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1 Hagedorn wavepackets

Consider the time-dependent Schrödinger equation in Rd,

i
∂ψ

∂t
= Ĥψ = −1

2
Tr[B : ∇2ψ] + V (x)ψ (1.1)

where B ∈ Rd×d is a positive definite matrix and V (x) is the potential function in Rd. The first
Hagedorn wavepacket are defined by

ϕ0[q, p,Q, P ](x) = π−
d
4 (detQ)−

1
2 exp

(
i

2
(x− q)TPQ−1(x− q) + ipT(x− q)

)
(1.2)

with q, p ∈ Rd and Q,P ∈ Cd×d satisfy the symplecticity relations [1] so that (1.2) is a Gaussian
wavepacket. Other wavepackets are defined recursively by

ϕk+〈j〉 =
1√
kj + 1

Â†jϕk, j = 1, · · · , d (1.3)
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with the ladder operator defined by

Â = − i√
2

(
PT(q̂ − q)−QT(p̂− p)

)
(1.4)

The key properties of the Hagedorn wavepackets are given in the following theorem:

Theorem 1 (Hagedorn) The Hagedorn wavepackets ϕk = ϕk[q, p,Q, P ] defined by (1.2)(1.3)
form a complete L2-orthonormal set of fucntions. Moreover, if the external potential V (x) is
quadratic, let

(
q(t), p(t), Q(t), P (t)

)
be the solution of classical equations of motion

q̇ = Bp, ṗ = −∇V (q), Q̇ = BP, Ṗ = −∇2V (q)P (1.5)

and let

S(t) =

∫ t

0

(
1

2
|p(s)|2 − V (q(s))

)
ds (1.6)

be the corresponding classical action. Then, for for every multi-index k,

Ψk(x, t) = eiS(t)ϕk[q(t), p(t), Q(t), P (t)](x) (1.7)

is a solution of the time-dependent Schrödinger equation (1.1).

It’s important to note that although the potential function V (q) is independent of time in the
Schrödinger equation (1.1), the solution (1.7) is also valid when V depdends on t. In fact, the
definition of the action S(t) is equivalent to the initial value problem

Ṡ(t) =
1

2
|p(t)|2 − V (q(t)), S(0) = 0 (1.8)

and the time derivative of Ψk(x, t) satisfies

∂tΨk(x, t)

Ψk(x, t)
= iṠ(t) +

∂qϕk
ϕk

q̇(t) +
∂pϕk
ϕk

ṗ(t) +
∂Qϕk
ϕk

Q̇(t) +
∂Pϕk
ϕk

Ṗ (t) (1.9)

which is an analytic expression of the parameters p(t), q(t), P (t), Q(t).

Now if the initial value of the Schrödinger equation is

Ψ(x, 0) =
∑
k

ckΨk(x, 0) = eiS(0)
∑
k

ckϕk[q(0), p(0), Q(0), P (0)](x) (1.10)

then the solution is given by

Ψ(x, t) =
∑
k

ckΨk(x, 0) = eiS(t)
∑
k

ckϕk[q(t), p(t), Q(t), P (t)](x) (1.11)

and the coefficients {ck} are constant in time.

Comments on the Hagedorn wavepackets:

1. Hagedorn wavepackets write a series of explicit solutions {Ψk(x, t)} to the Schrödinger equa-
tion (1.1), even if the coefficient B ∈ Rd×d and the quadratic potential function V (x) in (1.1)
depend on time.

2



2. The basis functions {ϕk} defined in (1.2) and (1.3) are essentially transformed Hermitian
functions. Since {ϕk} form a complete orthonormal basis of L2(Rd), any initial data Ψ(x, 0)
in L2(Rd) can be expanded in the basis. However, in many cases we only consider the initial
data in the form of Gaussian wavepackets (1.2).

3. The solution Ψk(x, t) is exact only when the potential function V (x) is quadratic. In the
general case, the solution may not be analytic.

4. Given the coefficient B ∈ Rd×d and potential function V (x), any set of the initial values of
the parameters q, p,Q, P yield a valid solution to the Schrödinger equation (1.1). Therefore,
{ϕk(x)} has no connection with the eigenfunctions of Ĥ.

