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Part 1
Functional Inequalities

In this part we introduce the classical theory of functional inequalities in Markov processes, and
demonstrate how the Poincaré inequality and the log-Sobolev inequality play the important role in
the study of ergodicity. Contents in this part are based on [1,[2].

1 General Markov semigroups

We introduce the Markov semigroup, which serves as an alternative approach to characterize the
Markov process. In particular, it is useful in the study of the ergodicity of the Markov process. Let
(Py)i>0 be the Markov semigroup corresponding to a Markov process {X;}i>0 on E. If p is the
invariant distribution, then (P,)¢>¢ is a contraction semigroup on L2?(E, u1).

1.1 Markov semigroup and invariant distribution

Let E be a Polish space, and {X; };>0 be the Borel measurable Markov process on E. The transition
probablity kernel p;(x,dy) thus satisfies the following conditions

e For each x € E, pi(x,-) is a probability measure on F;
e For each B € B(E), p:(-, B) is a measurable function from E to R;
e For 0 < t; < --- <t and initial value Xo = z € E, the distribution law of (X3, -, Xy, ) is

Pey (2, dy1)pes -, (1, dy2) - - Pe -ty (Yr—1, dyi)- (1.1)
For such a Markov process {X;}:>0, define the associated Markov semigroups (P;)i>0 by
P f(z) =FE"[f(Xy)], t>0, =z€E. (1.2)
The semigroup (P;):>0 has the following properties:

1. For each ¢ > 0, P, maps bounded measurable functions to bounded measurable functions;



. Py = I is the indentity operator;
. P(1) =1, where 1 is the constant function;

(positivity preserving) If f > 0, then P;f > 0;

SIS

(semigroup property) For t,s > 0, Pys = P; o Ps.

Another useful result is given by Jensen’s inequality. For any convex function ¢ : R — R,

Pi(o(f(2))) = ¢(Pf(x)). (1.3)
In particular, by choosing ¢(x) = |x|P, one obtains
Bi(lf(@)]P) = [P f ()P (1.4)

The Markov semigroup (F;):>o induces a dual semigroup (P;");>0 acting on probablity distributions:

/ Puf (z)v(dz) = / f(@)(Pyv)(da). (1.5)
E E

Formally speaking, if v is the distribution law of Xy, then P;v is the distribution law of X;.
It is often convenient to use a probability density to represent the Markov semigroup (P;)¢>o or
the transirion kernel p;(z,dy). Recall that P, and p;(x,dy) are related by

Pf(x) = [E F@pe(e.dy). (16)

Let m be a reference measure on E, and assume p(z, -) is absolutely continuous with respect to m,
then there exists a density function p;(z,y) satisfying

pt(x,dy) = pt(zvy)m(dy)v T,y € E. (17)

Hence the Markov semigroup can be represented as

(Pf)(x) = /E f@pee ym(dy), .y € E. (18)

In the viewpoint of {X;}i>0, pi(z,y) is the transition probability density from x to y in time ¢.

Example Consider the standard Brownian motion B; in R?. The heat kernel p;(z,y) is given by

(47T1t)§ exp ( - W) (1.9)

Now we define the invariant distribution, which plays the central role in the study of the long
time behavior of a Markov process.

pi(z,y) =

Definition 1.1 (invariant) Given the Markov semigroup (P;)i>0 on the Polish space E, a proba-
bility distribution p on E is said to be invariant for (Py)i>o, if for any bounded measurable function
f:E—R and everyt >0,

[ Pt = [ fomtas) (1.10)
E E



An equivalent characterization is Py = p for any ¢ > 0. The invariant distribution p induces the
Banach space LP(E, u) with the norm

_fwasm)r, 1<p<o 111
Ifllzr (20 {esssumf(x)" b (1.11)

Integrating (|1.4) with the invariant measure u, one obtains

[ 1Ps@ruts) < [ POf@P@) = [ 15@)Pa(do). (112
E E E
which can be equivalently written as

1P fllemw < I fllor e (1.13)

For any 1 < p < 0o, the Markov semigroup (P;);>o is a contraction in LP(E, u).

To identify (P;);»0 as a contraction semigroup, we further require the following condition. For
each f € L*(E,p), Pif converges to f in L?(E, ) as t — 0. This usually reflects the reflects the
regularity properties of the associated Markov process {X;}:>0. To this end, we claim that (P;);>0
is a contraction semigroup on the Banach space L%(FE, ).

Remark The definition of the contraction semigroup (P;);>o relies on the invariant measure p. For
particular Markov processes, for example, the overdamped and underdamped Langevin dynamics,
the invariant distribution p can be explicitly derived.

1.2 Infinitesimal generator and Fokker-Planck equation

Let the associated Markov semigroup (P;);>0 be a contraction semigroup on L?(E, u). Based on
the classical Hille-Yosida theory, (P;);>¢ has an infinitesimal generator £ on L?(E, u). Formally,

0

ot
Formally, one may write the Markov semigroup (P;);>0 as P, = exp(t£). Using the infinitesimal
generator £, the invariant distribution p can be interpreted as

/E/Jf(x)u(dx) —0, VfeL\(E,p) (1.15)
In , take the limit ¢ — 0. For any convex function ¢ : R — R, one obtains
L(¢()(x) = ¢'(f (@) (LSf)(@). (1.16)
If for some positive function f > 0, one defines the quantity
A= [ oPnan (1.17)

then
() = [E o (Pf)LP fdy < [E LO(Pf)du = 0, (1.18)



hence A(t) is decreasing in time.

