在强意义下收敛到 0, 因此

lim
n→∞

‖Kn −K‖ = 0, ∀x ∈ H

综合以上结果可知, K = (λ0I − T )−1 是有限秩算子 Kn 的强极限. 因此 K 是紧算子. 评注:

1. 当 T 是自伴算子时, 算子 T 和预解算子 (λ0I − T )−1 的谱集 σ(·) 和点谱 σp(·) 之间存在
一一对应关系. 谱集 σ(·) 的对应本质上是预解集 ρ(·) 的对应.

2. 离散谱 σd(T ) 是点谱 σp(T ) 的一个子集. 当 λ ∈ σd(T ) 时, λ 时一个孤立点谱, 并且 λ 的

几何重数为有限, 即
dimN(λI − T ) < +∞

3. 以上结果揭示了有紧预解算子的无界算子具有特殊的谱结构: 所有的谱都是离散谱!

2. 设 T (t) 是 X 上强连续算子半群, A 是无穷小生成元, 则下面的三个条件等价:

(1) D(A) = X;

(2) lim
t→0

‖T (t)− I‖ = 0;

(3) A ∈ L(X), 且 T (t) = exp(tA).

上面这些条件实际上就是在说 A 是 X 上的有界算子, 从而 T (t) 有指数表示, 并且有算子意义
下的连续性.
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证明 其中最麻烦的部分是 (2) 到 (3), 也就是当已知 T (t) 的连续性的时候, 如何得到 A 的有

界性. 首先选择一个充分小的 r, 使得∥∥∥∥1r
∫ r

0

T (t)dt− I

∥∥∥∥ < 1

于是对于这个 r, 算子 ∫ r

0

T (t)dt

是可逆的. 于是

T (s)− I

s
=

(∫ r

0

T (t)dt
)−1(

1

s

∫ s+r

s

T (t)dt− 1

s

∫ r

0

T (t)dt
)

=

(∫ r

0

T (t)dt
)−1(

1

s

∫ s+r

r

T (t)dt− 1

s

∫ s

0

T (t)dt
)

现在固定 r 并让 s→ 0, 得到

lim
s→0

As =

(∫ r

0

T (t)dt
)−1(

T (r)− T (0)
)

因此 As 的极限 A 存在, 并且此时有

A =

(∫ r

0

T (t)dt
)−1(

T (r)− T (0)
)

这是一个有界线性算子.
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