2 Spectral method for Schrödinger equation

2.1 Schrödinger-type ODE system

We aim to solve the time-depdendent Schrödinger equation

i
∂ψ

∂t
= Ĥψ (2.1)

with the Hamiltonian operator given by

Ĥ = Ĥ0 + Ĥp (2.2)

Both Ĥ0 and Ĥp can depend on time. Assume Ĥ0 is simple enough constitutes the main part of

the total Hamiltonian Ĥ, and the solution of the truncated Schrödinger equation

i
∂ψ

∂t
= Ĥ0ψ (2.3)

can be explicitly written as a series of wavefunctions {Ψk(x, t)}. We require {Ψk(x, t)} to form a
complete basis so that any initial data Ψ(x, 0) can be expanded in the basis. Typical examples of
Ĥ0 and the corresponding solutions Ψk(x, t) include:

1. Ĥ0 = −1

2
∆ with periodic boundary conditions in the interval [a, b].

Ek =

(
2kπ

b− a

)2

, φk(x) = exp

(
i2kπ · x− a

b− a

)
, k ∈ Z

The solution is
Ψk(x, t) = eiEktφk(x)

2. Ĥ0 = −1

2
∆ +

1

2
x̂2 in the real line. The eigenfunctions ar the Hermite functions1, i.e.,

En = n+
1

2
, φn(x) =

1√
2nn!

1
4
√
π
e−

x2

2 Hn(x), n = 0, 1, 2, · · ·

1See https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator for detailed explanation.
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where Hn(x) are the Hermite polynomials,

Hn(x) = (−1)nex
2 dn

dxn
(
e−x

2)
The solution is

Ψk(x, t) = eiEktφk(x)

3. Ĥ0 = −1

2
Tr[B : ∇2] + V (x, t) and V (x, t) is quadratic for any time t. The basis solution is

represented as Hagedorn wavepackets defined in (1.7).

Now we consider the ansatz for the general Schrödinger equation (2.2)

Ψ(x, t) =
∑
k

ck(t)Ψk(x, t) (2.4)

where each Ψk(x, t) is the solution of the truncated system (2.3). Then

i
∂Ψ

∂t
= i
∑
k

ċk(t)Ψk(x, t) + i
∑

ck
∂Ψk(x, t)

∂t

= i
∑
k

ċk(t)Ψk(x, t) + Ĥ0Ψ

which implies

i
∑
k

ċk(t)Ψk(x, t) = ĤpΨ(x, t) =
∑
l

cl(t)ĤpΨl(x, t) (2.5)

Taking Ψk(x, t) as the test fucntion, we obtain

iċk(t) =
∑
l

fklcl(t) (2.6)

where

fkl := 〈Ψk|Ĥp|Ψl〉 =

∫
R

Ψk(x, t)ĤpΨl(x, t)dx

Note that Ĥp is Hermitian implies that the coefficient matrix {fkl}N×N is Hermitian, hence the
ODE system (2.6) behaves like a Schrödinger equation.

2.2 Calculation of the coefficient fkl

Now we aim to compute coeffient
fkl := 〈Ψk|Ĥp|Ψl〉 (2.7)

In the simplest case, assume the truncated Hamiltonian Ĥ0 is the harmonic oscillator, i.e.,

Ĥ0 = −1

2
∆ +

1

2
x̂2 (2.8)
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and the basis functions are Ψk(x, t) = eiEktφk(x). Assume Ĥp = h(x̂) is a polynomial of x̂, then

fkl = 〈Φk|Ĥp|Φl〉

=

∫
R
φk(x)h(x)φl(x)dx

=
1√
2kk!

1√
2ll!

1√
π

∫
R
e−x

2

Hk(x)Hl(x)h(x)

Suppose h(x) is decomposed as

h(x) =
∑
m

hmHm(x) (2.9)

with the coefficients {hm}, we have

fkl =
1√
2kk!

1√
2ll!

1√
π

∑
m

hm

∫
R
e−x

2

Hk(x)Hl(x)Hm(x)dx (2.10)

Using the fact that2

∫
R
e−x

2

Hk(x)Hl(x)Hm(x)dx =
2

1
2 (k+l+m)k! l!m!