The infinitesimal generator £ also depicts the time evolution of the distribution law. For the
Markov process {X,;}i>0, assume the initial distribution is vy € P(E), and the distribution law
of X; is vy = Pjvy € P(E). For any measurable and bounded function f on E, the evolution of
ve(f) = fE fdv, is described via the Liouville equation,

() = o(Pid) = w(PLS) = (L], (1.19)

or equivalently,
gt/Ef(x)ut(da:):/E/.Zf(a;)ut(da:). (1.20)

To describe the dynamics of the distribution law in a more closed form, introduce the Fokker-Planck
equation. Given the reference measure, suppose the density of v; is p(x, t), i.e.,

vi(dx) = p(x, t)m(dx). (1.21)

When E = R? is the whole space, m is usually the Lebesgue measure. The Liouville equation ([1.20))
thus becomes

0
5 [ @t timidn) = [ £o(@)ota, m(da). (1.22)
E E
If £* is the adjoint operator of £ in L?(E,m), then p(z,t) satisfies the following PDE:
%(z,t) = L"p(z,1). (1.23)

The Fokker-Planck equation ((1.23) describes how the density function p(x,t) evolves with time.
The operator £L* can be seen as the infinitesimal generator of the dual semigroup P;*. The density
function of the invariant distribution can be solved from the PDE L*p = 0.

1.3 Example: overdamped Langevin dynamics

The overdamped Langevin dynamics is the one of the most important stochastic dynamics in modern
physics. Let the state space E = R?, and the reference measure m be the Lebesgue measure. Given
the drift b : R* — R? and the diffusion o : R* — R%*!, consider the overdamped Langevin dynamics
given by the SDE

dX; = b(Xy)dt 4+ o(X;)dBs. (1.24)

Define the diffusion matrix a(z) = oo (), then the infinitesimal generator is
£F(w) = ba) - V(@) + so(a) s V(@) (1.25)
and the corresponding Fokker-Planck operator is
L=~V - (b@)p(x) + 3V - (a(x)Vp(a)) (1.26)

In other words, the carré du champ operator captures the second-order part of the generator.



The overdamped Langevin dynamics (1.24) does not have a closed form of the invariant distri-
bution. However, if b(z) is in the gradient form and o is constant, for example,

dX; = —VV(X,)dt + V2dB;, (1.27)
The invariant distribution is explicitly the Boltzmann distribution
1
pu(dz) = Zexp(—V(a:))da:. (1.28)

2 Symmetric Markov semigroups

The symmetric Markov semigroup allows one to study the long time behavior of the Markov process.
If the invariant distribution p is reversible, then the infinitesimal generator £ is self-adjoint in
L?(E, ). The spectral gap of £ reveals the convergence rate to the equilibrium. The Markov triple
(E, i, T) is sufficient to build a symmetric Markov semigroup.

2.1 Symmetric semigroup

Definition 2.1 (reversibility) The Markov semigroup (P,)i>o is said to be symmetric with re-
spect to pu (or p is reversible), if for any f,g € L*(E,pn) and t > 0,

/Ef(x)(Ptg)(fr)u(dI) = /Eg(flf)(Ptf)(fU)u(dx)- (2.1)
In terms of the generator £, the reversibility can be expressed as for any f,g € L2(E, p),

| @ @ndn = [ g@en@n) (22)
E E
In terms of the transition kernel p;(x,dy), the reversibility can also be written as

pe(z, dy)pu(dz) = pi(y, dz)pu(dy), (2.3)

which is known as the detailed balance condition.
Now we introduce the carré du champ operator, which will be useful in functional inequalities.

Definition 2.2 Given the Markov semigroup (P)i>0 and the infinitesimal generator L, the carré
du champ T' operator is defined by

DUf,0) = 3 (£(F9) — FLg — L], (24)
The Dirichlet form is defined by
e(f.0) = [ T (25)
It is clear that for symmetric Markov semigroups, I', £ are symmetric in f, g and
E(f.9) = [EF(f,g)du= —[Efﬁgdu= —/Egﬁfdu- (2.6)

Starting from a symmetric operator I', one may determine generator £ from (2.6) such that the
resulting Markov semigroup is symmetric. Therefore, it is equivalent to use a I' operator or a
generator £ to describe a symmetric semigroup. In the following (E, i, T') is called a Markov triple.



2.2 Spectral decomposition and ergodicity

When p is the reversible measure, the generator £ is self-adjoint in L?(E,u). Therefore, the
spectral decomposition of £ is available. Since (P;);0 is a contraction semigroup in L?(E, ), all
the eigenvalues of £ are nonpositive. Suppose

—Le = e, k>0, (2.7)

where {e;,}?° , is the orthonormal basis of L?(E, u) and A, > 0 is the eigenvalue. £ has a trivial
eigenpair
)\Q = 0, 60(1‘) =0. (28)

The spectral gap is defined as A\; > 0, the difference between the two eigenvalues of £. The spectral
gap characterizes the convergence rate to the equilibrium. Formally, given the smooth measurable
function f on F, define

u(z,t) = P f(z) = E°[f (X)), (2.9)
then u(x,t) satisfies the PDE
g;‘ = Lu. (2.10)

Assume the initial value u(z,0) = f(z) can be decomposed on L?(E, 11):

=3 cpenln), (2.11)

k>0

then ¢g is the inner product of f(z) and the constant function 1,

o= [ fapida) = (). (2.12)
The general solution u(x,t) can be expressed as
w(z, t) = u(f) + Z crer(z)e Ml (2.13)
k>1

As t — o0, u(x,t) converges to u(f) exponentially in the variance sense:

[P e) = Putdn) < e [ 17(@) = 1) Putde), (214

In variance sense, the distribution law of X; converges to u exponentially, and the convergence rate
is exactly A; > 0. To study the long time behavior of the Markov process, the spectral gap of the
generator £ in L?(E, i) is the crucial quantity.

Note that the Dirichlet form £(-,-) is also closely related to the spectrum of the generator L.
Recall that (eg, Ak)r>0 is the orthonormal basis of —L, then

o Elek,ex) = A, k = 0;

o Elep,e1) =0,k #L.

Therefore, £(f, g) can be seen as the weighted inner product. If the coefficients of f, g are f, gk,

9) = Aefugk: (2.15)

k>0



2.3 Curvature-dimension condition

To describe the curvature-dimension condition, we introduce the I's operator by

Ca(f.9) = 5 (CT(f.0) ~ T(.Lg) ~ T(LS. ). (216)
Take ¢(x) = |x|? in , one obtains
L(f*) = 2f(Lf) = T(f,f) = 0. (2.17)
We simply write I'(f) = T'(f, f) and T's(f) = Ta(f, f), then
_ _ 2
[rnau=- [ sesan [ rapan= [ @i (2.18)

The curvature-dimension condition is an important property to derive the functional inequalities.

