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1 Harris ergodic theorem

1.1 Inrtoduction

We introduce the Harris ergodic theorem for Markov chain, which is a standard probabilistic ap-
proach to study the ergodicity of Markov chains and Markov chains. The geometric ergodicity
depicts to how fast the distribution law of a Markov chain converges to its invariant distribution.
The theorem states that it only requires the minorization condition and the Lyapunov function to
prove the geometric ergodicity.

Harris ergodic theorem was firstly proposed by Harris [1], then developed by Meyn and Tweedie
[2] in their monograph Markov Chains and Stochastic Stability. Mattingly [3] employed the theorem
to prove the geometric ergodicity of the second-order Langevin dynamics, which later becomes the
standard approach to study the geometric ergodicity and the long time behavior of SDEs. So far,
there are three major approaches to study the geometric ergodicty of SDEs:

1. Hypocoercivity. The convergence rate of the dynamics is reflected on the spectral gap of the
generator. Readers may refer to Villani’s book [4] or the review paper [5]. We also mention
Lu’s recent work [6], which compares the explicit convergence rates of the overdamped and
underdamped Langevin dynamics.

2. Harris ergodic theorem. The minorization condition and the Lyapunov function imply
geometric ergodicity. Except for the original work [3], Mattingly also considers the interacting
particle system with singular potentials [7–9]. The Harris ergodic theorem can also be used
to study the geometric ergodicity of the stochastic gradient Langevin dynamics (SGLD) [10].

3. Reflection coupling. A novel and purely probabilistic approach to study the geometric
ergodicity. By designing a reflection coupling scheme between two duplicates, one is able to
derive the exponential convergence of the distribution laws. The reflection coupling is firstly
applied by Eberle [11] to study the overdamped Langevin dynamics. Eberle then applied the
reflection coupling to study the interacting particle system [12], the underdamped Langevin
dynamics [13], the Hamiltonian Monte Carlo [14, 15], the Andersen dynamics [16] and the
mean-field dynamics [17,18]. Compared to the Harris ergodic theorem, the reflection coupling
is able to obtain the explicit convergence rate independent on the number of particles, which
makes it possible to study the mean-field limits. We also mention that the reflection coupling
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can be used to study the ergodicity of the random batch method (RBM) [19] proposed by
Jin.

In this section we will state and prove the Harris ergodic theorem, showing that the minorization
condition and the Lyapunov function produce the geometric ergodicity. It is woth pointing that
the minorization condition is usually easy to verify for diffusion processes, thus for a specific SDE,
the only need is to find an appropriate Lyapunov function which satisfies the Lyapunov condition.
In the subsequent sections, we shall see that the Harris ergdoic theorem can be applied in both the
overdamped and underdamped Langevin dynamics, and can deal with singular potential functions.

1.2 Notations

Let {Xn}n>0 denote the underlying Markov chain on the state space X , and P (x, ·) is the transition
probability. Let P(X ) denote the set of all probability distributions on X , then for each x ∈ X ,
P (x, ·) ∈ P(X ). Let the greek letters µ, ν denote the probability distributions on X , and π denote
the invariant distribution specially. When X is a continuous state space, for example, Rd, the test
function space is Cb(X ) ⊂ L∞(X ), consisting of all continuous and bounded functions in X . Since
P (x, ·) is the transition probablity in one step, define P k(x, ·) to be the transition probability in k
steps. That is, when the initial value X0 = x, one has Xk ∼ P k(x, ·). Formally, P 0(x, ·) = δ(x) is
the Dirac distribution centered at x.

For µ ∈ P(X ) and f ∈ L∞(X ), define

µ(f) :=

∫
X
f(x)µ(dx). (1.1)

The transition probability P (x, ·) induces a Markov operator P : L∞(X )→ L∞(X ):

(Pf)(x) :=

∫
X
f(y)P (x, dy), ∀f ∈ L∞(X ). (1.2)

If f > 0, there is also Pf > 0. According to the notation of (1.1), we can also write P (x, f) :=
(Pf)(x). Note that P (x, ·) also induces a Markov operator P : P(X )→ P(X ):

(µP )(A) :=

∫
X
P (x,A)µ(dx), ∀µ ∈ P(X ). (1.3)

It is straightword to verify the formal associative law of multiplication

(µP )(f) = µ(Pf) =

∫
X×X

f(y)P (x, y)µ(dx). (1.4)

The Markov operator corresponding to the transition probability P k(x, ·) is P k.

1.3 Minorization condition and direct coupling

We first consider a simplifed version of the minorization condition and show that how the direct
coupling approach can be used to derive the geometric ergodicity. The content here is based on [20].
Let {Xn}n>0 be the Markov chain on the state space X and P (x, ·) be the transition probability.
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Assumption 1.1 (minorization) A Markov chain on X with transition probability P (x, ·) is said
to satisfy the minorization condition if there exists a ρ ∈ P(X ) and ε > 0 such that

inf
x∈X

P (x,A) > ερ(A) (1.5)

for all measurable sets A ⊂ X .

The minorization condition (1.5) is global in X , because the infimum is taken over x ∈ X . The
minorization condition (1.5) can be interpreted as, the transition probabilities have an overlap with
positive measure. The state space X can either be discrete or continuous.

Example Let X = [0, 2]. Define the transition probability by

P (x,A) = N (x, 1;A) + r(x)δx(A), (1.6)

where N (x, 1;A) = P(z ∈ A) with z ∼ N (x, 1), and r(x) = 1 − N (x, 1;X ). Then P (x, ·) satisfies
the global minorization condition (1.5) by choosing ε sufficiently small and ρ(A) = δx(A).

The global minorization condition (1.5) allows us to directly couple two Markov chains {Xn}n>0,
{Yn}n>0 to prove the geometric ergodicity.

Theorem 1.1 (ergodicity) If the transition probability P (x, ·) on X satisfies Assumption 1.1,
then for any µ, ν ∈ P(X ), there is

‖µPn − νPn‖TV 6 (1− ε)n, ∀n ∈ N, (1.7)

where ‖·‖TV is the total variation of a signed measure.