√
π(

1
2 (k + l −m)

)
!
(

1
2 (−k + l +m)

)
!
(

1
2 (k − l +m)

)
!

(2.11)

when k + l > m, k +m > l, l +m > k and 2 | k + l +m, we obtain

fkl =
∑
m

2
m
2

√
k! l!m!(

1
2 (k + l −m)

)
!
(

1
2 (−k + l +m)

)
!
(

1
2 (k − l +m)

)
!
hm (2.12)

Especially, when Ĥp(x) ≡ 1, fkl = δkl. In the numerical tests, we choose

h(x) =
1

16
H4(x) +

1

2
H1(x) = x4 − 4x2 + x+

3

4
(2.13)

which implies the coefficient h1 = 1
2 and h4 = 1

16 . Note that the matrix {fkl} is real-valued and
symmetric.

Stiffness of the ODE system:

The ODE system (2.6) is stiff when the number of basis functions is large. In fact, the expression
of fkl (2.12) implies that fkl is extremely large when k, l are big, thus small timesteps are required
to integrate the dynamics, unless a strongly stable numerical integrator is employed.

2.3 Time splitting method

We briefly introduce the time splitting method, whose idea to integrate the two dynamics

i
∂ψ

∂t
= Ĥ0ψ, i

∂ψ

∂t
= Ĥpψ (2.14)

2https://functions.wolfram.com/Polynomials/HermiteH/21/ShowAll.html
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respectively. Usually, Ĥ0 = − 1
2∆ or Ĥ0 = − 1

2∆ + 1
2ω

2x̂2, which corresponds to the Fourier [2]

and Hermite [3] spectral methods respectively. In this way, the Schrödinger equation for Ĥ0 can be
solved explicitly using the spectral method, and the equation for Ĥp can be directly solved in the
physical space.

It’s important to note that there is no stiffness in the time splitting method, and the only technique
is the transformation from the physical space to the frequency space.

3 Numerical integrator for Schrödinger-type ODE

3.1 Real-imaginary splitting technique

Consider Schrödinger-like ODE for {ck(t)}Nk=1:

iċk(t) =
∑
l

fklcl(t) (3.1)

where the coefficient matrix {fkl} is complex-valued and Hermitian, i.e.,

Re(fkl) = Re(flk), Im(fkl) = −Im(flk) (3.2)

This means R := {Re(fkl)} is symmetric while I := {Im(fkl)} is anti-symmetric. Write the
coefficient ck(t) in the real and imaginary parts as

ck(t) = ak(t) + ibk(t) (3.3)

and we obtain the ODE system for {ak(t)} and {bk(t)}:
ȧk(t) =

∑
l

Im(fkl)al(t) +
∑
l

Re(fkl)bl(t)

ḃk(t) = −
∑
l

Re(fkl)al(t) +
∑
l

Im(fkl)bl(t)
(3.4)

or equivalently in the matrix form

d

dt

[
a
b

]
=

[
I R
−R I

] [
a
b

]
(3.5)

which is the Hamiltonian dynamics for

H(a, b) =
1

2
(aTRa+ bTRb) + bTIa (3.6)

The Hamiltonian dynamics (3.4) satisfies the following conservation laws.

Mass conservation The total mass

M(t) :=
∑
k

|ck(t)|2 =
∑
k

|ak(t)|2 +
∑
k

|bk(t)|2 (3.7)
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is conserved along the dynamics. This is because

Ṁ(t) = 2(aTȧ+ bTḃ) = 2
(
aTIa+ aTRb

)
+ 2
(
− bTRa+ bTIb

)
= 0 (3.8)

Here we use the fact that

R is symmetric =⇒ aTRb = bTRa
I is anti-symmetric =⇒ aTIa = bTIb = 0

Energy conservation When {fkl} is a constant matrix, the Hamiltonian H(a, b) is conserved
along the dynamics. However, this may not be true when {fkl} depends on time. In the following
we discuss various numerical integrators for the ODE system (3.5).

