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1 Hagedorn wavepackets

Consider the time-dependent Schrédinger equation in R?,

P~y =SB V] + Vi)

(1.1)

where B € R%¥* is a positive definite matrix and V() is the potential function in R?. The first

Hagedorn wavepacket are defined by

2

0ld.p. Q. P)(x) = 7% (det Q) exp (( C)TPQ M-y i (o q>)

(1.2)

with ¢,p € R? and Q, P € C?* satisfy the symplecticity relations [1] so that (1.2) is a Gaussian

wavepacket. Other wavepackets are defined recursively by

1

Ph+(j) = 7@

A;QOIW ]:1a7d

(1.3)



with the ladder operator defined by
- i
A=-"(P"a-0)- Q")) 14
7 (G—a)—Q (h—p) (1.4)
The key properties of the Hagedorn wavepackets are given in the following theorem:

Theorem 1 (Hagedorn) The Hagedorn wavepackets o = kg, p, Q, P] defined by (1.2)(1.3)
form a complete L?-orthonormal set of fucntions. Moreover, if the external potential V(x) is
quadratic, let (q(t),p(t), Q(t), P(t)) be the solution of classical equations of motion

¢=DBp, p=-VV(g), Q=BP, P=-VV(qP (1.5)
and let e
50 = [ (3P - Vial) )as (1.6
be the corresponding classical action. Then, for for every multi-index k,
V(1) = e q(t), p(t), Q(1), P(1)](x) (1.7)

is a solution of the time-dependent Schridinger equation (1.1).

It’s important to note that although the potential function V(g) is independent of time in the
Schrodinger equation (1.1), the solution (1.7) is also valid when V' depdends on t. In fact, the
definition of the action S(t) is equivalent to the initial value problem

. 1
S() = 5lp®I” = V(g®), S(0)=0 (1.8)
and the time derivative of Wy (x,t) satisfies

0V (2, t) . Dgpr: . Opok . ek Op i
SR )8 + t) + t) + t) 4+ 27K Pt 1.9
e ) (t) o q(t) o p(t) o Q(t) o (t) (1.9)

which is an analytic expression of the parameters p(t), q(t), P(¢), Q(t).

Now if the initial value of the Schrodinger equation is
U(,0) =Y exWr(,0) = ¥ " i [g(0), p(0), Q(0), P(0)](x) (1.10)
k k

then the solution is given by

U(a,t) =Y exWr(z,0) = e~ crprla(t), p(t), Q(t), P()](x) (1.11)
k k

and the coefficients {cy} are constant in time.
Comments on the Hagedorn wavepackets:

1. Hagedorn wavepackets write a series of explicit solutions {¥(z,t)} to the Schrodinger equa-
tion (1.1), even if the coefficient B € R?*¢ and the quadratic potential function V (z) in (1.1)
depend on time.



2. The basis functions {py} defined in (1.2) and (1.3) are essentially transformed Hermitian
functions. Since {} form a complete orthonormal basis of L2(R?), any initial data W(z,0)
in L?(R?) can be expanded in the basis. However, in many cases we only consider the initial
data in the form of Gaussian wavepackets (1.2).

3. The solution Wi (x,t) is exact only when the potential function V(x) is quadratic. In the
general case, the solution may not be analytic.

4. Given the coefficient B € R%*? and potential function V(z), any set of the initial values of
the parameters ¢, p, Q, P yield a valid solution to the Schrodinger equation (1.1). Therefore,
{¢k(x)} has no connection with the eigenfunctions of H.

2 Spectral method for Schrodinger equation

2.1 Schrodinger-type ODE system

We aim to solve the time-depdendent Schrodinger equation

0y

with the Hamiltonian operator given by
H=H,+H, (2.2)

Both H, and ﬁp can depend on time. Assume Hy is simple enough constitutes the main part of
the total Hamiltonian H, and the solution of the truncated Schrodinger equation

oy
,— = H 2.3
? ot ot (2.3)
can be explicitly written as a series of wavefunctions {Uy(xz,¢)}. We require {Ux(z,t)} to form a
complete basis so that any initial data W(z,0) can be expanded in the basis. Typical examples of
Hy and the corresponding solutions Wy (z,t) include:

~ 1
1. Hy = _iA with periodic boundary conditions in the interval [a, b].