Definition 2.3 (curvature) A diffusion operator L is said to satisfy the curvature-dimension
condition CD(e,00), for e € R, if for every function f : E — R,

Ly(f) = eT(f). (2.19)

In Sections 3 and 4, we shall use the curvature-dimension conditions to derive the Poincaré inequality
and the log-Sobolev inequality, respectively.

2.4 Example: overdamped Langevin dynamics

Consider the overdamped Langevin dynamics (1.24). We shall show that the reversibility of invari-
ant distribution p can be derived from a simple relation. Recalling the drift force b : R? — R¢ and
the diffusion matrix a : R? — R¥*? define the flux operator J(p) by

1
J(p) = bz)p(z) — Sa(2)Vo(z), (2:20)
then £*p = —V - J(p), and the Fokker-Planck equation can be written in the conservation law
0
a—f LV J(p) = 0. (2.21)

Clearly, p(z) is the invariant measure iff V - J(p) = 0. In the following, we show that p(z) is
reversibile if a stronger condition J(p) = 0 is satisfied.

Lemma 2.1 (reversibility) If p(x) satisfies J(p) =0, then p(x) is reversibile.
Proof Let p(dx) = p(x)da be the invariant distribution. To show p is reversible, note that

” f(z)(Lg)(z)pu(dz) = » f(z)(Lg)(z)p(x)dx
= / gL (pf)dx
Rd
—~ [ oV )
Rd
= / Vg-J(pf).
Rd



Here,

1 1 1
J(pf) =bpf = 5aV(pf) = J(p)f = 5paVf = —5paV]. (2.22)
Hence
1 T 1 iy Of 99
[ t@ o @ntin) == [ oV TaVods =5 [ @@y Sepd), (229
which is symmetric in the functions f, g. Therefore, p(x) is reversible. O

When the dynamics is driven by the gradient,
dX, = —VV(X,)dt + V2dB,,
the invariant distribution is u(dz) oc e~V (*)dz, and the T', Ty operators are
L(f.9)=Vf-Vg, Taf.g)=V>f:V2g+V2V(Vf,Vyg). (2.24)
If the potential function is strongly convex, i.e., V2V > kI, then the curvature-dimension condition
CD(k,00) holds. In most cases below, we deal with the overdamped Langevin dynamics.
3 Poincaré inequality

The Poincaré inequality provides a simple approach to characterize the spectral gap of the generator.
The good thing is that, the Poincaré inequality itself does not require the spectral knowledge
explicitly, thus can be proved via other approaches. In particular, the curvature-dimension condition
is convenient to verify the Poincaré inequality.

3.1 Poincaré inequality and spectral gap

For a probability measure v on the Polish space E, define the variance of a function f € L?(E,v)

Var, (f) 1=/Ef2d1/— </Efdu)2. (3.1)

The Poincaré inequality w.r.t. a Markov triple (E, u, ') is defined as follows.

Definition 3.1 (Poincaré) A Markov Triple (E,u,T') is said to satisfy a Poincaré inequality
P(C) with constant C > 0, if for all functions f : E — R,

Van, () < C&(f) = € [ T(7)an (3.2)

When p is invariant distribution, it is also convenient to define the covariance

Covfa) = [ sotn= [ o [ gan (3.3)

Just as £(f, g), Cov(f,g) has good spectral structure:



o Covyl(er,ex) =1, k> 1;
o Cov,(ex,e1) =0, k#3j.

Suppose f is decomposed as

fl@) =" cren(x), (3.4)

k>0
then the Poincaré inequality P(C) is equivalent to

Zci < C’Z)\kci. (3.5)

k>1 k>0

Therefore, the best constant C' is C = A\['. If P(C) holds, then the spectral gap A\; > C~ 1.

In the overdamped Langevin dynamics, £(f) involves V f, hence P(C) is about using derivatives
to control function values. By adding f to a constant value, its variance and Dirichlet form won’t
change. However, due to the spectral structure of bilinear functionals Cov and &, P(C) describes
the spectral gap of the generator L.

Lemma 3.1 A Markov triple (E, 1, T') satisfies the Poincdre inequality P(C) iff for any f : E = R
[rinause [ raan (3.6)
E E
The inequality can be equivalently written as
| rtnan<c [ eran (37)

In the viewpoint of spectral structure, the eigenvalues of LHS and RHS are \;, and A} respectively.
Nevertheless, this result can be proved using standard PDE techniques.

Proof Assume p(f) = 0. The method is to define the function

At = [ (P (3.8)
E
and note that
N0 =2 [ r(Edn N0 =4 [ eran (3.9)
B E
By condition
A'(t) > —%A’(t), vt >0, (3.10)
hence A’(t) decays to 0 as t — oo exponentially, and A(t) converges to 0 exponentially. Then
> / C > " C /
Var,(f) = — A (t)dt < 5 AN'(®)dt = _EA (0)=C [ T(t)dp. (3.11)
0 0 E

Formally, this equivalent form is using second-order derivatives to control first-order derivatives.]

10



3.2 Tensorization, curvature-dimension and bounded perturbation
The Poincacé inequalities are preserved under tensorization.

Theorem 3.1 (tensorization) If (Ey,pu1,T1) and (Eq, ua,T's) satisfy Poincaré inequalities with
respective constants C1 and Ca, then the product Markov triple (Fy ® Fa, u1 ® o, I'1 ®Ta) satisfies
a Poincaré inequality with constant C = max(C4,Cs).

I'y & T is defined as follows. If £; has eigenvalues )\,1c on E; and £, has eigenvalues )‘12 on Fs, then
L1 + L5 has eigenvalues /\,1C + /\12. Under the tensorization one has

E(f):/E Sl(f)der/ E(f)dps. (3.12)

Eq
The curvature-dimension condition is a sufficient condition for the Poincaré inequality.