Proof Define the modified transition probability

P̃ (x,A) =
1

1− ε
(P (x,A)− ερ(A)) (1.8)

for all measurable sets A ⊂ X . The global minorization condition (1.5) ensures that P (x, ·) is a
nonnegative measure so that P̃ (x, ·) can be sampled. Define the direct coupling scheme for the
Markov chains {Xn}n>0, {Yn}n>0 as follows:

Algorithm 1: Direct coupling scheme

Input: Xn = x, Yn = y, where the values x, y ∈ X are fixed.
Output: random variables Xn+1, Yn+1.

if x = y then
Sample Xn+1 = Yn+1 ∼ P (x, ·).

else
Sample φ ∈ {0, 1} with P(φ = 0) = ε.

Sample x′ ∼ P̃ (x, ·), y′ ∼ P̃ (y, ·), z ∼ ρ(·) independently.

Define Xn+1 = φx′ + (1− φ)z, Yn+1 = φy′ + (1− φ)z.
end

According to the direct coupling, it is easy to check the distribution law of Xn+1 is exactly

(1− ε)P̃ (x,A) + ερ(A) = P (x,A), (1.9)
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hence {Xn}n>0 is still a Markov chain with transition probability P (x, ·). After each step, Xn+1, Yn+1

has probability ε to coincide, and then the two Markov chains become identical. Hence

P(Xn 6= Yn) 6 (1− ε)n, ∀n ∈ N. (1.10)

Suppose the initial values X0 ∼ µ and Y0 ∼ ν, then the distribution laws of Xn and Yn are µPn

and νPn respectively. Hence (1.10) implies

‖µPn − νPn‖TV 6 (1− ε)n, (1.11)

which completes the proof. �

In the special case when ν is exactly the invariant distribution π, one obtains

Corollary 1.1 (ergodicity) If the transition probability P (x, ·) on X satisfies Assumption 1.1
and has an invariant distribution π, then for any µ ∈ P(X ), there is

‖µPn − π‖TV 6 (1− ε)n, ∀n ∈ N. (1.12)

The result also shows that the invariant distribution is unique. The global minorization condition
(1.5), together with the existence of the invariant distribution, yields the geometric ergodicity.

1.4 Theorem of geometric ergodicity

The global minorization condition (1.5) is often too harsh for Markov chains, especially when the
state space X = Rd. For example, consider the numerical integrator of the SDE

dXt = −Xtdt+
√

2dBt (1.13)

in a time step τ , the transition probability in Rd is given by

P (x, ·) = N (e−τx, 1− e−2τ ). (1.14)

For such a simple transition probability, it is trivial to check

inf
x∈Rd

P (x,A) = 0 (1.15)

for Borel measurable sets A ∈ B(Rd). Hence it is impossible to build a global minorization condition.
In the following we always assume the state space is X = Rd. Instead of (1.1), consider

Assumption 1.2 (minorization) A Markov chain on Rd with the transition probability P (x, ·) is
said to satisfy the minorization condition with respect to the compact set C ∈ B(Rd) if there exists
a ρ ∈ P(Rd) and ε > 0 such that

inf
x∈C

P (x,A) > ερ(A) (1.16)

for all Borel measurable sets A ∈ B(Rd).

The minorization condition (1.16) is called local because it only requires the infimum over the
compact set C. For most diffusion processes including the overdamped and underdamped Langevin
dynamics, the local minorization condition (1.16) is easy to satisfy. Roughly speaking, P (x, ·) can
be viewed as approximately a Gaussian distribution with parameters continuously depending on
x, thus it is natural for the distribution family {P (x, ·)}x∈C to have a common lower bound, even
when the potential function is singular.
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Remark In the Mattingly’s original paper [3], the distribution ρ is required to satisfy ρ(C) = 1
and ρ(Cc) = 0. Since this condition is not necessary in the proof, we remove it here. Also in [8,9],
the minorization condition does not require ρ(C) = 1.

Other than the local minorization condition (1.16), we further require the Lyapunov condition to
prove the ergodicity.

Assumption 1.3 (Lyapunov) For the transition probability P (x, ·), there is a function W : Rd →
[1,+∞) with lim

x→∞
W (x) = +∞, and real numbers α ∈ (0, 1), β > 0 such that

Ez∼P (x,·)[W (z)] 6 αW (x) + β, ∀x ∈ Rd. (1.17)

The Lyapunov condition (1.17) implies that E[W (Xn+1)] 6 αE[W (Xn)] + β. When the compact
set C is sufficiently large, the Lyapunov condition ensures that C is approximately recurrent.

Now we state the Harris ergodic theorem, which exploits the local minorization condition (1.16)
and the Lyapunov condition (1.17) to prove the geometric ergodicity.

Theorem 1.2 (ergodicity) Let {Xn}n>0 be the Markov chain with transition probability P (x, ·).
Given γ ∈ (α

1
2 , 1), suppose P (x, ·) satisfies Assumption 1.2 and Assumption 1.3 with C given by

C :=

{
x ∈ Rd : W (x) 6

2β

γ − α

}
, (1.18)

then P (x, ·) possesses a unique invariant distribution π. Furthermore, there is r(γ) ∈ (0, 1) and
κ(γ) ∈ (0,+∞) such that for all measurable functions f : |f | 6W

|Ex[f(Xn)]− π(f)| 6 κrnW (x), ∀x ∈ Rd, (1.19)

where Ex denotes the expectation under the condition X0 = x.

Compared to Corollary 1.1, Theorem 1.2 measures the difference in distributions by the weak error,
rather than the total distance.

