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1 Introduction

The study of the mean-field limits of an interacting particle system has always been an appealing
topic in both theoretical physics and maths. In the historical viewpoint, Kac [1] first developed the
idea of chaos to describe the ensemble behavior of the particle systems. It is natural to ask, how is
the chaos of a particle system preserved in the time evolution? The study of such property is referred
to as the propagation of chaos, which also indicates the mean-field dynamics of a given particle
system. Later in 1960s and 1990s, McKean [2] and Snitzmann (3] studied the chaos of diffusion
processes and kinetic systems, and their results build up the foundation of the propagation of
chaos. Their work also promoted the theoretical understanding of the McKean-Vlasov SDE and
the Boltzmann equation. So far, the propagation of chaos for particle systems in classical mechanics
has formed a mature theory.

The study of the propagation of chaos for particle systems in quantum mechanics encounters
additional challenges. The paper [7] considers the following (scaled) N-body quantum system
evolved by the Schrodinger equation
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The parameter € > 0 is called the semiclassical parameter, represneting the quantum nature of
the system. As & — 0, the quantum system is expected to become a classical system, which
can be verified by the Wigner transform. The quantum system is an important model in
computational physics and chemistry, and also encounters huge difficulties in practical simulation:

1. If one direct solves the wavefunction W, n, complexity grows exponentially with the number
of particles V;

2. The solution ¥, x has high frequency oscillation in both space and time scales, which makes
it extremely difficult to characterize and store the solution.



Due to the importance of the model and the major computational difficulties, it is necessary to
study the mean-field limit of the N-body Schrédinger equation .

The paper [7] studied the mean-field limit of as N — oo in the semiclassical regime, i.e.,
the parameter ¢ is sufficiently small. Formally, the mean-field limit of is given by the following
nonlinear Schrodinger equation

10y = ;A%w + %d)g(t, x) /Rd V(z — 2)|te(z, 2)|?dz, (1.2)
¢5|t:0 ="

Now our goal is to quantify the difference between the solutions of the two Schrodinger equations
(1.1)(1.2), and we expect that the results remain valid in the semiclassical limit € — 0. The paper [7]
used several tricks establish the propagation of chaos result for (L.1))(1.2)):

1. The density matrix is used as the main variable instead of the wavefunction. This allows us
to couple the two dynamics (1.1))(|1.2)) in the joint von Neumann equation.

2. The initial data are chosen as the Topliz operators. For this choice, as the semiclassical
parameter ¢ — 0, the intial data shall shrink to probability distribution of classical particles
in the phase space. In this way, the initial data are physically meaningful even for small e.

3. A special Wasserstein-2 distance W5 (M KS in [7]) is used to quantify the difference between
the density matrices. Although W3 is not a metric, its definition imitates the Wasserstein-2
distance in the phase space R? x R?,

The remaining part of the paper mainly consists of computing the time derivatives of the quantities
, and the inequalities involved in the quantum and classical cases are similar.

In my personal opinion, the most elegant part of the paper is the introduction of the quantum
Wasserstein-2 distance Ws, which imitates the traditional definition of W, and maintains the quan-
tum nature of the particle system. Although W5(p, p) > 2de due to the uncertainty principle, W5
does match Ws in the semiclassical limit € — 0. The proof of the quatum version of the propaga-
tion of chaos is quite nostalgic, especially the estimation of the consistency error , which also
appeared in McKean’s proof [2].

Nevertheless, their results provide convincing evidence of the mean-field limit of the quantum
interacting particle system. In particular, their results remain valid in the semiclassical limit ¢ — 0,
which corresponds to the propagation of chaos in classical mechanics. Also, their results encourage
us to design approximate numerical methods to solve the N-body Schrodinger equation rather
than the nonlinear Schrédinger equation itself.

This note is organized as follows. Section 2 proves the propagation of chaos in classical mechan-
ics. Section 3 defines the quantum Wasserstein-2 distance W5 and the associated quantities and
proves the propagation of chaos in quantum mechanics.

2 Propagation of chaos in classical mechanics

Consider the interacting particle system {(zx, &)}, in (R? x RY)N evolved by the Hamiltonian
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then the Liouville equation corresponding to this system is
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Fy|,_y = F§' € P(R? x RH)Y),
where Fy(t,x1, - ,zn,&1,- - ,&n) is the probability density of the particle system at time ¢, and
Fi is the initial distribution. A typical example of the initial distribution is given by
FN = ()% e P(R? x R)Y), (2.3)

where f € P(R? x RY) is a probability distribution in the phase space. That is, the initial states
of the N particles are sampled from p indepedently. As a consequence, all the N particles in (2.2))
are indistinguishable.