Theorem 3.2 Under the curvature-dimension condition CD(g,00), € > 0, , the Markov triple
(E, 1, T) satisfies a Poincaré inequality P(C) with constant C' = 1.

Corollary 3.1 For the overdamped Langevin dynamics
dX, = —VV(X,)dt + V2dB;,
if V2V > k > 0, then the P(k™1) holds, and consequently the spectral gap i > k.

The result above seems not appealing because it requires the potential function V'(z) to be strongly
convex. However, the bounded perturbation property of the Poincare inequality allows us to deal
with more general cases.

Theorem 3.3 (perturbation) Assume (E,u,T) satisfies P(C). If i is a distribution whose
density h w.r.t. p satisfies 1/b < h < b for some b > 0, then (E,u1,T) satisfies P(b3C).

The proof is surprisingly elementary. Just use the fact that

1

Var,(f) = 3 | [1(@) = fla)Pridotay) (3.13)

and the direct comparison between p; and p. Using this result we can deal with more general
potential functions.

Corollary 3.2 For the overdamped Langevin dynamics
dX, = —-VV(X,)dt + V2dB,,

if V.=Vi + Vo, where V2Vi > k > 0 and |Va| < M, then P(e*Mk~1) holds.

3.3 Variance decay
The Poincaré inequality also yields the exponential decay of the variance in time.

Theorem 3.4 (variance) Given a Markov triple (E, u,T') with the associated Markov semigroup
(P)i>0, the following assertions are equivalent:

11



1. (E, 1, T) satisfies a Poincaré inequality P(C);
2. For every function f : E — R in L*(E, u),

Var, (P, f) < e~ 2/“Var,(f).

(3.14)

3. For every function f € L*(E, 1), there exists a constant c(f) > 0 such that, for everyt >0,

Var, (P f) < c(f)e 2/C,
We present a proof based on functional inequalities.
Proof Assume f satisfies fE fdu = 0. Define
A(E) = V(P = [ (PP
E
then
N0 =2 [ PLPfan = —2E(R).
E
The Poincaré inequality then implies

C
< ——
Alt) < —

A1),
which yields the exponential decay in A(?).

As we have seen in Section 2, the variance decay

/E (P (&) — () Ppu(dz) < e=2/C /E F(@) — u(f)Pu(dz)

directly follows from the fact that the spectral gap A\; > C~1.

4 Log-Sobolev inequality

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

The Poincare inequality gives exponential decay in the variance. The log-Sobolve inequality intro-

duced is stronger and is able to give the exponential decay in entropy.

4.1 Log-Sobolev inequality and tightening

Given the positive function f on FE, define the entropy of f with respect to a distribution v by

Entl,(f):[Eflogfdu—[Efdulog(/Efdz/)

(4.1)

It’s easy to see for any ¢ > 0, Ent, (cf) = ¢Ent, (f). Therefore, we can always rescale f to satisfy

/Efdz/: 1,

(4.2)

so that f(z) can be viewed as the probability density in the reference measure v. In this case,

Ent, (f) is exactly the entropy of the density function f.

12



Definition 4.1 (log-Sobolev) A Markov triple (E, u,T) is said to satisfy a log-Sobolev inequality
LS(C) with constant C, if for any function f : E — R,

Ent,(f?) < 2CE(f). (4.3)

Like the Poincaré inequality, a sufficent condition of LS(C) is as follows.

Lemma 4.1 A Markov triple (E, u,I") satisfies a log-Sobolev inequality LS(C) for some C > 0 if

[ rtogn <c [ rratos nas (4.4)
E E

for every positive function f.
This result is convenient for the application of the curvature-dimension condition.
Theorem 4.1 The log-Sobolev inequality LS(C) implies the Poincaré inequality P(C).

Proof Apply LS(C) with f = 1+ eh where fE hdp = 0. As e — 0, it can be checked using the
Taylor expansion

Ent,,(f?) = 2¢? /E R2dp + o(£?). (4.5)

On the other hand, £(f) = £2£(h), hence
2 [E h?dp < 20€(h), (4.6)
which implies the Poincaré inequality P(C). O

4.2 Tensorization, curvature-dimension and bounded perturbation

Theorem 4.2 (tensorization) If (Eq,u1,T1) and (E2, pe,I'2) satisfy LS(Cy, D1) and LS(Ca, D3)
respectively, then the Markov triple (E1 ® Ea, 1 ® po, 'y ®T'9) satisfies LS(max(Cy,Cs), D1 + D3).

Using the equivalent form of the log-Sobolev inequality, it is easy to derive the log-Sobolev inequality
under the curvature-dimension condition.

Theorem 4.3 Under the curvature condition CD(g,00), € > 0, the Markov triple (E, u,T") satisfies

a log-Sobolev inequality LS(C) with constant C = &1,

Since C'D(g,00) implies LS(e™1), for every function f,

Bty (/) < 2E(7). (47)

For the general case CD(g,n), the proof is more technical.

Corollary 4.1 For the overdamped Langevin dynamics
dX, = —VV(X,)dt + v2dB;,
if V2V > k > 0, then LS(k™1) holds.

13



Since LS(C) is stronger than P(C'), we have the following estimates [3].

Corollary 4.2 For the overdamped Langevin dynamics
dX, = —VV(X,)dt + v2dB,,

assume V2V >k > 0. Let \(11) be the best constant satisfying the Poincaré inequality

NVar, (1) < [ 191,

and p(p) be the best constant satisfying the log-Sobolev inequality

Bt (1) <2 [ 9P,

then A(p) = p(p) = k.
Similarly, the log-Sobolev inequality still holds under bounded perturbation.

Theorem 4.4 (perturbation) Assume that the Markov triple (E,u,T) satisfies a log-Sobolev
inequality LS(C). Let py be a probability measure with density h with respect to p such that
1/b < h < b for some constant b > 0. Then py satisfies LS(b*C).

Corollary 4.3 For the overdamped Langevin dynamics
dX, = —VV(X,)dt + v2dB,,
if V.= V1 + Va, where V2Vy > k> 0 and |Va| < M, then LS(e* k=) holds.