Before going into the details, we first briefly describe the underlying idea of the proof. Similar
to Theorem 1.1, we aim to define a coupling scheme between two duplicate Markov chains {Xn}n>0

and {Yn}n>0 with transition probability P (x, ·), then estimate the coinciding time. In general,
there are two mechanisms promoting the Markov chains {Xn}n>0 and {Yn}n>0 to coincide:

1. Recurrency of the compact set C. The Lyapunov condition (1.17) forces Xn, Yn to have
low probability far from the orgin. By choosing the compact C sufficiently large, we deduce
that C is recurrent and Xn, Yn have high probability stay inside C, creating conditions for
the local minorization condition (1.16) to play its role.

2. Direct coupling inside C. Similar to the direct coupling in the proof of Theorem 1.1, we
may define the direct coupling inside C. At least under the condition both Xn, Yn ∈ C, the
local minorization condition (1.16) allows Xn, Yn to have positive probability to coincide in
the next step. Since C is recurrent, we can always wait until Xn, Yn enter C.

The two mechanisms together make it possible to estimate the coinciding time ζ of the coupled
Markov chains {Xn}n>0 and {Yn}n>0.
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Remark Mattingly in [21] presents an alternative proof of the Harris ergodic theorem, which is
shorter than the proof in [3]. Still, we apply the original proof in [3] because the direct coupling is
easier for me to understand. Also, it is possible to give explicit estimate of the convergence rate r
once the minorization constant ε in (1.16) is known. Unfortunately, it is very difficult to determine
the constant ε for SDEs, hence the Harris ergodic theorem can hardly produce quantitative estimate
of the convergence rate for SDEs.

1.5 Proof of the theorem

Now we prove the Harris ergodic theorem (Theorem 1.2). The proof in this note is mainly based on
Mattingly [3], and more the techinal details can be found in Sections 12 & 15 in Meyn and Tweedie’s
book [2]. The proof below contains two key conclusions: existence of the invariant distribution and
estimation of the coinciding time.

1.5.1 Preliminary results

First rewrite the Lyapunov condition (1.17) in terms of the compact set C.

Lemma 1.1 (Lyapunov) Under Assumption 1.3, given constants γ ∈ (α, 1), s ∈ [1,+∞), define

c(s) :=
sβ

γ − α
, C(s) := {x ∈ Rd : W (x) 6 c(s)}, (1.20)

then
Ez∼P (x,·)[W (z)] 6 γW (x) + sβ1C(s)(x), ∀x ∈ Rd. (1.21)

In the following, under the Lyapunov condition 1.17, we shall choose the compact set C to be C(2).
Induction of the inequality (1.21) on n directly yields the following result.

Lemma 1.2 (Lyapunov) Let N be any stopping time and fix an n > 0. Under Assumption 1.3,
there exists a constant κ such that

E
[
W (Xn)1N>n

]
6 κγn

[
W (x0) + E

{N∧n∑
j=1

γ−j1C(Xj−1)

}]
6
κ[γnW (X0) + 1]

1− γ
. (1.22)

Utilizing the Lyapunov function, Lemma 1.2 presents a useful tool to characterize the stopping
times relating to the compact set C, because the exponential tails involve the indicative functions
of C. In particular, the first visit time τC can be estimated as follows.

Corollary 1.2 (visit time) Under Assumption 1.3, let τC := inf{n > 0 : xn ∈ C} be the next
visit time. There exists a constant κ such that for any n > 0 one has

P(τC > n) 6 κγn[W (X0) + 1] (1.23)

and

E
(

1

γ

)τC
6 κ[W (X0) + 1]. (1.24)
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Proof Since τC is the visit time, one has Xj 6∈ C for j = 1, · · · , τC − 1. Hence the exponential tail
in (1.22) becomes

n∧τC∑
j=1

γn−j1C(Xj−1) = γn−11C(X0) 6 γn−1. (1.25)

Also

E
[
W (Xn)1τC>n

]
>

sβ

γ − α
E[1τC>n] =

sβ

γ − α
P(τC > n), (1.26)

hence the first conclusion (1.23) holds. For the second conclusion (1.25), pick s ∈ [1, 2) and define

γ′ = α+
s

2
(γ − α) ∈ (α, γ). (1.27)

It is easy to check the compact set induced by s and γ′ is exactly the original C since

sβ

γ′ − α
=

2β

γ − α
. (1.28)

Therefore, the first conclusion (1.23) holds for any γ′ ∈ (α, γ). Hence

E
(

1

γ

)τC
=

∞∑
n=1

1

γn
P(τC = n)

6
∞∑
n=1

1

γn
P(τC > n− 1)

6 κ
∞∑
n=1

1

γn
(γ′)n[W (X0) + 1]

6 κ[W (X0) + 1]. �

The estimate of τC shows that the visit time τC approximately obeys the exponential distribution,
implying that the compact set C is recurrent in the Markov chain {Xn}n>0.

1.5.2 Existence of the invariant distribution

The existence of the invariant distribution can be proved only using the Lyapunov condition. Fix
the initial value x0 ∈ Rd and define the distribution µn ∈ P(Rd) by

µn =
1

n

n∑
k=1

P k(x0, ·). (1.29)

Recall that P k(x, ·) is the transition probability in k steps. Equivalently, µn can be interpreted as

µn(A) =
1

n

n∑
k=1

P(Xk ∈ A) (1.30)

for measurable sets A ∈ B(Rd). Roughly speaking, µn(A) characterizes the proportion of time that
the Markov chain {Xn}n>0 stays inside A, hence we expect the limit of µn to be the invariant
distribution w.r.t. the transition probability P (x, ·).
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We show that µn is a tight sequence of measures. The definition of the tightness for a family
of sequences can be found at [22]. In fact, we shall show that for any ε > 0, there exists a compact
set Cε ∈ B(Rd) such that

µn(Ccε) 6 ε, ∀n ∈ N. (1.31)

To prove (1.31), choose Cε to be the level set of the Lyapunov function W (x):

Cε :=
{
x ∈ Rd : W (x) 6 Lε

}
, (1.32)

where Lε > 0 is a constant which will determined later. Then using Chebyshev’s inequality,

µn(Ccε) =
1

n

n∑
k=1

P(Xk 6∈ Cε)

=
1

n

n∑
k=1

P(W (Xk) > Lε)

6
1

nLε

n∑
k=1

E[W (Xk)] 6
κ(W (x0) + 1)

Lε
.