3.2 Runge-Kutta method

The Runge-Kutta method is the most widely-used integrator in numerical integration. The ODE
system (3.5) can be rewritten as the linear system

dz

dt
= Bz (3.9)

and the 4th order Runge-Kutta method in a timestep is given by

K1 = Bz

K2 = B
(
z +

K1

2
∆t
)

K3 = B
(
z +

K2

2
∆t
)

K4 = B(z +K3∆t)

z = z +
K1 + 2K2 + 2K3 +K4

6
∆t

The Runge-Kutta method has 4th order of accuracy, and the symplectic structure is not guaranteed.

3.3 Symplectic integrator for non-separable Hamiltonian system

Since (3.5) is a Hamiltonian dynamics, it’s natural to design a symplectic integrator to expect
satisfactory long time performance. The explicit symplectic integrator for separable Hamilonians
has been extensively studied, but this is not the case for non-separable Hamiltonians, for example,
H(a, b) defined in (3.6). When the imaginary part I ∈ RN×N is nonzero, the Hamiltonian H(a, b)
becomes non-sparable.

We employ the numerical integrator introduced in [4] by Molei Tao and introduce the augmented
Hamiltonian

H̄(a, b, a′, b′) = H(a, b′) +H(a′, b) +
ω

2
(|a− a′|2 + |b− b′|2) (3.10)
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where ω > 0 is a fixed constant. The Hamiltonian dynamics corresponding to H̄ is
ȧ = ∂bH(a′, b) + ω(b− b′)
ḃ = −∂aH(a, b′)− ω(a− a′)
ȧ′ = ∂bH(a, b′) + ω(b′ − b)
ḃ′ = −∂aH(a′, b)− ω(a− a′)

(3.11)

The numerical integrator can be constructed in a splitting scheme. In a timestep, denote the
numerical integrators by

φ∆t
a,b′ :


a
b
a′

b′

 7→

a+ ∂bH(a′, b)∆t

b
a′

b′ − ∂aH(a′, b)∆t

 =


a+ (Ia′ +Rb)∆t

b
a′

b′ + (−Ra′ + Ib)∆t



φ∆t
a′,b :


a
b
a′

b′

 7→


a
b− ∂aH(a, b′)∆t
a′ + ∂bH(a, b′)∆t

b′

 =


a

b+ (−Ra+ Ib′)∆t
a′ + (Ia+Rb′)∆t

b′



φ∆t
ω :


a
b
a′

b′

 7→ 1

2


(
a+ a′

b+ b′

)
+R(∆t)

(
a− a′
b− b′

)
(
a+ a′

b+ b′

)
−R(∆t)

(
a− a′
b− b′

)


where

R(∆t) =

[
cos(2ω∆t)I sin(2ω∆t)I
− sin(2ω∆t)I cos(2ω∆t)I

]
and the overall 2nd-order integrator is given by

φ∆t
2 := φ

∆t/2
a,b′ ◦ φ

∆t/2
a′,b ◦ φ

∆t
ω ◦ φ

∆t/2
a′,b ◦ φ

∆t/2
a,b′ (3.12)

Finally we obtain the symplectic integrator in ∆t time:

Algorithm 1: Symplectic integrator for the non-separable Hamiltonian H(a, b)

Input: coordinates a0, b0 ∈ RN at initial, timestep ∆t
Output: coordinates a1, b1 ∈ RN after one timestep
Obtain (a1, b1) from the numerical flow φ∆t

2 :
a1

b1
∼
∼

 = φ∆t
2


a0

b0
a0

b0


Since Tao’s integrator above is symplectic, we may construct high-order schemes using the Suzuki-
Yoshida method [5]. For example, the 4th-order integrator can be constructed from

φ∆t
4 = φτ0∆t

2 ◦ φτ1∆t
2 ◦ φτ0∆t

2 (3.13)

8



where

τ0 =
1

2− κ
, τ1 = − κ

2− κ
, κ = 2

1
3 (3.14)

Note that τ1 < 0 in the symplectic integrator, which is similar with the Richardson extrapolation.

3.4 Implicit symplectic integrator

The explicit integrators above are easy to implement, but extremely small timesteps are required if
the ODE system is stiff. However, the high frequency parts do not contribute much to the overall
wavefunction, thus a highly stable numerical integrator is preferable.