Therefore, for the overdamped Langevin dynamics, the log-Sobolev inequality can be established.

4.3 Entropy decay
The crucial property of the log-Sobolev inequality is the exponential decay in entropy.

Theorem 4.5 (entropy) The log-Sobolev inequality LS(C) for the probability measure p is equiv-
alent to saying that for every positive function f in L*(E, u),

Ent,(Pif) < e ?/%Ent,(f), Vt>0. (4.8)

Proof Define the Fisher information of f w.r.t. v by

L(f) = /E F(ff)du, (4.9)
then by direct calculation,
%EntH(Ptf) = —1,(Pf). (4.10)
Hence we only need to verify
Bty (1) < 5 L) (111)



which is equivalent to

r
Ent,(f) < C/ ﬁdﬂzzc/ (V/f)dp. (4.12)
2Jg f E
Let f = g2, then it becomes
Eat, (¢%) < 2C [ T(g)dn (4.13)
E
which is exacly the log-Sobolev inequality. O

The convergence in entropy is a strong result. Let v < p with density f, then H(v|u) = Ent,(f).

1
e = vty < SH ), (4.14)

the exponential convergence in total variation can be obtained.

5 Summary

In this part we introduce two important inequalities: Poincaré inequality and log-Sobolev inequal-
ity to establish the ergodic properties of the Markov process. These functional inequalities yield
exponential convergence of the distribution law due to the following simple observation: the time
derivative of the function integrals automatically involve the derative integrals.

G [@rau=2 [ nenpin=-2 [ v (5.1)
E E E

The curvature-dimension provides a sufficient condition to build the functional inequalities, which
estimates the convergence in the strongly convex case. The bounded perturbation of these inequal-
ities allow us to deal with more general potentials. The theory functional inequalities theory is
briefly summarized in the flow chart below.

Poincaré inequality variance decay
<
wVar() < [ 1| 7 | Varu (B < e Va1
E
strongly convex curvature-dimension
2 = = f
VV >k T2(f) = &I(f)
log-Sobolev inequality entropy decay
<
kEnt, (f%) < 2/ I'(f)du Ent, (P f) < e **Ent,(f)
E

Part 11
Ergodicity of Particle Systems

We introduce several approaches to study the ergodicity of interacting particle systems using func-
tional inequalities. Our goal is to prove that the exponential convergence the rate of the interacting
particle system does not depend on N, when the nonlinear interaction part is not strong enough.
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6 Mean-field interacting particle system

Consider the interacting particle system (IPS) of N-particles in R%:

. . 1 . , .
AX} = —VV(X})dt - > VW(X] - X{)dt+V2dB], i=1,---,N, (6.1)
J#i
where V : R? — R is the external potential and W : R* — R is the pairwise interaction potential,
with W(z) = W(—=z), i.e., W(z) is an even function on R?. The invariant distribution of the

N-particle system can be explicitly written as

N
w(dx) o< exp (— ; V(') — ﬁ Z VW (' — x-j)>dx. (6.2)

1<i<j<N

Note that the condition W (z) = W(—=x) ensures that p is symmetric in all N particles. Our
question is, does the distribution law of the IPS converges to its invariant distribution gV
with a convergence rate independent of N7 This question is closed related to the uniform-in-time
propagation of chaos of dynamical particle systems, and one may refer to [4] for further discussion.

Formally, as the number of particles N — oo, the IPS converges to the mean-field limit,
which is a McKean-Vlasov process (MVP):

{dXt = —VV(X;)dt — (VW * ) (X)dt + V2B, (6.3)

pe = Law(Xy).

If the IPS has a convergence ¢ uniform in NV, then it reasonable to deduce that the MVP also has a
convergence rate c. Conversely, if the convergence rate of IPS is not uniform in IV, then the MVP
cannot converge to the invariant distribution exponentially. It is worth pointing that the MVP can
have multiple invariant distributions (e.g., V' is double-well, see [5]), hence it is necessary to require
the nonlinear interaction part to be not strong enough.

Now we present a historical review of the study of the ergodicity of the MVP (6.3]).

1. Carrillo, McCann & Villani [6] (2003): Seminal work in the study of ergodic granular media
equations. When V' (z) is uniformly convex and W (z) is convex, the free energy

Fo) = [ V@i [

W(z —y)p(z)p(y)dady + / plog pdz
Rd R4 xR Rd

minus its minimum has exponential decay.

2. Bolley, Gentil & Guillin |7] (2013): Extension of the work above. When V() is uniformly con-
vex andd W (z) is convex outside a finite region, the exponential convergence in Wasserstein-2
distance is proved. Note that by Talagrand’s inequality this is weaker than entropy decay.

3. Eberle, Guillin, etc. [8./9] (2011-2020): The reflection coupling is used to derive the geometric
ergodicity for the mean-field IPS (6.1)) and the MVP (6.3)) in the Wasserstein-1 distance. The
unifrom-in-time propagation of chaos can also be derived [11].

4. Guillin, Liu, Wu & Zhang [3] (2019): The functional inequalities are used to derive the
geometric ergodicity for the mean-field TIPS (6.1) and the MVP (6.3) in the free energy and
Wasserstein-2 distance. Stronger than the results above.
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7 Convergence rate by Poincaré inequality

For convenience, define the total energy of the particle system by

N
H(le,"' 7$N): E V(SCZ)—Fm E W(Z‘Z—Jﬂj), (71)
i=1 1<i<j<N

then if V2V > k > 0 and V2W > 0, it can be verified that
V2H > kI, in RNdxNd, (7.2)

hence the curvature-dimension condition C'D(%, 00) holds for u. Without these convexity conditions,
more meticulous estimates are required.
With the total energy H(z) defined in (7.1)), the generator of the IPS is

Lf=-VH Vf+Af, (7.3)

and our goal is to estimate the spectral gap of £ in L2(R™V?, 1) without the convexity assumption.
To achieve this goal, we derive the Poincaré inequality for the one-particle system, then generalize
the result to the N-particle system. The results in this part are mainly from [3].