Therefore, we may just choose

Lε =
κ(W (x0) + 1)

ε
(1.33)

to obtain the tightness (1.31).
By Prokhorov’s theorem [22], there exists a subsequene of µn which converges weakly to π ∈

P(Rd). Let us assume

µnk
w−−→ π, as k →∞. (1.34)

We show that π is the invariant distribution. For any test function f ∈ Cb(Rd), notice that

µn(Pf) = (µnP )(f) =
1

n

n∑
k=1

P k+1(x0, f) =
1

n

n+1∑
k=2

P k(x0, f),

hence we have the identity

µn(Pf)− µn(f) =
1

n

(
Pn+1(x0, f)− P (x0, f)

)
(1.35)

and thus

|µn(Pf)− µn(f)| 6 2

n
‖f‖L∞(Rd). (1.36)

Let n = nk and k →∞, we obtain

lim
k→∞

(
µnk(Pf)− µnk(f)

)
= 0. (1.37)

Since the weak limit of µnk is π, we obtain for any f ∈ Cb(Rd),

π(Pf) = π(f), (1.38)

which implies πP = π, and π is the invariant distribution.
In this part we only proved the existence of the invariant distribution. The Lyapunov condition

is not sufficient to guarantee the uniqueness.
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1.5.3 Direct coupling scheme inside C

We aim to define the coupling scheme between the Markov chains {Xn}n>0, {Yn}n>0, and estimate
the their coinciding time ζ. Similar to the proof of Theorem 1.1, define the modified transition
probability P̃ (x, ·) by

P̃ (x,A) =


P (x,A), if x ∈ Cc

1

1− ε
(P (x,A)− ερ(A)), if x ∈ C

(1.39)

for all measurable sets A ∈ B(Rd). The local minorization condition (1.16) ensures that P̃ (x, ·) is
a nonnegative measure for any x ∈ Rd.

Define the direct coupling scheme for the Markov chains {Xn}n>0, {Yn}n>0 as follows:

Algorithm 2: Direct coupling scheme

Input: Xn = x, Yn = y, where the values x, y ∈ X are fixed.
Output: random variables Xn+1, Yn+1.

if x = y then
Sample Xn+1 = Yn+1 ∼ P (x, ·).

else
Sample φ ∈ {0, 1} with P(φ = 0) = ε.

Sample x′ ∼ P̃ (x, ·), y′ ∼ P̃ (y, ·), z ∼ ρ(·) independently.

Define

{
Xn+1 = 1C(x)

(
φx′ + (1− φ)z

)
+ (1− 1C(x))x′

Yn+1 = 1C(y)
(
φy′ + (1− φ)z

)
+ (1− 1C(y))y′

end

It is clear that the transition probability of {Xn}n>0 is exactly

1C(x)((1− ε)P̃ (x,A) + ερ(A)) + (1− 1C(x))P̃ (x,A)

= 1C(x)P (x,A) + (1− 1C(x))P (x,A) = P (x,A).

We present some observations of the direct coupling scheme above:

1. If (x, y) 6∈ C × C, then Xn+1|Xn = x and Yn+1|Yn = y are mutually independent.

2. If (x, y) ∈ C × C, then Xn+1|Xn = x and Yn+1|Yn = y has ε probability to coincide. Once
Xn+1 = Yn+1 happens, {Xn}n>0 and {Yn}n>0 will be identical in the remaining time.

In this way, the direct coupling scheme manages to bring Xn and Yn together once they both enter
the compact set C. Recalling the Lyapunov condition (1.17), there are two different mechanisms
helping the coupled Markov chains {Xn}n>0 and {Yn}n>0 coincide:

1. Recurrency of the compact set C. The first visit time τC obeys the exponential distri-
bution approximately, hence {Xn}n>0, {Yn}n>0 shall enter C frequently.

2. Direct coupling inside C. Once both Xn, Yn stay inside C, there is ε probability for them
to coincide. If they do not coincide, wait for the next time they stay inside C.
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Now we are ready to prove the theorem. Suppose {Xn}n>0 and {Yn}n>0 are two Markov chains
evolved by the direct coupling scheme, and the initial values X0 = x0 and Y0 = y0 in Rd are given.
Define the coinciding time of the Markov chains by

ζ = inf
n>0
{(Xn, Yn) ∈ C × C, φn = 0}. (1.40)

Here, the subscript n in the random variable φ represents the direct coupling scheme at the n-th
step. For any test function f ∈ Cb(Rd) with |f | 6W , write f = f+− f−, where f+, f− > 0. Then

Ef+(Xn) = Ef+(Xn)1n>ζ + Ef+(Xn)1n<ζ . (1.41)

After the coinciding time ζ, the Markov chains Xn, Yn become idential, hence

Ef+(Xn)1n>ζ = Ef+(Yn)1n>ζ 6 Ef+(Yn). (1.42)

Combining (1.41)(1.42) gives

Ef+(Xn)− Ef+(Yn) 6 Ef+(Xn)1n<ζ 6 EW (Xn)1n<ζ , (1.43)

thus
|Ef+(Xn)− Ef+(Yn)| 6 max{EW (Xn)1n<ζ ,EW (Yn)1n<ζ}. (1.44)

Similarly
|Ef−(Xn)− Ef−(Yn)| 6 max{EW (Xn)1n<ζ ,EW (Yn)1n<ζ}. (1.45)

Hence
|Ef(Xn)− Ef(Yn)| 6 2 max{EW (Xn)1n<ζ ,EW (Yn)1n<ζ}. (1.46)

Our final task is to estimate the coinciding time ζ in the RHS of (1.46).

1.5.4 Estimation of the coinciding time ζ

Since W (x) > 1, it is necessary to prove

E1n<ζ = P(ζ > n) (1.47)

has exponential decay as n increases. Roughly speaking, we need to prove ζ obeys the exponential
distribution approximately. However, unlike the visit time τC , there are two different mechanisms
impelling Xn and Yn to coincide, hence the estimation of ξ will be more technical.

