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This note is dedicated to the long-time behavior of diffusion processes via PDE approaches.

1 Theory of hypocoercivity

1.1 From Langevin dynamics to L = A*A+ B

Let H be a separable Hilbert space. The theory of hypocoercivity |1] is to study diffusion processes

with generator in the form
L=A"A+ B, (1.1)

where A, B are two unbounded operator in H and B is anti-symmetric, i.e., B = —B*. For such an
operator, its kernel IC (a subset of H) is characterized by I = ker(A) Nker(B). Also, an important
property of the operator L is the semigroup e~ is a contraction, i.e., |e**|| < 1, Vt > 0.

Usually, the Hilbert space H is chosen to be L?(jis), Where o is the equilirbium of a given
diffusion process. Also, A = (4;,---, A,,) and B are usually in the form

Ajh:aj-Vh, Bh:th

Here, h is usually the probability density with respect to peo. Let po be the probability density of
oo With respect to the Lebesgue measure. If we compactly write Ah = oV h, where ¢ is an m X n
matrix, then we have

1. B=—-B* <= V- (bp) =0;

2. A*g=—-V - (0%g9) — (Vpoo,0"g).

Therefore, for a given diffusion process, we may try to derive the operator L = A*A + B in the
following steps:

1. Find the unique invariant distribution .

2. Rewrite the Fokker—Planck equation in terms of the probability density with respect to fiso-

3. Determine the operaror A according to the second-order part.

4. Determine the operator B according to the remaining part.

Now we present two examples of diffusion processes and derive the operator L in the A* A+ B form.



1.1.1 Overdamped Langevin dynamics

The overdampled Langevin dynamics in R™ is given by
dX; = V20(X,)dW; + £(X,)dt, (1.2)

where £ € C1(R™;R") is the drift function, and o € C?(R™;R"*™) is the diffusion coefficient, and

Wy is the standard Wiener process in R™. The corresponding Fokker—Planck equation is
dp .
EZV-(DVp—ép), D =c"0. (1.3)

Suppose the process admits a unique invariant distribution pieo(dz) = peo(x)dz (determined by &
and o), then the probability density h(t,z) = p(t, z)/poo satisfies the diffusion equation

oh
o=V (DVh) - (g — 9DV logpoo) - Vh. (1.4)

Hence the operator L in L?(ju) is given by L = A*A + B, where the operators A, B are given by

A=0V, B= (§ — 2DV logpoo) - V. (1.5)

When the diffusion matrix D is non-degenerate, the kernel space KC consists of constant functions.

1.1.2 TUnderdamped Langevin dynamics
The underdamped Langevin dynamics in R” is given by

{dXt =V

1.6
dV; = =V, — VV(X,) + V2dW;, (+0)

where V € C1(R";R) is the potential function. When V(x) satisifies the confinement condition,
the unique invariant distribution peo is given by the density function

_ 1 v[?
Poo(T,v) = 7 eXP ( —V(x) - 7) (1.7)

The Fokker—Planck equation is

dp

a—i—v-vmp—VV(x)-va:Ayp—va-(vf). (1.8)
The probability density h(t,z,v) = p(t,x,v)/ps then satisfies

oh

S+ Veh=VV(@) - Voh = Ah—v-V,h. (1.9)

Hence the operator L in L?(ji.) is given by L = A*A + B, where the operators A, B are given by

‘A:Vv, B=v-V,—VV(z)-V,.

(1.10)

The kernel space K consists of constant functions.



1.2 Hypocoercivity theorem
1.2.1 Basic theorem

We present the basic theorem of the hypocoercivity. It is based on the assumption that both A and
A* commute with [A, B].