Remark 2.1 There is no external potential in the Hamiltonian (2.1)), hence the N particles are
driven by pairwise interactions. Since there is no diffusion in the Liouville equation ([2.2]), the initial
distribution £ € P(R? x R%) should not be a Dirac distribution.

As the number of particles N tends to infinity, if we focus on the dynamics of a single particle
(denoted by (Z,¢) € R? x R?) in (2.1)), then the mean-field limit of the Liouville equation (2.2)) is
the following Vlasov equation:

Wf+&-Vaf — (VV(:f -9 f(t,7, ﬁ)dﬂdﬁ> Vef =0,

Re xR
f|t:0 = fi" ¢ P(RY x RY),

(2.4)

where f(t,, &) is the probability density of the particle at time ¢, and fi" is the initial distribution
and coincides with f* in (2.2)). For convenience, we also write

Vit = [ Vo= aieqaai (25)

then it is easy to verify Vz(V * f) = (VV) x f. Formally, the Vlasov equation corresponds to the
Hamiltonian dynamics of the following Hamiltonian

(@, = JJ&F + (V + (@) (206)

where the potential function depends on the probability distribution f € P(R? x R?) explicitly.

Now we aim to quantify the difference between the Liouville solution Fy and the Vlasov solution
f. Note that Fly is a probability density in (R? x R*)*~ and f is a probability density in R? x R,
hence the difference between Fy and f cannot be measured directly. The answer is to fix an integer
n € N and project Fiy and f onto (R? x R%)™. Since Fy is symmetric in the N particles (see
Definition 3.5 in [4], Part I), we may consider its n-particle marginal F§ € P((R? x R%)") and
compare it with the tensor product f&V € P((R4 x R%)").

o F € P((R? x RY)™): n-marginal of Liouville solution Fyy € P((R? x R%)N);



o fON ¢ P((RY x RY)™): n-product of Vlasov solution f € P(R? x R?).
Finally, the difference between F and f®V is measured by the normalized Wasserstein distance.

Definition 2.1 For probability distributions p,v € P,((R? x RH)™), define
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WEP(p,v) ;= inf /(R " (n Z |z —y;|P + 1€ — nj|p>7(dxd§dydn), (2.7)
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where II(u,v) is the set of transport plans between p,v. That is, when (x,&,y,n) ~ v, we have
(2,8) ~ p and (y,n) ~ v.

Remark 2.2 The metric of the normalized Wasserstein distance has been widely used to quantify
the propagation of chaos [4]. The scaling factor 1/n ensures that W, (u,v) is O(1) for arbitrary
large n. The normalized Wasserstein distance can also be used to quantify the geometric ergodicity
of the interacting particle system [56]. The definition in also involves the momentum terms,
so that can be applied in the phase space (R x R%)".

The difference between the Liouville equation (2.2]) and the Vlasov equation (2.4) can be measured
in the following theorem.

Theorem 2.1 AssumeV € CZ(RY) is even. Let Fiy be the solution to the N-body Liouville equation
[2.2) with initial data Fir = (f™)®N, and f be the solution to the Viasov equation (2.4)) with initial
data ™ € Pp(R? x R?) for some p > 1. Then for each integer 1 < n < N,

[p/2] +1 efet —1
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(2.8)

where K, := max(1,p — 1) and A, := 2K,(1 + 2P~ 'Lip(VV)P).

To prove Theorem (2.1]), one has to define the coupling between the two dynamics (2.2))(2.4). We
duplicate the Vlasov equation (2.4]) by N times, where the k-th equation is denoted by f(t, Zk,&k).
In this case the total Hamiltonian of the N-particle Vlasov equation (2.4) can be written as
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H (21, 2N, &0, 6n) =) (2|§k2 +(V f)(xk)). (2.9)
k=1
In the following, we use the shorthand & = (21, -+ ,2n), £ = ({1, ,&n) and & = (T1,- -+ ,ZN),
&= (&, ,&n) to denote the particle systems in (2.2))(2.4). Then the probability density
7TN(t7.’I},€,i,é) :WN(t7x17"' aINagla"' 7£N7j17"' wi'Nagla"' agN) (210)

in (R? x R?)" describes the coupling of the Liouville equation ([2.2)) and the Vlasov equation ([2.4).
e The initial distribution 7% € P((R? x R4)Y) is given by

N

wit = [ £ @ &)0(n — T)3(6x — &). (2.11)
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That is, the initial values should satisfy z;, = Z) and &, = &.



e 7 evolves with time according to the following joint Liouville equation
Oy + {Hy(@.€) + HY (&.€), v }on =0, (2.12)
where {-, -}on is the Poisson bracket in (R% x R?)V

Remark 2.3 An alternative way to describe the coupling is to write in the SDE forms
and use the synchronous coupling, i.e., the initial values of the SDEs are synchronized. The benefit
of using the joint Liouville equation rather than the SDEs is that motivates the coupling
in the quantum mechanics case.