7.1 Spectral gap of the single particle system

Consider to the overdamped Langevin dynamics in R¢ given by
dX, = —VV(X,)dt + v2dB,, (7.4)

whose invariant distribution is dp oc e=Vdz. If the potential function V(z) is strongly convex,
the spectral gap can be estimated under the curvature-dimension condition. Under the general
dissipation condition, the result is stated as follows. Define the function by : (0, +00) — R

bo(r) = sup (&~ 3, YV (z) - VV(y)) (75)

|z—yl|=r

For example, if V(x) = |x|?/2, then by(r) = —r. If the Lipschitzian constant

1 [ 1 /°
CLip = Z/O exp (4/{; bo(u)du) sds < 400, (7'6)

then we have the following estimate of the spectral gap (Theorem 1.1, [12]):
Theorem 7.1 The spectral gap of the generator L= —VV -V + A on L?(R%, 1) satisfies
1

CLip

A(p) = (7.7

It is worthing noting that the assumption on bg(r) is very similar to the function x(r) in [8]. Both
results require the drift force to be dissipative to obtain contractivity.
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In the IPS, given the positions of the other N — 1 particles, the conditional distribution of
p € P(RYY) in the i-th particle is

dp'(z'2") o exp ( —V(z') — N1 Z W(z" — x]))dxl, (7.8)
J#i
and the associated energy function is
S . 1 . .
Hi (%4 = % v 7). .
(]2 V(x)+N71;W(x 27) (7.9)

Note that p® is the conditional distribution rather than the marginal distribution p, thus its defi-
nition relies on z*, positions of other N — 1 particles. Define the conditional generator

Li=-V,H -V +A;, (7.10)

then L7 is self-adjoint in L?(R?, 4?), and define A\;(u?) by its spectral gap. Under appropriate
conditions, we can derive uniform lower bounds for ‘.
For the IPS, define the function by(r) and the constant crip,m as follows:

1
bo(r) = sup —;(m -y, VV(z) = VV(y) + VW(z — z) — VW (y — 2)), (7.11)
jo—yl=rz
and
1 [ 1 [°
CLip,m = f/ exp (/ bo(u)du) sds < 4o00. (7.12)
’ 4 Jo 4 Jo
Using Theorem we immediately obtain
Corollary 7.1 The spectral gap of the generator L' = —V;H' + A; on L*(R%, u?) satisfies

1

A (p') = (7.13)

CLip,m

Therefore, we define the uniform upper bound of the spectral gap:

. ; 1
A = inf  A(p') > .
1<i<N,2° CLip,m

(7.14)

7.2 Spectral gap of the interacting particle system
To begin with, consider the interacting particle system in a general form,

N
H(z',--- aV) =) "V(@)+ U@, V), (7.15)
i=1

where all interactions are embedded in U(z). The corresponding invariant distribution is

p(dz) o< exp (— H(z))da' - - da™, (7.16)
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and its conditional invariant distributions are
p'(z'&") cexp (= V(2') = U(z))da*, i=1,---,N. (7.17)

If there is a uniform lower bound on the spectral gaps of the conditional distributions p’, then the
spectral gap of the particle system can be obtained.

Theorem 7.2 Assume Z = fRNd e Hdx and Z'(3') = fRd e H'dxt are finite for any 2. Suppose

1. The conditional distributions ' satisfy the uniform Poincaré inequality, i.e.,

Moo= inf A (p : 1
1, L 1(p') >0 (7.18)
2. For some constant h € R,
(LigiViU) yawna = P (7.19)

Then the spectral gap A1(p) = Mm + h.

Proof The generator of the particle system is £L = —VH - V 4+ A, which is a self-adjoint operator
on L2(RN4 11). Our goal is to establish the (dual) Poincaré inequality

O I (7.20)

RNd

for all functions f : E — R. Using Bakry-Emery’s formula,

/ (Ef)Qdu=/ Lo (f)dp
RNd RNd
= /R IV + VPH(V £,V o ) dp

N
= [ (V247 VT T s + TUTL9 fava )l

i=1
Note that
N N
IV2f[2 =D VG2 =D IVEfIP. (721)
ij=1 i=1
Define ji* € P(RW~19) to be the marginal distribution #* = (z!,--- '~ 1, 21 ... 2V) (exclud-

ing z*), then p(x) = pi(x*2%) 4% (2%). Now we have the estimate
N
/R LS dn = 2; /R - /R IV + V2V @) (i, Vil )ra + VEU(VE, Vg )dia'dp(&)
+ /RNd ;ijU(Vf,Vf)du.
Using the uniform Poincaré inequality, one has

/R (V2P 4 V2V @) Vi, Vi o + VEU(VE Y fova )dp' 2 A /R vifPdp. (722)
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Moreover, using the assumption (7.19) one has

JED IRty B AR (7.23)
RNd “—7 RNd

i#]
Combining ([7.22))(7.23]) one obtains the desired result. O

Now write U in the form of pairwise interactions W. The main theorem is as follows:
Theorem 7.3 For the IPS (6.1), assume the following conditions:

(H1) The external potential V : R — R is C%-smooth, its Hessian V2V in R¥? is bounded from
below, and there exists c1,co > 0 such that

z-VV(z) > cilz|? —cy, VoeRL (7.24)
(H2) The pairwise poetntial W : R? — R is even and C?-smooth, its Hessian is bounded and

/ exp(—[V(z) + V(y) + A\W (z,y)])dedy < +00, VA > 0. (7.25)
R4 xR

(H3) For the function by(r) defined by

bo(r) := sup —1<x —y, VV(z) = VV(y) + VW (x — z) — VI¥W (y — 2)), (7.26)

le—yl=rz T

the Lipschitzian constant cripm 15 finite,

1 [ L[
CLip.m = 1/0 exp (4/0 bo(u)du> sds < +o0. (7.27)

Then the spectral gaps of the conditional distributions p' has a uniform lower bound,

. 1
AMom = inf A(p') > . 7.28
Lm = il 1(1) p— (7.28)
If there exists a constant h > —Aq ., such that
1 i j Nd
then the spectral gap of the particle system satisfies
)\1(/1) > )\l,m +h> + h. (730)

CLip,m
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7.3 Explicit estimate of convergence rate

Surprisingly, the spectral gap estimate (Theorem [7.3)) also tells the chaos property of the invariant
distribution pu.