To complete the proof of the theorem, we need to prove

Lemma 1.3 (coinciding) Given γ ∈ (α
1
2 , 1), suppose {Xn}n>0, {Yn}n>0 are evolved by the direct

coupling scheme with initial values x0, y0. There exists r ∈ (0, 1) and a constant κ > 0 such that

max{EW (Xn)1n<ζ ,EW (Yn)1n<ζ} 6 κ[W (x0) +W (y0) + 1]rn. (1.48)

Instead of considering {Xn}n>0 and {Yn}n>0 separately, view {(Xn, Yn)}n>0 as a single Markov
chain in Rd × Rd. For convenience, let Fn be the filtration at the n-th step. Define the Lyapunov
function in Rd × Rd by

W ′(x, y) = W (x) +W (y), for x, y ∈ Rd, (1.49)
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then the Lyapunov condition holds

E[W ′(Xn+1, Yn+1)|Fn] 6 αE[W ′(Xn, Yn)] + 2β. (1.50)

Choosing s = 1 in Lemma 1.1, for any γ ∈ (α, 1) one has

E[W ′(Xn+1, Yn+1)|Fn] 6 γE[W ′(Xn, Yn)] + 2β1C′(Xn, Yn), (1.51)

where the compact set C ′ in Rd × Rd is given by

C ′ =

{
(x, y) : W ′(x, y) 6

2β

γ − α

}
. (1.52)

Clearly, C ′ ⊂ C × C. Now define the coinciding time in C ′ by

ζ ′ = inf
n>0
{(Xn, Yn) ∈ C ′, φn = 0}, (1.53)

then ζ 6 ζ ′. Hence

max{EW (Xn)1n<ζ ,EW (Yn)1n<ζ} 6 EW ′(Xn, Yn)1n<ζ′ . (1.54)

Now we only need to show that

EW ′(Xn, Yn)1n<ζ′ 6 κ[W (x0) +W (y0) + 1]rn. (1.55)

To estimate ζ ′ in the LHS of (1.55), consider the trajectory of {(Xn, Yn)}n>0 in the first n
steps. Since the compact set C ′ is recurrent, {(Xn, Yn)}n>0 shall enter C ′ frequently. To quantify
the frequency staying inside C ′, let τk be the time of the k-th visit to C ′. In other words, τk is the
k-th smallest element of the index set

IC′ = {k > 1 : (Xk, Yk) ∈ C ′}. (1.56)

For any real s, define τs = τdse. Fixing a ∈ (0, 1), the behavior of the trajectory of {(Xn, Yn)}n>0

in the first n steps can be classified into two categories:

• Typical behavior: τan < n. Equivalently,

#{1 6 k 6 n− 1 : (Xk, Yk) ∈ C ′} > dane. (1.57)

The trajectory has at least frequency a to stay inside C ′, and thus belongs to the typical case.

• Unusual behavior: τan > n. Equivalently,

#{1 6 k 6 n− 1 : (Xk, Yk) ∈ C ′} < dane. (1.58)

The trajectory has low frequency to stay inside C ′. Due to the Lyapunov condition (1.51),
this is the unusual case.

Write EW ′(Xn, Yn)1n<ζ′ = I1 + I2, corresponding to the typical and the unusual behavior,

I1 = EW ′(Xn, Yn)1n<ζ′1τan<n, I2 = EW ′(Xn, Yn)1n<ζ′1τan>n. (1.59)
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• Estimate I1: Let W̄ = sup
(x,y)∈C′

W ′(x, y), then

I1 6 EW ′(Xn, Yn)1τan<n1τan<ζ′

6 E
(

1τan<ζ′E
(
W ′(Xn, Yn)

∣∣τan < n,Fτan
))

P(τan < n).

View τan as the starting time and define X̃k = Xk−τan , Ỹk = Yk−τan , then by Lemma 1.2,

E
(
W ′(Xn, Yn)

∣∣τan < n,Fτan
)
6 sup
k>τan

E
(
W ′(Xk, Yk)

∣∣Fτan)
6 sup

(x,y)∈C′
sup
k>0

E
(
W ′(X̃k, Ỹk)

∣∣(X̃0, Ỹ0) = (x, y)
)

6 sup
(x,y)∈C′

κ[W ′(x, y) + 1]

6 κ(W̄ + 1).

Hence

I1 6 E
(

1τan<ζ′κ(W̄ + 1)
)
P(τan < n)

= κ(W̄ + 1)E1τan<ζ′1τan<n

6 κ(W̄ + 1)P(τan < ζ ′)

6 κ(W̄ + 1)(1− η)an.

The last inequality P(τan < ζ ′) holds because for each time (Xn, Yn) ∈ C ′, there is ε proba-
bility for them to coincide. Finally we obtain I1 6 κ(W̄ + 1)(1− η)an.

• Estimate I2: Let W0 = W ′(x0, y0). Write I2 as

I2 =

dane−1∑
k=0

EW ′(Xn, Yn)1n<ζ′1τk<n6τk+1
. (1.60)

Note that τk < n 6 τk+1 means there are exactly k visits to C ′ in the first n steps.

– For k = 0, by Lemma 1.2

EW ′(Xn, Yn)1n<ζ′1τ0<n6τ1 6 EW ′(Xn, Yn)1τ1>n 6 κγ
nW0. (1.61)

– For k > 1, by Lemma 1.2

EW ′(Xn, Yn)1n<ζ′1τk<n6τk+1

6 EW ′(Xn, Yn)1τk<ζ′1τk<n6τk+1

= E
(

1τk<ζ′E
(
W ′(Xn, Yn)1τk+1>n|Fτk , τk < n

)
|τk < n

)
P(τk < n)

6 E
(

1τk<n1τk<ζ′κγ
n−τk(W̄ + 1)

)
6 κ(W̄ + 1)

(
E1τk<ζ′Eγ−2τk

) 1
2

6 κ(W̄ + 1)(1− η)
k
2

(
Eγ−2τk

) 1
2
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Induction on k gives
Eγ−2τk 6 κk(W̄ + 1)k−1(W0 + 1). (1.62)

For R = max{1, κ(W̄ + 1)}, one has

EW ′(Xn, Yn)1n<ζ′1τk<n6τk+1
6 (1− η)

k
2Rk
√

2W0γ
n. (1.63)

Summation over k gives
I2 6 κ

√
2W0γ

nRan. (1.64)

By choosing a sufficiently small so that γRa < 1, we obtain the desired result.

