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This note is dedicated to the long-time behavior of diffusion processes via PDE approaches.

1 Theory of hypocoercivity

1.1 From Langevin dynamics to L = A∗A + B

Let H be a separable Hilbert space. The theory of hypocoercivity [1] is to study diffusion processes
with generator in the form

L = A∗A+B, (1.1)

where A,B are two unbounded operator in H and B is anti-symmetric, i.e., B = −B∗. For such an
operator, its kernel K (a subset of H) is characterized by K = ker(A)∩ ker(B). Also, an important
property of the operator L is the semigroup e−tL is a contraction, i.e., ‖e−tL‖ 6 1, ∀t > 0.

Usually, the Hilbert space H is chosen to be L2(µ∞), where µ∞ is the equilirbium of a given
diffusion process. Also, A = (A1, · · · , Am) and B are usually in the form

Ajh = aj · ∇h, Bh = b · ∇h.

Here, h is usually the probability density with respect to µ∞. Let ρ∞ be the probability density of
µ∞ with respect to the Lebesgue measure. If we compactly write Ah = σ∇h, where σ is an m× n
matrix, then we have

1. B = −B∗ ⇐⇒ ∇ · (bρ) = 0;

2. A∗g = −∇ · (σ∗g)− 〈∇ρ∞, σ∗g〉.

Therefore, for a given diffusion process, we may try to derive the operator L = A∗A+B in the
following steps:

1. Find the unique invariant distribution µ∞.

2. Rewrite the Fokker–Planck equation in terms of the probability density with respect to µ∞.

3. Determine the operaror A according to the second-order part.

4. Determine the operator B according to the remaining part.

Now we present two examples of diffusion processes and derive the operator L in the A∗A+B form.
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1.1.1 Overdamped Langevin dynamics

The overdampled Langevin dynamics in Rn is given by

dXt =
√

2σ(Xt)dWt + ξ(Xt)dt, (1.2)

where ξ ∈ C1(Rn;Rn) is the drift function, and σ ∈ C2(Rn;Rn×m) is the diffusion coefficient, and
Wt is the standard Wiener process in Rm. The corresponding Fokker–Planck equation is

∂ρ

∂t
= ∇ · (D∇ρ− ξρ), D = σ∗σ. (1.3)

Suppose the process admits a unique invariant distribution µ∞(dx) = ρ∞(x)dx (determined by ξ
and σ), then the probability density h(t, x) = ρ(t, x)/ρ∞ satisfies the diffusion equation

∂h

∂t
= ∇ · (D∇h)−

(
ξ − 2D∇ log ρ∞

)
· ∇h. (1.4)

Hence the operator L in L2(µ∞) is given by L = A∗A+B, where the operators A,B are given by

A = σ∇, B =
(
ξ − 2D∇ log ρ∞

)
· ∇. (1.5)

When the diffusion matrix D is non-degenerate, the kernel space K consists of constant functions.

1.1.2 Underdamped Langevin dynamics

The underdamped Langevin dynamics in Rn is given by{
dXt = Vt,

dVt = −Vt −∇V (Xt) +
√

2dWt,
(1.6)

where V ∈ C1(Rn;R) is the potential function. When V (x) satisifies the confinement condition,
the unique invariant distribution µ∞ is given by the density function

ρ∞(x, v) =
1

Z
exp

(
− V (x)− |v|

2

2

)
. (1.7)

The Fokker–Planck equation is

∂ρ

∂t
+ v · ∇xρ−∇V (x) · ∇vρ = ∆vρ+∇v · (vf). (1.8)

The probability density h(t, x, v) = ρ(t, x, v)/ρ∞ then satisfies

∂h

∂t
+ v · ∇xh−∇V (x) · ∇vh = ∆vh− v · ∇vh. (1.9)

Hence the operator L in L2(µ∞) is given by L = A∗A+B, where the operators A,B are given by

A = ∇v, B = v · ∇x −∇V (x) · ∇v. (1.10)

The kernel space K consists of constant functions.
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1.2 Hypocoercivity theorem

1.2.1 Basic theorem

We present the basic theorem of the hypocoercivity. It is based on the assumption that both A and
A∗ commute with [A,B].

Theorem 1.1 Consider the linear operator L = A∗A + B where B is anti-symmetric. Let C =
[A,B] be the commutator. If there exist constant α, β such that

1. A and A∗ commute with C;

2. [A,A∗] is α-bounded to I and A;

3. [B,C] is β-bounded to A,A2, C and AC.

Then there is a scalar product ((·, ·)) on H1/K such that

((h, Lh)) > K(‖Ah‖2 + ‖Ch‖2) (1.11)

for some K > 0 which only depends on α and β.