Under the joint Liouville equation (2.12)), introduce the following normalized LP distance by
N
1 7. |P e P +d €
=5 > ok — zpl” + |6, — &P) 7 (t, dedédzdé). (2.13)
k=1
Then by direct (but tedious) calculations, one obtains

dD} 2p—l[C o 1 X S
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dry (t), (2.14)

where the dependence on f(t,z,€) is maintained. Note that in the probability distribution my,
each (ZTg, &) ~ f(t,Z,£), hence we can derive the estimate

P 2lp/2] +2
/‘ (VV x f - vav e~ 25)| < Tmingrany CIVV =), (2.15)
and so that we obtain the Gronwall type inequality
dD} [p/2] +
dtN <A,DR + 2P K, =L N a2 ||VV||poo (2.16)

Under the synchronous coupling, D% (0) = 0 and thus Theorem holds true.

3 Propagation of chaos in quantum mechanics

The major contribution of [7] is to extend the propagation of chaos to the semiclassical Schrodinger
equation of interacting particle systems. Let $ = L?(R?) be the Hilber space of the single particle
wavefunction, and Hy = HEN ~ L2((R?)N) be its product space. The probability distribution of
the interacting particle system can be interpreted as the density matrix. Let D($)n) be the set of
operators A on $Hy such that
A=A tr(A) =1, (3.1)
then the elements A € D(Hy) corresponds to the density matrix of a quantum state in L*((R?)™).
In terms of the density matrix, we can write the N-body Schrédinger equation as the following
von Neumann equation.

N
10ipe, N = {—;Z k“!‘i Z thpez\r}

k=1 k =1 (32)
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where Vi, is a linear operator on )y defined by
(Vijo)(x1, -+, an) = V(og —z)p(21,- -+ ,2n), VY € Hn, (3.3)

and [, -] denotes the commutator of operators. As the number of particles N — oo, the von
Neumann equation ([3.2]) formally becomes the Hatree equation

. € 1
i0ipe = [ iA + 2€Vp57f76]’

_an
pE’t:() - pe I

(3.4)

where p. € D($) is the density matrix of a single particle, and V,,_ is an operator on § defined by

Voo () :=(V(x —))p. = /Rd Vi(z —y)(ylpe(t)ly)dy. (3.5)
To measure the difference between the von Neumann equation (3.2 and the Hatree equation (3.4]),
we have to clarify the following notions:

1. How do we define the coupling between two elements of D(x)?
2. How do we define the projection of elements of D(Hn)?

3. How do we define the Wasserstein distance in D($y)?

4. How do we choose the initial data of ?

Answers to these questions are inspired from the classical mechanics case.

Definition 3.1 Suppose p1,p2 € D(Hn) are two density matrices, then R € D(Han) is called a
coupling of p1, p2 if for any lineae operator A on Hn, we have

{ tra,y ((A ® IfJN)R) =tryy (Ap1)7

tre, ((IS’_)N ® A)R) =trg, (Ap2)_ (36)

The set of all couplings of pi1, pa is denoted by Q(p1, p2), which is a subset of D(Han).

Definition [3.I] makes sense because both sides compute the quantum average corresponding to the
observable A. Also we note that the tensor product p; ® ps € D(Han) is an element of Q(p1, p2),
which corresponds to the independent coupling of two probability distributions.

Definition 3.2 For a density matriz py € D(Hn), its n-marginal pB, € D($y,) is defined by
try,, (Apy) = troy (A® Iy, )pN) (3.7)
for any linear operator A on $,,.

The definition of the Wasserstein distance in the quantum mechanics is tricky work. The notions of
positions and momenta are presented as operators, thus one should replace the statistical averages
by the corresponding quantum averages.



Definition 3.3 Let ¢(z1,72) be a wavefunction in $H; ~ L*(R? x R?), define the position and
momentum difference operators Q, P on $s by

{(QW(%;M) = (21 — 22)¢ (21, 22),

(PU) (1, 22) = —ie(Vy — V)1, 22). (38)

For a wavefunction ¥ (x1,22) in Han, let Qk, Pr denote the position and momentum operators
corresponding to X1, T2 k.
Now we define the normalized Wasserstein distance between two density matrices p1, p2 € D(Hn).