1.6 Continuous-time dynamics

For continuous-time Markov process {x(t)}t>0, the geometric ergodicity is usually studied via the
embedded Markov chain Xn := x(nT ), where T > 0 is a fixed constant. For the overdamped and
the underdamped Langevin dynamics, a sufficient condition [7,8] for the minorization condition is:

For any x, y ∈ Rd and t, δ > 0, Pt(x,Bδ(y)) > 0.

In other words, Any Region is reachable at Any Time (ARAT). The ARAT condition in fact implies
that the local minorization condition (1.16) holds w.r.t. compact sets like

CR := {x ∈ Rd : W (x) 6 R} (1.65)

for sufficiently large R. The ARAT condition can be proved via the support theorems [23, 24].
As demonstrated in [7, 8], the verification of the minorization condition for the overdamped and
underdamped Langevin dynamics is routine, hence will not be a big issue in the application of the
Harris ergodic theorem.

The real difficulty in applicating the Harris theorem for SDEs is the Lyapunov condition. If the
SDE possesses the generator L, then the continuous-time Lyapunov condition should be

LW (x) 6 −cW (x) +M, ∀x ∈ Rd, (1.66)

where c,M > 0 are constants. This enables us to deduce

E[W (x(t))] 6 e−ctW (x(0)) +
1− e−ct

c
M, (1.67)

that is, the discrete Lyapunov condition (1.17) with α = e−ct < 1 and β = (1 − e−ct)M/c. For
the overdamped and the underdamped Langevin dynamics, finding a Lyapunov function satisfying
(1.66) is not a piece of cake. We shall see in next sections various options of the Lyapunov function.

Although for the SDEs verifying the minorization condition is much more easier than the Lya-
punov condition, we emphasize that this is not always the case. For some kinetic equations [25],
verifying the minorization condition could be a tough thing.

For the continuous-time dynamics, the Harris ergodic theorem shows the geometric ergodicity
for the embedded Markov chain Xn := x(nT ). With a simple argument, one may also obtain the
geometric ergodicity for all t > 0. Suppose {x(t)}t>0 is a Markov process with initial value x(0) = x.
The local minorization condition (1.5) holds for the transition probability PT (x, ·), where T > 0 is
a fixed time duration. Also, the continuous Lyapunov condition (1.66) is satisfied. For any t > 0,
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write t = nT + δ with δ ∈ [0, T ). Applying the Harris ergodic theorem with initial value x(δ), one
deduces that PT (x, ·) has a unique invariant distribution π ∈ P(Rd) and

|Ex[f(x(t))]− π(f)| 6 κrnEx[W (x(δ))], (1.68)

where the expectation Ex denotes the condition x(0) = x. Using the Lyapunov condition (1.66),

Ex[W (x(δ))] 6 e−cδW (x) +
1− e−cδ

c
M, (1.69)

hence
|Ex[f(x(t))]− π(f)| 6 κrnW (x) 6 κe−λtW (x), (1.70)

where λ > 0 satisfies e−λT = r < 1. We obtain the geometric ergodicity for {x(t)}t>0.

1.7 Summary

The Harris ergodic theorem (Theorem 1.2) provides a powerful tool to study the geometric ergodicity
of Markov chains and SDEs. The theorem only requires the local minorization condition (1.16) and
the Lyapunov condition (1.17) to prove the existence of the invariant distribution and the geometric
ergodicity. For diffusion processes including the overdamped and underdamed Langevin dynamics,
the verification of the minorization is standard, hence the main difficulty is to find an appropriate
Lyapunov function satisfying (1.17). Suppose L is the generator of the SDE, then our goal is to
find a Lyapunov function W (x) satisfying

LW (x) 6 −cW (x) +M, ∀x ∈ Rd.

Compared to the hypocoercivity and the reflection couplnig, the Harris ergodic theorem can
be applied in a wide class of stochastic models, but lacks the ability to quantify the convergence
rate. In fact, it is even difficult to determine the explicit bounds for the minorization constant [8].
Nevertheless, there have been some pioneering attempts to combine the Lyapunov condition and
the reflection coupling to find the explicit convergence rate [13,17].

2 Ergodicity of SDEs

We study the geometric ergodicity of various SDEs, using the Harris ergodic theorem. Since the
minorization condition is easy to check for most diffusion processes, hence this section mainly
involves the construction of Lyapunov functions.

2.1 Overdamped Langevin dynamics

The overdamped Langevin dynamics is the simplest kind of SDEs. It is of the first order and the
diffusion is nondegenerate. Consider {xt}t>0 in Rd evolved by the SDE

dxt = b(xt)dt+

√
2

β
dBt, t > 0, (2.1)
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where b(·) : Rd → Rd is the drift force, β > 0 is the inverse temperature, and Bt is the standard
Brwonian motion in Rd. It is clear that the generator of (2.1) is

Lu(x) = b(x) · ∇u(x) +
1

β
∆u(x), u ∈ C2(Rd). (2.2)

Due to the simple structure of the SDE, there are various choices of the Lyapunov function W (x).

1. If the drift force b(x) satisfies the dissipation condition

− b(x) · x > c|x|2 −M, ∀x ∈ Rd, (2.3)

we can simply choose W (x) = 1
2 |x|

2. This is because

LW (x) = b(x) · ∇W (x) +
1

β
∆W (x)

= b(x) · x+
1

β

6 −c|x|2 +M +
1

β

= −2c ·W (x) +M +
1

β
,

hence the Lyapunov condition holds true. In this case, the drift force b(x) need not be the
gradient. However, b(x) should be regular force otherwise (2.3) fails.