2%k \ 2 r—a
Ey = (b—a) ,  Or(x) =exp <i2k7r- ), keZ

b—a

The solution is ‘
Uy (z,t) = e’Ektqbk(:v)

. 1 1
2. Hy= —§A + 5332 in the real line. The eigenfunctions ar the Hermite functions', i.e.,
Bu=n+ts,  0u(@) = e 5 Ho(z), n=0,1,2
’I’L_n 27 nl'— 2”’]’]"\4/7?6 TL:L.) n_7)7

1See https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator for detailed explanation.



where H,,(z) are the Hermite polynomials,

n xzi —x?
Hy(z) = (=1)" dzn (e )

The solution is _
Uy (z,t) = e Brlgpy ()

A 1
3. Hy = —§Tr[B : V2] + V(z,t) and V(z,t) is quadratic for any time ¢. The basis solution is

represented as Hagedorn wavepackets defined in (1.7).

Now we consider the ansatz for the general Schrédinger equation (2.2)
U(z,t) = ch(t)\llk(:mt) (2.4)
k
where each Uy (x,t) is the solution of the truncated system (2.3). Then

OV . OV (z,t)
igr = zzk:ck(t)\llk(x,t) + ZchT
=iy éx(t)Wk(a,t) + HoW
k
which implies
i ) W(x,t) = HyW(a,t) =Y a(t)H,¥(x, 1) (2.5)
k l
Taking Wy (z,t) as the test fucntion, we obtain

¢k (t) = Z fklcl(t) (2.6)
l

where
fkl = <\I/k|Hp|‘Ifl> = / \I/k(l’,t)Hp\I/l(SC,t)dw
R

Note that pr is Hermitian implies that the coefficient matrix {fx;}nxn is Hermitian, hence the
ODE system (2.6) behaves like a Schrodinger equation.

2.2 Calculation of the coefficient f;

Now we aim to compute coeffient .
frr = (Vi Hp|Py) (2.7)

In the simplest case, assume the truncated Hamiltonian H, is the harmonic oscillator, i.e.,

. 1 1.
Hy=—ZA+ 5:1:2 (2.8)



and the basis functions are Wy, (x,t) = ¢+t ¢y (). Assume H, = h(&) is a polynomial of &, then

S = (I)k|H | D7)

/ or(z (z)da

/-w Hi () Hy(2) ()

\/2’% \/21 NG
Suppose h(z) is decomposed as
x) = Z R Hpn () (2.9)
with the coefficients {h,,}, we have
it = o= Yl [ € Hua) i) Hi (o) (210)
kl_\/QTk!\/?Tl!\/TTmmRe g(x)H(z)H,, (x)dx )

Using the fact that?

23 (bHm) L1 1 )
/ = Hy () Hy(x) Hop (2)da: = : miym 2.11)
R (%(k+lfm)) (%( k+l+m)> (%(k—lan))!
whenk+1>m,k+m>21,l4+m>=kand2|k+1+m, we obtain
VAT m)
fu= ; ; hm, (2.12)
(S 1—m) (3 ( ket lem))1 (36— 1+m))!

Especially, when ﬁp(x) =1, fr: = ;- In the numerical tests, we choose

W) = = Hay() + SHy () = 2% — 422 + 0 4 ° (2.13)
1671 g I 4 '

which implies the coefficient h; = % and hy = %6. Note that the matrix {fx;} is real-valued and

symmetric.
Stiffness of the ODE system:

The ODE system (2.6) is stiff when the number of basis functions is large. In fact, the expression
of fr; (2.12) implies that fy; is extremely large when k,[ are big, thus small timesteps are required
to integrate the dynamics, unless a strongly stable numerical integrator is employed.

2.3 Time splitting method

We briefly introduce the time splitting method, whose idea to integrate the two dynamics

0 0 ~
za—q’t[} = Hyy, za—qi} = Hy (2.14)

?https://functions.wolfram.com/Polynomials/HermiteH/21/ShowAll.html




respectively. Usually, Hy = —%A or Hy = —%A + %w2£2, which corresponds to the Fourier [2]
and Hermite [3] spectral methods respectively. In this way, the Schrodinger equation for H, can be
solved explicitly using the spectral method, and the equation for flp can be directly solved in the
physical space.

It’s important to note that there is no stiffness in the time splitting method, and the only technique
is the transformation from the physical space to the frequency space.