Here, the norm in the Hilbert space H1 is defined by

‖h‖2H1 = ‖h‖2 + ‖Ah‖2 + ‖Ch‖2, (1.12)

which is the counterpart of the Sobolev space.

Proof In the proof, the scalar product ((·, ·)) is explicitly chosen as

((h, g)) = 〈h, g〉+ a〈Ah,Ag〉+ b<〈Ah,Cg〉+ b<〈Ag,Ch〉+ c〈Ch,Cg〉. (1.13)

In particular, when h = g,

((h, h)) = ‖h‖2 + a‖Ah‖2 + 2b<〈Ah,Ch〉+ c‖Ch‖2. (1.14)

Note that the commuation between A,C allows the norm defined above makes sense. This norm is
equivalent to H1. The rate of change for the ((·, ·)) norm of e−tLh is

−1

2

d

dt
((e−tLh, e−tLh)) = <((e−tLh, e−tLLh)). (1.15)

By direct calculation, we have the estimate

<((h, Lh)) > ‖Ah‖2

+ a

(
‖A2h‖2 − ‖Ah‖‖[A,A∗]Ah‖ − ‖Ah‖‖Ch‖

)
+

(
‖Ch‖2 − ‖Ah‖‖R2h‖ − 2‖A2h‖‖CAh‖ − ‖Ch‖‖[A,A∗]Ah‖

)
+

(
‖CAh‖2 − ‖Ch‖‖R2h‖

)
.
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As a consequence, we have
<((h, Lh)) > 〈X,mX〉R4 , (1.16)

where X is the vector (‖Ah‖, ‖A2h‖, ‖Ch‖, ‖CAh‖), and the 4× 4 matrix m is given by

m =


1− (aα+ bβ) −(aα+ bβ) −(a+ bα+ bβ + cβ) −bβ

0 a −(bα+ cβ) −2b
0 0 b− cβ −cβ
0 0 0 c

 . (1.17)

With appropriate choices of the parameters a, b, c, one may ensure that the symmetric part of m is
positive definite, and hence the theorem holds true. �

We present a simple example that the conditions of the basic theorem hold true. Consider the
underdamped Langevin dynamics, where the operators A,B are given by

A = ∇v, B = v · ∇x −∇V (x) · ∇v. (1.18)

Recall that the density of the invariant distribution is

ρ∞(x, v) =
1

Z
exp

(
− V (x)− |v|

2

2

)
. (1.19)

Then the adjoint operator A∗ satisfies A∗h = −∇v(ρ∞h), and we have

ABh = ∇v
(
v · ∇xh−∇V (x) · ∇vh

)
= ∇xh+ v · ∇2

xhh−∇V (x) · ∇2
vh,

BAh = v · ∇x(∇vh)−∇V (x) · ∇v(∇vh)

= v · ∇2
xhh−∇V (x) · ∇2

vh.

Therefore, the commutator C is explicitly given by C = AB −BA = ∇x, which commutes with A
and A∗. Therefore, the basic theorem can be applied to the underdamped Langevin dynamics.

In this case, the kernel space K consists of constant functions, and norm in the Hilbert space
H1 is defined by

‖h‖2H1 = ‖h‖2 + ‖∇xh‖2 + ‖∇vh‖2. (1.20)

Therefore, H1 is the usual H1 space corresponding to the probability measure µ∞, while H itself
is the usual L2 space. Then we have the hypocoercivity

‖e−tL‖H1/K 6 Ce
−λt (1.21)

for some constants C, λ > 0.

1.2.2 Generalized theorem

The generalized theorem of hypocoercivity allows a sequence of commutators.

Theorem 1.2 Let H be a Hilbert space, and A : H → Hn and B : H → H be unbounded operators
with B∗ = −B. Let L = A∗A + B and K := kerL. Assume there exists Nc ∈ N and operators
{Cj}Nc+1

j=0 and {Rj}Nc+1
j=0 such that

C0 = A, [Cj , B] = Zj+1Cj+1 +Rj+1, CNc+1 = 0. (1.22)

And for k ∈ {0, 1, · · · , Nc},
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1. [A,Ck] is bounded relatively to {Cj}kj=0 and {CjA}k−1
j=0 ;

2. [Ck, A
∗] is bounded relatively to I and {Cj}kj=0;

3. Rk is bounded relatively to {Cj}k−1
j=0 and {CjA}k−1

j=0 ;

4. There are positive constants λj ,Λj such that λjI 6 Zj 6 Λj.

Then there is a scalar product ((·, ·)) on H1, which defines a norm equivalent to the H1 norm

‖h‖2H1 = ‖h‖2 +

Nc∑
j=0

‖Cjh‖2 (1.23)

such that

<((h, Lh)) > K
Nc∑
j=0

‖Cjh‖2, ∀h ∈ H1/K. (1.24)

We note that each Cj consists of the high-order terms of A and B. After some commutator
operations, the high-order terms vanish in CNc+1.