Theorem 1.1 Consider the linear operator L = A*A + B where B is anti-symmetric. Let C =
[A, B] be the commutator. If there exist constant «, 3 such that

1. A and A* commute with C;
2. [A, A*] is a-bounded to I and A;
3. [B,C] is B-bounded to A, A%,C and AC.

Then there is a scalar product ((-,-)) on H'/K such that
(h, Lh)) = K (| AR]* + |[ChI?) (1.11)
for some K > 0 which only depends on « and (.
Here, the norm in the Hilbert space H! is defined by
IR[I3 = IAlI* + | AR|* + [ ChIP?, (1.12)
which is the counterpart of the Sobolev space.
Proof In the proof, the scalar product ((-,-)) is explicitly chosen as
(h,g9) = (h,g) + a(Ah, Ag) + bR(Ah,Cg) + bR(Ag, Ch) + ¢(Ch,Cg). (1.13)
In particular, when h = g,
(h, h) = [|B]|* + al|AR||* + 26R(Ah, Ch) + c|Ch]|. (1.14)

Note that the commuation between A, C' allows the norm defined above makes sense. This norm is
equivalent to '. The rate of change for the ((-,-)) norm of e *Fh is

ld

5% (e7"h, e Eh) = R(e "Fh,e *ELR)). (1.15)

By direct calculation, we have the estimate
R((h, Lh)) > [|AR]*

+a<Aﬁm2—nAhnnArAﬂAhn—nAh|mmw>
-%(ChHQ—HAhHfbhH—2LAWMHCAhH—HC%MMA,AﬂAhI>

+(CMW—wmmmw)



As a consequence, we have
R((h, Lh)) = (X, mX)pa, (1.16)

where X is the vector (|[Ahl|,||A2A]|,||Ch]|, ||CAh]|), and the 4 x 4 matrix m is given by
1—(aax+b8) —(aa+0b8) —(a+ba+bs+cB) —b8

_ 0 a —(ba + ¢f) —2b
m= 0 0 b—cp —cB (1.17)
0 0 0 c

With appropriate choices of the parameters a, b, ¢, one may ensure that the symmetric part of m is
positive definite, and hence the theorem holds true. O

We present a simple example that the conditions of the basic theorem hold true. Consider the
underdamped Langevin dynamics, where the operators A, B are given by

A=V,, B=v-V,-VV(z) -V,. (1.18)
Recall that the density of the invariant distribution is
_1 [v]?
Poo(T,0) = - ©XP ( —V(x)— 7) (1.19)

Then the adjoint operator A* satisfies A*h = —V,(poch), and we have
ABh =V, (U -Veh —VV(x)- Vvh)
=V,h+v-V2,h—VV(x)-V2h,
BAh=v -V (V,h) —VV(z) V,(V,h)
=v-V2,h—VV(x)  VZh.
Therefore, the commutator C' is explicitly given by C = AB — BA = V,,, which commutes with A
and A*. Therefore, the basic theorem can be applied to the underdamped Langevin dynamics.
In this case, the kernel space K consists of constant functions, and norm in the Hilbert space

H! is defined by
1Bl5 = 12112 + Vbl + [ Voh]?. (1.20)

Therefore, H' is the usual H' space corresponding to the probability measure fi.,, while H itself
is the usual L? space. Then we have the hypocoercivity

e | /e < Ce™ (1.21)

for some constants C, A > 0.

1.2.2 Generalized theorem

The generalized theorem of hypocoercivity allows a sequence of commutators.

Theorem 1.2 Let H be a Hilbert space, and A : H — H"™ and B : H — H be unbounded operators
with B* = —B. Let L = A*A+ B and K := ker L. Assume there exists N. € N and operators
{Cj}jy:c{fl and {Rj}jy:ca'l such that

Co=A4, |[C;,B]=2Z;11Cj41+ Rj11,  Cn.41=0. (1.22)
And for k € {0,1,--- ,N.},



1. [A, Cy] is bounded relatively to {C;}%_, and {C}A}?;& ;
2. [Cy, A*] is bounded relatively to I and {C;}5_;
3. Ry is bounded relatively to {Cj}f;é and {CjA};?;é;
4. There are positive constants \j, A; such that \jI < Z; < A;.
Then there is a scalar product ((-,-)) on H!, which defines a norm equivalent to the H' norm

N,

IAll3 = 1217+ IIC;R)? (1.23)
j=0
such that
Nc
R(h,Lh) > K> _|IC;h|?,  VheH' /K. (1.24)
j=0

We note that each C; consists of the high-order terms of A and B. After some commutator
operations, the high-order terms vanish in Cn,_41.
The proof is accomplished by defining the norm

N.
(h.h) = [l +>° <ak|C’kh||2 + 2Rby, (Ch, Ck+1h>) (1.25)
k=0

and choosing the constants a, and by carefully.