3 Numerical integrator for Schrodinger-type ODE

3.1 Real-imaginary splitting technique
Consider Schrodinger-like ODE for {cg(t)}Y_;:

itk(t) =Y fua(t) (3.1)
l

where the coefficient matrix {fx;} is complex-valued and Hermitian, i.e.,

Re(fr) = Re(fix), Im(fr) = —Im(fir) (3.2)

This means R := {Re(fr)} is symmetric while Z := {Im(fy;)} is anti-symmetric. Write the
coefficient ¢ () in the real and imaginary parts as

cr(t) = ag(t) +iby(t) (3.3)

and we obtain the ODE system for {ax ()} and {bs(¢)}:

an(t) =Y Im(fr)ai(t) + > Re(fu)bi(t)
l

l
bi(t) = — > Re(fr)ar(t) + > Im(fur)bi(t) B
1 !
or equivalently in the matrix form
i i) = 5[ 63
which is the Hamiltonian dynamics for
H(a,b) = %(aTRa +bTRY) + 0" Za (3.6)
The Hamiltonian dynamics (3.4) satisfies the following conservation laws.
Mass conservation The total mass
M(t) =Y e =D lax@®)F + ) lbw(0) (3.7)
k k k



is conserved along the dynamics. This is because
M(t) =2(a"a+b"b) = 2(a"Za + a"Rb) +2( — b"Ra + bTZb) = 0 (3.8)
Here we use the fact that
R is symmetric = a"Rb = b Ra

T is anti-symmetric => a*Za = b*Zb = 0

Energy conservation When {fy;} is a constant matrix, the Hamiltonian H(a,b) is conserved
along the dynamics. However, this may not be true when {fx;} depends on time. In the following
we discuss various numerical integrators for the ODE system (3.5).

3.2 Runge-Kutta method

The Runge-Kutta method is the most widely-used integrator in numerical integration. The ODE
system (3.5) can be rewritten as the linear system

dz
— =20B 3.9
T z (3.9)
and the 4th order Runge-Kutta method in a timestep is given by

K1 = BZ

K
Ky = B(z n %At)

K3:B(z+%At)
K4:B(Z+K3At)
K|+ 2Ky +2K5 + K
=t 1+ 2K +2K3 + 4 A¢

6

The Runge-Kutta method has 4th order of accuracy, and the symplectic structure is not guaranteed.

3.3 Symplectic integrator for non-separable Hamiltonian system

Since (3.5) is a Hamiltonian dynamics, it’s natural to design a symplectic integrator to expect
satisfactory long time performance. The explicit symplectic integrator for separable Hamilonians
has been extensively studied, but this is not the case for non-separable Hamiltonians, for example,
H(a,b) defined in (3.6). When the imaginary part Z € RY*¥ is nonzero, the Hamiltonian H(a,b)
becomes non-sparable.

We employ the numerical integrator introduced in [4] by Molei Tao and introduce the augmented

Hamiltonian ~ w
H(a,b,a’,t') = H(a,b') + H(d',b) + §(|a —dP+b-b?) (3.10)



where w > 0 is a fixed constant. The Hamiltonian dynamics corresponding to H is

i = ByH(d',b) + w(b— )
b= —8,H(a,b') —wla—a) (3.11)
i = OyH(a,b') +w(b —b) '

b =—-8,H(a',b) —w(a—a’)

The numerical integrator can be constructed in a splitting scheme.

In a timestep, denote the
numerical integrators by
a a+ OpH(a',b)At a+ (Zd' + Rb)At
b b b
(baAjJ' : a = a = a
y W — 9. H(d ,b)At| |V + (—Ra + Tb)At
a a a
GAY b . b—0,H(a,b)At _ b+ (—Ra + IV )At
asb g/ a' + OpH (a,b)At a' + (Za + RV )AL
v v v
a a+ad a—ad
s (o] L [\py +RAD |,y
e 2 (a+d a—a
v bay ) T RAD Gy

where

| cos(2wA)I  sin(2wAt)I
R(At) = | _ sin(2wAt)I  cos(2wAt)T
and the overall 2nd-order integrator is given by
At/2 At/2 At/2 AL/2
QAt = QSG,Z{ o Qﬁa,% o Q‘)“A)t o d)a,% o (;Sa,z{ (3.12)
Finally we obtain the symplectic integrator in At time:

Algorithm 1: Symplectic integrator for the non-separable Hamiltonian H(a,b)
Input: coordinates ag, by € RV at initial, timestep At
Output: coordinates ai,b; € RV after one timestep
Obtain (ay,b;) from the numerical flow ¢4

a ao
bi| _ At |bo
~ 2 ao
~ bo

Since Tao’s integrator above is symplectic, we may construct high-order schemes using the Suzuki-
Yoshida method [5]. For example, the 4th-order integrator can be constructed from
4At _ 72'0At o ‘2rlAt o

P2 (3.13)



where
1 K

= T = —
2—k’ 2—k’

Note that 71 < 0 in the symplectic integrator, which is similar with the Richardson extrapolation.

ol

K=2

(3.14)

70

3.4 Implicit symplectic integrator

The explicit integrators above are easy to implement, but extremely small timesteps are required if
the ODE system is stiff. However, the high frequency parts do not contribute much to the overall
wavefunction, thus a highly stable numerical integrator is preferable.