The proof is accomplished by defining the norm

((h, h)) = ‖h‖2 +

Nc∑
k=0

(
ak‖Ckh‖2 + 2<bk〈Ckh,Ck+1h〉

)
(1.25)

and choosing the constants ak and bk carefully.

1.2.3 Entropic convergence theorem

The entropic convergence theorem requires the operators A,B to be exactly the first-order differ-
ential operators.

Theorem 1.3 Let E ∈ C2(RN ) such that e−E is rapidly decreasing and µ(X) = e−E(X)dX is a
probability measure on RN . Let (Aj)16j6m and B be first-order derivation operators with smooth
coefficients. Denote A∗j and B∗ by their respective adjoints in L2(µ), and assume B = −B∗. Denote
A by the collection (A1, · · · , Am) and define

L = A∗A+B =

m∑
j=1

A∗jAj +B. (1.26)

Assume there exists N ∈ Nc, derivation operators C0, C1, · · · , CNc+1, R1, · · · , RNc+1 and vector-
valued functions Z1, · · · , ZNc+1 such that

C0 = A, [Cj , B] = Zj+1Cj+1 +Rj+1, (0 6 j 6 Nc), CNc+1 = 0, (1.27)

and

1. [A,Ck] is pointwise bounded to A;

2. [Ck, A
∗] is pointwise bounded to I, {Cj}06j6k;

3. Rk is pointwise bounded to {Cj}06j6k−1;
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4. There are postive constants λj ,Λj such that λj 6 Zj 6 Λj;

5. [A,Ck]∗ is pointwise bounded to I, A.

Then there exists a quadratic form S in RN such that the functional

E(h) =

∫
h log hdµ+

∫
〈S∇h,∇h〉

h
dµ (1.28)

satisfies
d

dt
E(e−tLh) 6 −α

∫
〈S∇h,∇h〉

h
dµ. (1.29)

In the proof, the functional E is chosen to be the form

E(h) =

∫
fu+

Nc∑
k=0

(
ak

∫
f |Cku|2 + 2bk

∫
f〈Cku,Ck+1u〉

)
, (1.30)

where ak, bk are the parameters to be determined.

2 Generalized Γ calculus for the long-time behavior

The generalized Γ calculus was developed in [2] to study the long-time behavior of a wide class of
stochastic processes. It extends the classical Bakry–Emery theory and applies to the degenerate
diffusion processes.

2.1 Generalized Γ calculus

Consider a stochastic process in Rd with generator L. For any differential real value functional Φ,
define the Γ operator by

ΓΦ(f) =
1

2
(LΦ(f)− dΦ(f).Lf), (2.1)

where the test function is smooth in Rd and dΦ(f) is understood as

dΦ(f).g = lim
s→0

Φ(f + sg)− Φ(f)

s
. (2.2)

The generalized Γ function recovers the classical carré du champ operator in the following way:

• If Φ(f) = |f |2, then ΓΦ(f) = Γ(f) = 1
2 (L(f2)− 2fLf) is the classical Γ operator.

By direct calculation, for Φ(f) = |f |2 we have

dΦ(f).g = lim
s→0

|f + sg|2 − |f |2

s
= 2fg. (2.3)

Introduce the bilinear form corresponding to the Γ operator by

Γ(f, g) =
1

2
(L(fg)− fLg − gLf), (2.4)

then the Γ operator is simply written as Γ(f) = Γ(f, f).
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• If Φ(f) = Γ(f), then ΓΦ(f) = Γ2(f) = 1
2 (LΓ(f)− 2Γ(f, Lf)) is the classical Γ2 operator.

By direct calculation, for Φ(f) = Γ(f) we have

dΦ(f).g = lim
s→0

Γ(f + sg)− Γ(f)

s

= lim
s→0

(
L(fg) +

s

2
L(g2)− (fLg + gLf)− sgLg

)
= 2Γ(f, g).

Hence ΓΦ(f) = Γ2(f) = 1
2 (LΓ(f)− 2Γ(f, Lf)). It is also convenient to extend Γ2 to

Γ2(f, g) =
1

2
(LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)). (2.5)

• If Φ(f) = a(f) for some scalar function a, then ΓΦ(f) = 1
2

(
L(a(f))− a′(f)Lf

)
.

By direct calculation,

dΦ(f).g = a′(f)g.