Corollary 7.2 Under the conditions of Theorem|[7.3, for any two bounded Lipschitz functions f, g
on R* and i # j,

Conu(f oot < e = ey (Wl + o) (731)

Roughly speaking, two particles * and 27 become asymptotically independent at the rate 1/N.

We derive the explicit estimates of the spectral gap crip,m-
Corollary 7.3 Assume there exists constants cy,cw,c1,c2 € R and R > 0 such that ¢y + ey > 0
(VV(2) =VV(y),z —y) > evle —y|> — cile =yl —yi<r,
(VW (2 —2) = VW(y — 2),2 —y) > ewl|z —y|* — 2|z — ylljo—y <.
then bo(r) < —(cv + ew)r + (e1 + ¢2)1r<r, hence
1

1
CLip,m S p—— exp (4(01 + 02)R>. (7.32)

8 Convergence rate by log-Sobolev inequality

Compared to the Poincaré inequality, the log-Sobolev inequality yields stronger convergence in
relative entropy. We establish the log-Sobolev inequality with a constant unirom in the number
of particles IV in this section. Similar with the Poincaré inequality, we start from the log-Sobolev
inquality of the conditional distribution u’.

8.1 Zegarlinski’s condition

For a given distribution pu, recall that the log-Sobolev inequality is given by
Ent, (%) < 2Cu(|Vf), (8.1)
or equivalently, )
p(f*log|f]) < CulVfI? + pf? log(uf?)=. (8:2)
The best constant prs(p) = 1/C satisfying the log-Sobolev inequality is called the log-Sobolev
constant. For the IPS, suppose the conditional distrubutions p? € P(R?) satisfy the uniform

log-Sobolev inequality, can we derive the log-Sobolev inequality for the particle system? This is
answered by the Zegarlinski’s condition.

Definition 8.1 (Zegarlinski) Given the distribution p € P(RN?), let it = p(xt|2%) € P(R?) be
the conditional distributions of u. Define ciZj to be the best nonnegative constant to satisfy

IV (F2)2] < (W (Vi f12)) 2 + Z (i (IV5£12))2 (8.3)

or all smooth functions f(zt, - z™).
f 9 )
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It is easy to see ¢Z = 0. The matrix ¢ := (ciZj)NxN is called Zegarlinski’s matrix. ¢ is uniquely

determined by the joint distribution u. A sufficient condition of the Zegarlinski’s condition is

Lemma 8.1 If for any function g = g(z7) € C}(R?) on the single particle x7,

Vit (9)] < eizn? (IVg]), (8.4)

z
then ¢ij < cij.

The proof is the direct application of the Cauchy inequality. It is an interesting question to ask
what the inequality (8.4]) tells about the conditional distribution uf. As an example, let (x,y) be a
joint random variable and consider the following inequality,

2 Blgy)la] < E[Vo(w)lal, g € CHRY, (85
what does it tells about the conditional distribution p(y|x)? Assume p(y|x) has a density function
p(y — Ax), where A € R is a parameter, then the inequality is equivalent to |A\| < ¢. That is to
say, the constant ¢ characterizes how the conditional distribution p(y|x) is sensitive to the value of
x. The less c is, the less p(y|r) is sensitive to x. If the whole Zegarlinski matrix ¢Z is small, then
the N particles in the distribution p become statistically irrelevant. In this sense, the Zegarlinski
controls the chaos property of the distribution, which allows us to derive the log-Sobolev inequality
of the N-particle system from the one-particle conditional distribution.
The main result of Zegarlinski is as follows (Theorem 0.1, [13]).

Theorem 8.1 (Zegarlinski) Let i’ be the conditional distribution of u in N particles. If

(1) u® satisfies a uniform log-Sobolev inequality, i.e.,

prsm = Iof prs(u’) >0 (8.6)

(2) The following Zegarlinski’s condition is verified

1<iKN —

N N
= sup max{ chi,Zcij} < 1. (8.7)
Jj=1

j=1
Then the Gibbs measure 1 satisfies the log-Sobolev inequality

prs.m(1 =) Ent, (f*) < 2u(|Vf]?) (8.8)

for all smooth bounded functions f on RN?, j.e.,

pLs(p) = prs,m(1—7)> (8.9)

The proof is elementary algebra but a bit tediuous due to repeated usage of Cauchy inequalities.
We only breifly describe the proof here.
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Proof Using the uniform log-Sobolev inequality repeatedly, we only need to prove

N-1

D Ve B )2 < (1= ) |V %

k=0

Using the Zegarlinski’s condition repeatedly, one has

1

| Vi1 (B £2) 3] ZAE&TQ (E*| %)%,

where )\ﬁﬂ) are defined by

The Cauchy’s inequality gives
N
1 k+1 (k+1) - k+1)
pIVisr (B f2) 3P ZA,EQBZAHLW IP <= YN VP
1=1 =1

Therefore,

n—1

N
vakﬂ (EXF£2)3]2 < Z ( Z Ak’iﬁi) Vi f[?

1l Vi f |2,

Mz i

<A-v7

s
Il
-

yielding the desired result.

Lemma 8.2 For the Gibbs distribution u, the Zegarlinski coefficient Csz‘ satisfies

1
7 < ﬁCLip,mHVZWHoo-

Proof We briefly descibe the proof. By direct calculation,
Viu'(g) = Covi(g, —V,; H)

= Cov,i(g, N1
1

= (L) (L) (VW) = 2?) = ! (VW) (- = 27) )

(VW)(z' —a7))

— o1 [ T VL) (TW = ) = (T ) )i

N -1

Since the operator (£%)~! has an upper bound cip m, we have

IV:(=£'9) " (VW) = a9) = i (FW)(- = 2)) Yoo < CLipm | V2 W .
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8.2 Log-Sobolev inequality of the interacting particle system

Now we state the main theorem, which establishes the log-Sobolev inequality for the interacting
particle system.