2. If b(x) = −∇U(x) for some potential function U(x), and U(x) satisfies

lim
x:U(x)→+∞

|∇U(q)| = +∞, lim
x:U(x)→+∞

∇2U(x)

|∇U(x)|2
= 0, (2.4)

we can choose W (x) = ebU(x) for some b ∈ (0, β).

An equivalent condition for (2.4) is, if a sequence {xk}k>1 satisfies U(xk)→ +∞, then

|∇U(xk)| → +∞, |∇2U(xk)|
|∇U(xk)|2

= 0. (2.5)

To verify this condition, we only need to show LW (x) 6 −cW (x) for sufficiently large U(x).
For W (x) = ebU(x), it is easy to see

∇W (x) = W (x)
(
b∇U(x)

)
, ∆W (x) = W (x)

(
b2|∇U(x)|2 + b∆U(x)

)
. (2.6)

hence

LW (x) = −∇U(x) · ∇W (x) +
1

β
∆W (x)

=
b

β
W (x)

(
− (β − b)|∇U(x)|2 + ∆U(x)

)
.

A sufficient condition for W (x) 6 −cW (x) is

−(β − b)|∇U(x)|2 + ∆U(x) 6 −c, for sufficiently large U(x). (2.7)

This is true under the condition (2.4). Note that the choice W (x) = ebU(x) is valid even for
singular potentials. In particular, (2.4) holds for the Coulomb potential when d > 3.
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2.2 Stochastic gradient Langevin dynamics

The Harris ergodic theorem is naturally suitable for the stochastic gradient Langevin dynamics
(SGLD). Let τ > 0 be the time step and tn := nτ . Let {bi(x)}Ni=1 be a family of drift forces and
the SGLD in the time interval [tn, tn+1) is given by

dxt = bi(xt)dt+
√

2dBt, t ∈ [tn, tn+1), (2.8)

where i ∈ {1, · · · , N} is a batch index randomly generated at time tn. Choose the Lyapunov
function W (x) = 1

2 |x|
2, then we can verify the embedded Markov chain Xn := xnτ satisfies

Ei[W (Xn+1)|Xn] 6 α ·W (Xn) + β, (2.9)

where i denotes the index i is given. Taking the expectation over i, we obtain

E[W (Xn+1)|Xn] 6 α ·W (Xn) + β, (2.10)

establishing the Lyapunov condition. Similar discussion can also be found in [10].

2.3 Second-order Langevin dynamics

Consider the second-order Langevin dynamics in Rd × Rd given by
dqt = ptdt

dpt = −γptdt−∇U(qt)dt+

√
2γ

β
dBt

(2.11)

where U(·) : Rd → R is the potential function, and the corresponding Hamiltonian is

H(q, p) =
1

2
|p|2 + U(q). (2.12)

Assume U(q) satisfies the dissipation condition: there exists c0,M > 0 such that

∇U(q) · q > c0U(q) + c0|q|2 −M. (2.13)

The invariant distribution of (2.11) is π(q, p) ∝ exp(−βH(q, p)). The generator L is given by

L = p · ∇q −∇qU(q) · ∇p − γp · ∇p + γβ−1∆p. (2.14)

Now we aim to construct the Lyapunov function. Since H(q, p) is conserved under the Hamiltonian
dynamics, it is natural to include H(q, p) in the expression of the Lyapunov function. By simple
calculation, for T = β−1 we have

LH(q, p) = −γ|p|2 + γT. (2.15)

Here, |p|2 term is not enough to bound the Hamiltonian H(q, p). A simple trick is to add the p · q
cross term into H(q, p). Note that

L(p · q) = |p|2 −∇U(q) · q − γp · q (2.16)
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Using the assumption we obtain

L(p · q) 6 |p|2 − c0
2
U(q)− c0

2
|q|2 + γpq + C

6 C(|p|2 + 1)− c0
2
U(q)

Now choose c sufficiently small and define the Lyapunov function

W (q, p) = H(q, p) + cp · q (2.17)

then for any real number k > 0,

LW + kW = LH + cL(p · q) + k
(
U(q) +

1

2
|p|2
)

6 −γ|p|2 + γT + c

(
C(|p|2 + 1)− c1

2
U(q)

)
+ k
(
U(q) +

1

2
|p|2
)

6 −(γ − cC − k)|p|2 +
(
k − cc0

2

)
U(q) + C.

If we choose k = cc0/2, this reduces to

LW +
cc0
2
W 6 −

(
γ − cC − cc0

2

)
|p|2 + C. (2.18)

Therefore, by choosing c sufficient small we are able to obtain

LW (q, p) 6 −cc0
2
W (q, p) + C, (2.19)

which is the desired result. A detailed discussion of the second-order Langevin dynamics can be
seen in [8]. Also note the the dissipation condition (2.13) only holds for regular potentials U(q).
The design of the Lyapunov function for singular potentials will be more technical.

2.4 Singular potentials

2.4.1 Methodology: exponential form

We follow [7] to construct the Lyapunov function W (q, p) in the case of singular potentials. The
underlying dynamics is still the second-order Langevin dyanmics (2.11), but the potential U(q)
might be singular. Assume the potential satisfies the admissible assumption

Assumption 2.1 (admissible) A function U : Rd → [0,+∞] is an admissible potential if satisfies
the normalzation condition and the following regularity and growth conditions:

• U ∈ C∞(O) in its domian O;

• O is an open and path-connected set. Moreover, for each R > 0, the level set

{q ∈ Rd : U(q) < R}

is open and precompact.
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• For any sequence {qk} ⊂ O with U(qk)→∞, we have the following asymptotic properties:

∇U(qk)→∞, and
|∇2U(qk)|
|∇U(qk)|2

→ 0

The LJ potential and the Coulomb potential with d > 3 are admissible, but the Coulomb potential
with d = 2 is not admissible. Note that [8] constructs a Lyapunov function solving the case d = 2,
but the approach is almost the same with [7], hence we only consider the construction in [7] here.