1.2.3 Entropic convergence theorem

The entropic convergence theorem requires the operators A, B to be exactly the first-order differ-
ential operators.

Theorem 1.3 Let E € C*(RN) such that e=F is rapidly decreasing and p(X) = e FXdX is a
probability measure on RY. Let (Aj)1gj<m and B be first-order derivation operators with smooth
coefficients. Denote A5 and B* by their respective adjoints in L?(u), and assume B = —B*. Denote
A by the collection (Ay,---, An) and define

L=A"A+B=) AjA;+B. (1.26)
j=1
Assume there exists N € N., derivation operators Cy,C1, -+ ,Cn.41, Ri1, -+, Rn.+1 and vector-
valued functions Z1,--- , Zn,+1 such that
Co = A, [Cj, B] = Zj+1Cj+1 -+ Rj+1, (O <J < NC), CNC—H =0, (127)

and
1. [A, C%] is pointwise bounded to A;
2. [Ck, A*] is pointwise bounded to I,{C;}o<i<k;

3. Ry, is pointwise bounded to {C;}o<ich—1;



4. There are postive constants Aj, A; such that \j < Z; < Aj;
5. [A, Ck]* is pointwise bounded to I, A.

Then there exists a quadratic form S in RN such that the functional

E(h) :/hloghdu—&—/wdu (1.28)
satisfies
%E(e_tf“h) < —Q/Mdu. (1.29)

In the proof, the functional £ is chosen to be the form

Nc
h) =/fu+kz=% (ak/kauIQ+2bk/f<0ku,ck+1u>), (1.30)

where ay, by, are the parameters to be determined.

2 Generalized I' calculus for the long-time behavior

The generalized T' calculus was developed in [2] to study the long-time behavior of a wide class of
stochastic processes. It extends the classical Bakry—Emery theory and applies to the degenerate
diffusion processes.

2.1 Generalized I' calculus

Consider a stochastic process in R? with generator L. For any differential real value functional ®,
define the I" operator by

Ta(f) = ( o(f) = de(f).Lf), (2.1)

where the test function is smooth in R% and d®(f) is understood as

s—>0 S

(2.2)

The generalized I" function recovers the classical carré du champ operator in the following way:
o If ®(f) = |f|?, then o (f) =T'(f) = 2(L(f?) — 2fLf) is the classical I" operator.
By direct calculation, for ®(f) = |f|?> we have

i M 89— 1P
m -——-
S

s—0

de(f).g =2fg. (2.3)

Introduce the bilinear form corresponding to the I' operator by

O(f,9) = L (L(fg) - fLg ~ gLf). (24)

then the I operator is simply written as I'(f) = I'(f, f).



o If (f) =T(f), then T'p(f) =Ta(f) = $(LT(f) — 2T'(f, L f)) is the classical 'y operator.
By direct calculation, for ®(f) = T'(f) we have

I(f +s9) —T(f)

d®(f).g = lim .
= lim (L(fg) + gL(QQ) —(fLg+9Lf) - sng)
=20(f,9)-
Hence ' (f) = Ta(f) = 3(LT(f) — 2T'(f, Lf)). It is also convenient to extend I's to
Ca(f,9) = 5(EL(f,9) ~ T(f. Lg) ~ (g, Lf)). (25)

o If ®(f) = a(f) for some scalar function a, then I's(f) = 1 (L(a(f)) — d'(f)Lf).
By direct calculation,
d®(f).g = d'(f)g.