We still consider the ODE system
dz

dt
= Bz (3.15)

where the coefficient matrix

B =

[
I R
−R I

]
(3.16)

is a infinitesimal symplectic matrix [6, 7] hence the ODE system has symplectic structure. The
2m-order implicit schemes can be given in the following procedure [7]:

zn+1 =
Pm(∆tB)

Pm(−∆tB)
zn (3.17)

where the polynomials Pm are given by

P0(λ) = 1

P1(λ) = 2 + λ

P2(λ) = 12 + 6λ+ λ2

In particular, the 2nd-order scheme is given by(
I − 1

2
∆tB

)
zn+1 =

(
I +

1

2
∆tB

)
zn (3.18)

and the 4th-order scheme is given by(
I − 1

2
∆tB +

1

12
∆t2B2

)
zn+1 =

(
I +

1

2
∆tB +

1

12
∆t2B2

)
zn (3.19)

When R is symmetric and I is anti-symmetric, all the eigenvalues of B are pure imaginary. In fact,
assume x, y ∈ CN 3 and λ ∈ C satisfying the eigenvalue problem[

I R
−R I

] [
x
y

]
= λ

[
x
y

]
(3.20)

then
Ix+Ry = λx, −Rx+ Iy = λy (3.21)

3We use x, y ∈ CN rather than a, b ∈ RN since a, b are real vectors.
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hence

λ(|x|2 + |y|2) = x∗(Ix+Ry) + y∗(−Rx+ Iy)

= x∗Ry − y∗Rx
= 2 Im(x∗Ry)

which implies λ must be a pure imaginary number. Therefore, the implicit schemes above are
unconditionally stable. Also, these implicit methods exactly preserve the mass and energy.

3.5 Tests for the numerical integrator

For the Hamiltonian

H(a, b) =
1

2
(aTRa+ bTRb) + bTIa

and the corresponding Hamiltonian dynamics

d

dt

[
a
b

]
=

[
I R
−R I

] [
a
b

]
we test the performance of various numerical integrators including the Runge-Kutta method, explicit
and implicit symplectic integrators. Fixing N = 6, the data of the symmetric R and the anti-
symmetric are given by

R =


1.0753 1.4003 −1.5334 2.2712 0.8077 −0.4193
1.4003 0.6852 3.5153 4.1866 −0.3152 1.8879
−1.5334 3.5153 1.4295 0.4665 0.6027 0.4208
2.2712 4.1866 0.4665 −2.4150 0.4138 0.8207
0.8077 −0.3152 0.6027 0.4138 0.5877 −3.7316
−0.4193 1.8879 0.4208 0.8207 −3.7316 2.8768

 (3.22)

I =


0 1.0741 −0.2770 1.7047 −0.9868 −1.2501

−1.0741 0 1.9742 1.56270.1974 −1.3700
0.2770 −1.9742 0 −0.8470 1.7666 0.0519
−1.7047 −1.5627 0.8470 0 1.3262 1.2331
0.9868 −0.1974 −1.7666 −1.3262 0 −0.7015
1.2501 1.3700 −0.0519 −1.2331 0.7015 0

 (3.23)

and the initial values are

a0 =


−0.7697
3.5544
−3.0594
−5.6091
−5.6895
1.9528

 , b0 =


−0.7095
−0.7842
5.6772
1.1663
0.7912
6.3508

 (3.24)

The numerical performance of the method will be measured in two ways:

1. Energy and mass conservation property.

2. l2 error at a given simulation time.
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For T = 103, we record the mass and the energy along the simulation for various methods. The
timestep is fixed at ∆t = 10−1. The constant ω in the symplectic method is set at 1.
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Figure 1: Mass and energy conservation for the 4th-order Runge-Kutta method. Deviation of the
mass and energy is 15.11 and 22.96 respectively.
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Figure 2: Mass and energy conservation for the 4th-order Runge-Kutta method. Deviation of the
mass and energy is 0.64 and 1.39 respectively.
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Figure 3: Mass and energy conservation for the 4th-order implicit method. Deviation of the mass
and energy is 1.84× 10−11 and 3.17× 10−11 respectively.
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Next we compute the l2-error of different methods. At given time T = 103, the l2 error of the
computed (a, b) is recorded. The reference solution is computed by the 4th-order implicit scheme
with ∆t = 10−4.
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