Recall that our goal is to construct a Lyapunov function W (q, p) so that

LW 6 −cW, when W > R, (2.20)

where R > 0 is a constant. Consider the Lyapunov function in the exponential form:

W = ebV , where V is a perturbation of H, (2.21)

then
LW = bW [LV + bγT |∇pV |2] (2.22)

Hence we only need to show

LV + bγT |∇pV |2 6 −C, when H > R. (2.23)

2.4.2 Construction of V0: intuition

To build an ituition how to construct V , we first consider the simplified problem: finding the
Lypanov function V0 such that

LV0 6 −C, when H > R. (2.24)

Consider V0 to be a perturbation of H, i.e., V0 = H + ψ. Recall that

LH = −γp2 + γT. (2.25)

When |p| is large, LH is negative and (2.24) automatically holds true. In this case, we expect
ψ(q, p) to be close to 0. When |p| is small, under the condition H > R, the potential U(q) is large.
In this case, we expect Lψ to produce negative terms, which requires to choose ψ(q, p) carefully.
Recall that the genertor L is given by

L = p · ∇q −∇qU(q) · ∇p − γp · ∇p + γβ−1∆p, (2.26)

when U(q) is very large, the operator

A = −∇qU(q) · ∇p (2.27)

dominates L. Hence we choose ψ(q, p) according to

Aψ(q, p) = −κ, when U > R, (2.28)

whose solution is

ψ(q, p) = κ
p · ∇U(q)

|∇U(q)|2
(2.29)
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Clearly, when U(q) is large, |∇U(q)| is also large, which implies ψ(q, p) is a small perturbation.
For the case when U(q) is small, we use a trunction scheme. For R2 > R1 > 0, introduce

α ∈ C∞([0,+∞) satisfying

α(x) =

{
1, x > R2

0, x 6 R1

(2.30)

and |α′| 6 2/(R2 −R1). Finally, ψ(q, p) is constructed as

ψ(q, p) =

κα(U(q))
p · ∇U(q)

|∇U(q)|2
, if U(q) > R1/2

0, otherwise

(2.31)

Since ψ(q, p) is close to 0 if U(q) < R1 or U(q) is sufficiently large, ψ(q, p) can be viewed as a small
perturbation of the zero function.

2.4.3 Construction of V : rigorous proof

We show that under appropriate choice of the constants R1, R2, κ, the Lyapunov condition holds.

W (q, p) = exp(bH(q, p) + ψ(q, p)), (2.32)

then by direct calculation,

LW (q, p)

W (q, p)
= −bγ(1− bT )|p|2 − κα(U(q)) + p · ∇qψ(q, p) +

(2b− 1)ψ(q, p) +
κ2γTα2(U(q))

|∇U(q)|2
+ γbTNd (2.33)

Our goal is to prove the RHS of (2.33) is negative when H(q, p) is large enough. Now we analyze
the terms in (2.33) one by one:

• −bγ(1− bT )|p|2: coming from the −γ|p|2 term in LH = −γ|p|2 + γT .

• −κα(U(q)): constant varying in [−κ, 0]. Close to −κ when U(q) is large enough.

• p · ∇qψ(q, p): Since ψ(q, p) is a small perturbation, this term should be small. In fact,

p · ∇qψ(q, p) 6 κα(U(q))|∇G(q)||p|2 + κ|α′(U(q))||p|2, (2.34)

where G(q) = ∇U/|∇U |2.

• ψ(q, p): This term is small and bounded by

|ψ(q, p)| 6 κ

2C
|p|2 +

κC

2

α2(U(q))

|∇U(q)|2
(2.35)

We aim to choose C sufficiently large so that |ψ(q, p)| produces small coefficient on |p|2.

Concluding the estimates above, we obtain

LW (q, p)

W (q, p)
6 −

{
bγ(1− bT )− κα(U(q))|∇G(q)| − κα′(U(q))− |2bT − 1|γκ

2C

}
|p|2

− κα(U(q)) +

(
κC

2
|2bT − 1|γ + κ2γT

)
α2(U(q))|G(q)|2 + γbTNd (2.36)

Now we choose the parameters κ,C,R1, R2 sequentially:
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1. Pick κ > 3γNd, so that κα(U(q)) can be larger than γbTNd.

2. Pick C >
4|2bT − 1|κ
b(1− bT )

, so that the coefficient of |p|2 can be negative.

3. Choose R1 sufficiently large so that

|∇G(q)| 6 bγ(1− bT )

8κ
,

(
κC

2
|2bT − 1|γ + κ2γT

)
|G(q)|2 6 γbTNd, when U(q) > R1/2

With the definition of U(q), we have for any q ∈ Rd,

α(U(q))|∇G(q)| 6 bγ(1− bT )

8κ
, α(U(q))

(
κC

2
|2bT − 1|γ + κ2γT

)
|G(q)|2 6 γbTNd,

4. Pick R2 > R1 such that

|α′(U(q))| 6 bγ(1− bT )

8κ
.

Using these estimates, we obtain the global estimate

LW (q, p)

W (q, p)
6 −bγ(1− bT )

2
|p|2 − κα(U(q)) + 2γbTNd (2.37)

for any p, q. Therefore, as long as

|p|2 > 6γNd

bγ(1− bT )
or U(q) > R2

one is able to obtain
LW (q, p)

W (q, p)
6 −γNd, (2.38)

which is the desired result.
Finally, note that the Lyapunov function for the Coulomb potential with d = 2 suggested in [8]

is given by
W (q, p) = exp(bH(q, p) + ψ(q, p)), (2.39)

where

ψ(q, p) = − b

N

∑
16i 6=j6N

(pi − pj) · (qi − qj)
|qi − qj |

+ cp · q. (2.40)
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