Hence T'o(f) = £(L(a(f)) — a/(f)Lf). If L contains the derivation operator b(z) - V,, then
it vanishes in the expression of I's(f). If L contains the diffusion operator A and the scalar
function a(r) = rlogr, then it is easy to check Lo (f) = |V f|?/f.

The T' function is important because it represents the rate of change for the observable functions.
Suppose the stochastic process has the semigroup (P;):>0, and define the observable function by

¥(s) = Ps@(Pi—sf)(x), (2.6)

then ¢'(s) = 2P,T's P, f(x). Therefore, for a given function ®, the curvature condition naturally
reveals the long-time behavior of the semigroup (P;):>0.

Lemma 2.1 Given the differentiable real value functional ®. The curvature condition 'y > p®
for some p € R, is equivalent to the

O(Pf) e ?'Dy(f), Vf=0. (2.7)

Note the operator P; is positivity preserving. Also, the I' operator is linear in the function ®, and
® should be nonlinear for I' to make sense.

We say a scalar function a € C* is admissible if a is strictly convex and 1/a” is concave. For an
admissible function, introduce the a-entropy by

Ent},(f) = v(a(f)) —a(vf) = 0. (2.8)

The a-entropy is equivalent when a is added by a constant. The most common choice of a is
a(r) = rlogr with a”’(r) = 1/r, and the resulting a-entropy is the classical relative entropy. The
following lemma estimates I'¢ for a specific form of ®.

Lemma 2.2 If L is a diffusion operator, C is a linear operator, a : RT — R is an admissible
function such that ®(f) = a”(f)|Cf|?, then

Lo (f) 2 d"(f)CLIL,Cf. (2.9)



The proof only used the fact that @ = 1/a” is concave.
The following lemma makes use of the curvature condition to prove the exponential convergence.

Lemma 2.3 Suppose the semigroup (Py)i>o is ergodic with an invariant distribution fi,

0< [oun-a ( / fdu> <o [ouni w0 (2.10)

and Ty, > p®s — T, for some B > 0, then the function
wit) = B( [ e - ( / fdu)> + [ ea(pip)an (2.11)

satisfies W (t) < e" ™5 W (0). In particular,
[ apinian < (4 e [ an(p)d (2.12)

2.2 Underdamped Langevin dynamics

For the underdamped Langevin dynamics, the infinitesimal generator L (not the one used in the
hypocoercivity) is given by

Lf(z,y) = [y.vm - <y + VwU) Y, + Ay} f(z,y). (2.13)

The invariant distribution of the dynamics is

2
p(dzdy) = %exp ( —Ulz) - %) (2.14)

Choose the functions ®(f) = flog f and

(Vo = V) fI? + [V fI?

Po(f) = (2.15)
f
then 'y, (f) = |V, f|?/f. For the choices of ®1, P, we have
e 0< /‘I)l(f)dﬂ—qn(/fdu) <0/‘I>2(f)du-
In fact, this is equivalent to the log-Sobolev inequality
\v4 2
Ent,(f) < c/J{'du, (2.16)

which holds true due to the classical Bakry—Emery theory.

o I'g, > pPy — Bl's,.



In Lemma 2.2, choose @2, = |(V, — V) f|>/f and @9, = |V, f|?, we have

Py, > Vv = Vo)l (Vyf Ve = VUVf, (2.17)

Vyf ) (vy — vac)f
f .

Ty, > (2.18)

Hence

p‘(vy - vac)f|2 — Q|vyf|2
f

Fq;.2 = Fq;.za + Fq;.% > = p(I)Q(f) - (p + q)r¢‘1' (219)

The two conditions above imply that the result of Lemma 2.3 holds true. That is, there is expo-

nential convergence in the sense of 5. More precisely,

Ent, (P,f) <e_)‘t<2/ |Vf2du+Entu(f)>. (2.20)

The generalized curvature condition I's, > p®s — 8I's, plays an important role in the proof.
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