Hence ΓΦ(f) = 1
2

(
L(a(f)) − a′(f)Lf

)
. If L contains the derivation operator b(x) · ∇x, then

it vanishes in the expression of ΓΦ(f). If L contains the diffusion operator ∆ and the scalar
function a(r) = r log r, then it is easy to check ΓΦ(f) = |∇f |2/f .

The Γ function is important because it represents the rate of change for the observable functions.
Suppose the stochastic process has the semigroup (Pt)t>0, and define the observable function by

ψ(s) = PsΦ(Pt−sf)(x), (2.6)

then ψ′(s) = 2PsΓΦPt−sf(x). Therefore, for a given function Φ, the curvature condition naturally
reveals the long-time behavior of the semigroup (Pt)t>0.

Lemma 2.1 Given the differentiable real value functional Φ. The curvature condition ΓΦ > ρΦ
for some ρ ∈ R, is equivalent to the

Φ(Ptf) 6 e−2ρtΦt(f), ∀f > 0. (2.7)

Note the operator Pt is positivity preserving. Also, the Γ operator is linear in the function Φ, and
Φ should be nonlinear for Γ to make sense.

We say a scalar function a ∈ C4 is admissible if a is strictly convex and 1/a′′ is concave. For an
admissible function, introduce the a-entropy by

Entaν(f) = ν(a(f))− a(νf) > 0. (2.8)

The a-entropy is equivalent when a is added by a constant. The most common choice of a is
a(r) = r log r with a′′(r) = 1/r, and the resulting a-entropy is the classical relative entropy. The
following lemma estimates ΓΦ for a specific form of Φ.

Lemma 2.2 If L is a diffusion operator, C is a linear operator, a : R+ → R is an admissible
function such that Φ(f) = a′′(f)|Cf |2, then

ΓΦ(f) > a′′(f)Cf.[L,C]f. (2.9)
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The proof only used the fact that α = 1/a′′ is concave.
The following lemma makes use of the curvature condition to prove the exponential convergence.

Lemma 2.3 Suppose the semigroup (Pt)t>0 is ergodic with an invariant distribution µ,

0 6
∫

Φ1(f)dµ− Φ1

(∫
fdµ

)
6 c

∫
Φ2(f)dµ, ∀f > 0, (2.10)

and ΓΦ2
> ρΦ2 − βΓΦ1

for some β > 0, then the function

W (t) = β

(∫
Φ1(Ptf)dµ− Φ1

(∫
fdµ

))
+

∫
Φ2(Ptf)dµ (2.11)

satisfies W (t) 6 e−
2ρt

1+βcW (0). In particular,∫
Φ2(Ptf)dµ 6 (1 + βc)e−

2ρt
1+βc

∫
Φ2(f)dµ. (2.12)

2.2 Underdamped Langevin dynamics

For the underdamped Langevin dynamics, the infinitesimal generator L (not the one used in the
hypocoercivity) is given by

Lf(x, y) =

[
y.∇x −

(
y +∇xU

)
.∇y + ∆y

]
f(x, y). (2.13)

The invariant distribution of the dynamics is

µ(dxdy) =
1

Z
exp

(
− U(x)− |y|

2

2

)
. (2.14)

Choose the functions Φ1(f) = f log f and

Φ2(f) =
|(∇x −∇y)f |2 + |∇yf |2

f
, (2.15)

then ΓΦ1
(f) = |∇yf |2/f . For the choices of Φ1,Φ2, we have

• 0 6
∫

Φ1(f)dµ− Φ1

(∫
fdµ

)
6 c

∫
Φ2(f)dµ.

In fact, this is equivalent to the log-Sobolev inequality

Entµ(f) 6 c
∫
|∇f |2

f
dµ, (2.16)

which holds true due to the classical Bakry–Emery theory.

• ΓΦ2
> ρΦ2 − βΓΦ1

.
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In Lemma 2.2, choose Φ2a = |(∇x −∇y)f |2/f and Φ2b = |∇yf |2, we have

ΓΦ2a
>

(∇y −∇x)f · (∇y −∇x −∇2
xU∇y)f

f
, (2.17)

ΓΦ2b
>
∇yf · (∇y −∇x)f

f
. (2.18)

Hence

ΓΦ2
= ΓΦ2a

+ ΓΦ2b
>
p|(∇y −∇x)f |2 − q|∇yf |2

f
= pΦ2(f)− (p+ q)ΓΦ1

. (2.19)

The two conditions above imply that the result of Lemma 2.3 holds true. That is, there is expo-
nential convergence in the sense of Φ2. More precisely,

Entµ(Ptf) 6 e−λt
(

3

β

∫
|∇f |2

f
dµ+ Entµ(f)

)
. (2.20)

The generalized curvature condition ΓΦ2 > ρΦ2 − βΓΦ1 plays an important role in the proof.
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