Theorem 8.2 Assume that

(1) For some best constant prs.m > 0, the conditional marginal distributions p* = p(x®|2*) on R?
satisfy the log-Sobolev inequality

pLs,m Ent,: (f2) < 2/ IVfPdu', Vf e CLRY) (8.16)
Rd

for all i and Z°.

(2) Zegarlinski’s condition

Jj=1 Jj=1

N N
~v:i= sup max{chZi,ZciZj} < 1. (8.17)

1<i<N
Then u satisfies
pusn(L=PEnt, () <2 [ V7P Vf € LR, (8.15)
R

i.e., the log-Sobolev constant of u satisfies

prs(p) = prem(l — )2 (8.19)

A sufficient condition of uniform log-Sobolev inequality is as follows. Assume V2W (x) > —Kj and

V3V (zx) > K, |z|>R. (8.20)

Write V = V. 4V}, where V. is strongly convex and V; is bounded. By Bakry-Emery’s I's criterion,
4 1 , .
_ iy i g

exp ( Ve(o') = ;W(x T )) (8.21)

satisfies a log-Sobolev inequality with constant K; > 0. The log-Sobolev inequality holds for p?
due to bounded perturbation.

8.3 Ergodicity of McKean-Vlasov process
We have proved that the IPS (6.1]) has a uniform log-Sobolev constant
PLS = pLS,m(1 - CLip,m||v2W||oo)2- (822)

Consequently, one has the log-Sobolev inequality

psEut, (1) <2 [ [9VFPd (8.23)
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for all positive functions f. Assume p(f) =1 and define v by v(dz) = f(z)u(dz), then the relative
entropy and the Fisher information of v are

IVfI?
i ¢

Then the log-Sobolev inequality can be equivalently written as

Hlw = Enty() = [ flog fdu, 1) = £(/F) = — 1 [ IWlogsan (s21)

prsH(v|p) < 2I(v|p), Vv < p. (8.25)

As N — oo, we expect the inequality has a mean-field limit, which tells the ergodicity of the
McKean-Vlasov process. To be clear, let v € P(R?) be a distribution in R?, we want to know the
mean-field limit of H(v®N|u) and I(v®N|p).

Mean-field limit of H(v®V|y) Let a(dz) o e~V (®)dz be the reference distribution on R?. Define
the free energy of v € P(R%) by

1

By(v) = H|a) + + / W(z — y)(de)v(dy) (8.26)

2 Jraxrd

1
=H(v)+ V(z)v(de) + = / W(z — y)v(dz)v(dy) + const. (8.27)
R 2 Jraxrd
Moreover, define the mean-field entropy by

Hyw (v) = E¢(v) — inf E¢(v). (8.28)

then we have the following:
Lemma 8.3 If v € P(RY) satisfies H(v|a) < 400, then
1
H(w®N|u) = Hw (v). (8.29)

Proof Define

2#]
then

N
Zn :/exp( SN D) > Wi —xﬂ> BN (8.30)
v (-3

SN D > Wi —x]) da®V. (8.31)

175]
By direct calculation,
1 1 ~
NH(Z/(@N‘,U,) =E;(v)+ N log Zn. (8.32)

As N — o0, (3.30) in [14] gives
lim —log Zn = fmef( ), (8.33)

N—oco N

yielding the desired result. O
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The definition of the mean-field entropy Hy (v) first arises in [6]. The rigorous proof of
requires the large deviation theory. In the viewpoint of propagation of chaos, can be under-
stood as follows: if v is the invariant distribution of the MVP, then uniform-in-time propagation of
chaos implies

1
lim NH(V@VW) =0. (8.34)

N —o0

Therefore, the infimum of the RHS of (8.33)) is 0.

2

Mean-field limit of I(v®"|u) Define the mean-field Fisher information by
VI@) | Gy + (YW s ) (@) dvle), (8.35)

)= | 7(@)

where f = dv/du. We have the following result:

Lemma 8.4 If v € P(RY) satisfies I(v|a) < +oo, then

%I(V®N|u) - Iy (v). (8.36)

Proof By direct calculation,

N 2

1 1 dv 1 ;

—7T QN — - 1 ot 1. QN .

i W) /4‘V og da(sc )+ N_1 JEZQVW(J: )| dv (8.37)

The law of large numbers implies

1 1 dv ?
LoV o / 108 & (1) + / YW (! — y)du(y)| du(a?) = T (). (8.38)
N 4 da 0

Now we state the main theorem.
Theorem 8.3 Assume the uniform marginal log-Sobolev inequality, i.e., prgm > 0. Then

(1) There exists a unique minimizer v of Hy (v) over My (R%);

(2) The following (nonlinear) log-Sobolev inequality
prsHw (V) < 2w (v), v e Mi(R?Y) (8.39)

holds, where o
prs = lim p(p) = prsm(l — )% (8.40)
N—00

(3) The following Talagrand’s transportation inequality holds

pLsWi(v,vee) < 2Hw (v), v e Mi(R?). (8.41)
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(4) For the solution of the McKean-Vlasov equation with the given initial distribution vy of finite

second moment,
Hyw () < e /2 Hyy (). (8.42)
In particular,

2
Wa(vg, Vo) < ——e P18/ 2 Hyy (1), (8.43)
PLS

Proof The log-Sobolev inequality gives

pLsHO n) < 200%™ ), (8.44)
As N — o0, one obtains
prsHw (v) < 21w (v). (8.45)
Using
%Hw(yt) =4Iy (v), (8.46)
one obtains the exponential convergence of v;. O

A

Subjective commentary

This paper provides an alternative approach to establish the ergodicity of the IPS and the MVP,
connecting the geometric ergodicity and the propagation of chaos in the non-convex case. The idea
of proving the ergodicity of the IPS from uniform functional inequalities for conditional distributions
is very inspiring. Open question: is it possible to extend the conditional distribution approach to
more general interacting systems? Or systems with singular potentials?
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