We still consider the ODE system

dz
=B 1
i z (3.15)
where the coefficient matrix
7 R
B= [R I} (3.16)

is a infinitesimal symplectic matrix [6, 7] hence the ODE system has symplectic structure. The
2m~order implicit schemes can be given in the following procedure [7]:

Po(AtB)

ntl = ——F———= 3.17
Zn+1 Pm(_AtB)Zn ( )
where the polynomials P, are given by
Py(A) =
Pi(A) =2+ A
Py(N) = 12+ 6 + \?
In particular, the 2nd-order scheme is given by
(1 _ 1AfB) Tngl = (1 n 1AfB) 2 (3.18)
2 2
and the 4th-order scheme is given by
(1 YNy iAtZ’B?) - (I +iaBy iAﬂfﬂ) (3.19)
2 12 Fntl = 2 12 “n '

When R is symmetric and Z is anti-symmetric, all the eigenvalues of B are pure imaginary. In fact,
assume x,y € CV3 and X\ € C satisfying the eigenvalue problem

% 5L L) 620

Tr+Ry=x, —Rx+Zy=2X\y (3.21)

then

3We use z,y € CV rather than a,b € RY since a,b are real vectors.



hence

Mla? + [yf*) = 2" (Zx + Ry) + y* (—Rz + Ty)
=x"Ry — y*Rux
= 2Im(z"Ry)

which implies A must be a pure imaginary number. Therefore, the implicit schemes above are
unconditionally stable. Also, these implicit methods exactly preserve the mass and energy.

3.5 Tests for the numerical integrator

For the Hamiltonian 1
H(a,b) = §(aTRa + b Rb) + b Za

and the corresponding Hamiltonian dynamics

dial _[|Z R|]|a
dt |b|  |[-R I||b
we test the performance of various numerical integrators including the Runge-Kutta method, explicit

and implicit symplectic integrators. Fixing N = 6, the data of the symmetric R and the anti-
symmetric are given by

1.0753 1.4003 —1.5334 2.2712  0.8077 —0.4193
1.4003  0.6852  3.5153  4.1866 —0.3152 1.8879

R = —1.5334 3.5153 1.4295  0.4665  0.6027  0.4208 (3.22)
22712 41866  0.4665 —2.4150 0.4138  0.8207 '
0.8077 —0.3152 0.6027  0.4138  0.5877 —3.7316

—0.4193  1.8879 0.4208 0.8207 —3.7316  2.8768

0 1.0741  —0.2770 1.7047 ~0.9868 —1.2501
~1.0741 0 1.9742  1.56270.1974 —1.3700
7| 02770 19742 0 —0.8470 17666 0.0519 (3.23)
~1.7047 —1.5627  0.8470 0 1.3262  1.2331 '
0.9868 —0.1974 —1.7666  —1.3262 0 ~0.7015
1.2501  1.3700 —0.0519  —1.2331 0.7015 0
and the initial values are
—0.7697 —0.7095
3.5544 —0.7842
—3.0594 5.6772
W=1_56001|" "= 11663 (3.24)
~5.6895 0.7912
1.9528 6.3508

The numerical performance of the method will be measured in two ways:

1. Energy and mass conservation property.

2. 12 error at a given simulation time.

10



For T = 103, we record the mass and the energy along the simulation for various methods. The
timestep is fixed at At = 10~!. The constant w in the symplectic method is set at 1.
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Figure 1: Mass and energy conservation for the 4th-order Runge-Kutta method. Deviation of the
mass and energy is 15.11 and 22.96 respectively.
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Figure 2: Mass and energy conservation for the 4th-order Runge-Kutta method. Deviation of the
mass and energy is 0.64 and 1.39 respectively.
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Figure 3: Mass and energy conservation for the 4th-order implicit method. Deviation of the mass
and energy is 1.84 x 10~ and 3.17 x 10~ !! respectively.
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Next we compute the {?-error of different methods. At given time T = 103, the I? error of the

computed (a,b) is recorded. The reference solution is computed by the 4th-order implicit scheme
with At = 1074,
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