Definition 3.4 For two density matrices p1, p2 € D(9), the Wasserstein-2 distance is defined by

Wilorope) = (il (QQ+PPIR)) (39)
If p1,p2 € D(HN), then the normalized Wasserstein-2 distance is defined by
1Y 3
Wilowoon) = gnt ooy (5 > @i+ rr)R)) (3.10)

As indicated in [7], W5 is not a distance on D($)). In particular, the position and momentum
operators (), P satisfy

Q" Q+P'P=(Q+iP)(Q+iP)+i(P"Q—Q"P) 2 i(P"Q — Q"P) = 2dely,, (3.11)

hence the Wasserstein-2 distance satisfies Wa(p, p) = 2de. The relation (3.11)) can be viewed as the
uncertainty principle, while the parameter € characterizes the quantum nature.
Finally we specify the initial data of the quantum systems.

Definition 3.5 Given the positon q and momentum p in R, the wavefunction at (q,p) is
|4, p, &) = (me) "W hem (@m0 2 imale, (3.12)

Given the Borel measure  on R? x R?, the Tépliz operator with symbol p is defined by

1
PT(u) = —— : 1
OPT (1) = s [ 10op.2) (a.p.cl n(dadp) (313
The To6pliz operator satisfies
1
T
tr(OP; () = (@ne)d /}RdXRd 1(dgdp). (3.14)

Therefore, if 4 € P(R? x R?) is a probability distribution, then the T6pliz operator with symbol
(2me)? is a density matrix.

Remark 3.1 As e — o0, the quantum state |g, p, €) shrinks to the classical phase (g, p). Therefore,
the quantum corresponding object of a probability distribution x4 € P(R? x R?) is the Topliz
operator with symbol (27¢)%u, which is a density matrix in D()). In the particle system case,
the probability distribution py € P((R? x R?)™) corresponds to the Tépliz operator with symbol
(2me)®N p, which is a density matrix in D(fy).



Now we are ready to measure the difference between the von Neumann equation (3.2]) and the
Hatree equation (3.4). The main result is as follows.

Theorem 3.1 Given ¢ > 0 and N € N, let p. n(t) be the solution to the von Neumann equation
B-2) with initial data p*y € D(Hn), and pe(t) be the solution to the Hatree equation (3.4) with
initial data pé" € D($). Then for each integer n < N and all t > 0, one has

At

n n 8 e -1 in in
W (e (0" (1) < S ITVIZ S MW ()Y ), (31

where A := 3+ 4Lip(VV)2. In particular, if for some probability distribution p € P(R? x R?), one
chooses p'™ to be the Tépliz operator with symbol (2me)%u, and p?N to be the Tédpliz operator with
symbol (2me)NIuEN | then

8 1—e ™
WE (0" e (0)* < (202 + IVVIG A et (3.16)

The proof of Theorem is directly inspired from Theorem [2.1] Denote the N-body quantum
Hamiltonian by

N N
€ 1
Hon=—S3 0+ SV 1
e,N 2k=1 k+2Njk:1V}k7 (3 7)

then the von Neumann equation (3.2)) can be written as
iEBtpa,N = [HE,N7 pE,N]u pE,N|t:0 = P?N € D(ﬁN) (318)

Denote the mean-field quantum Hamiltonian by

2
3
HY =~ A+ V,, (3.19)

g
then the Hatree equation (3.4]) can be written as
i€0pe = [HE®, pel, p5|t:0 =pim. (3.20)

We duplicate the mean-field quantum systems by defining H 5, N = (H? )®N to be the tensor product
of HP. Then the coupling of (3.2)(3.4)) can be defined by

e The initial data Ry € Q((pi")®N, piy) is a coupling of the initial data of (3.2)(B.4);

e R. n(t) solves the joint von Neumann equation

igatRs,N = [HEP’EN ® IﬁN + Iij X I’IE,N]7 Rst’t:O = ?,lN (321)
Similar to (2.13), we define the L? distance in the quantum mechanics by

1

N
D. n(t) =tr (N > (QiQr+ P;ij)RE,N(t)> : (3.22)
k=1



By direct (but still tedious) calculations, similar to (2.14) we have

dD. N
dt

< (3+4Lip(VV)?)D. v + % Ztr ('VVpa (x) — %ZVV(,T;C — ;) p?N) (3.23)

k=1

j=1

For the mean-field density p. € D($), the corresponding probability density in the position space
is fo(t,x) = pe(t,z, x), hence we can again use (2.15]) to deduce

N 2
1 8
(|99 o0) = SV - )| #2) < SV (3.24)
i=1

The remaining part is the same with Theorem [21]
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