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1 无约束优化基本理论

1.1 基本概念

考虑无约束最优化问题

min
x∈Rn

f(x)
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• 一阶必要条件: ∇f(x∗) = 0

• 二阶必要条件: ∇2f(x∗) 半正定

• 二阶充分条件: ∇2f(x∗) 正定

我们一般使用迭代格式求解最优化问题:

xk+1 = xk + αkdk (1.1)

其中 xk 为迭代点, dk 为下降方向, αk 为步长. 下降方向选取的最基本准则是: 沿着方向 dk 应

当使得目标函数值下降, 即
gT
k dk < 0 (1.2)

于是 f(xk + αdk) 在 α 很小时是关于步长 α 的减函数.

1.2 收敛速度

收敛速度是用于刻画算法效率的重要指标.

定义 1.1 (Q 收敛速度) 设存在 p ⩾ 1 和 q > 0 使得

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥p

= q = Qp{xk}

则称 {xk} 具有 p 阶收敛速度.

收敛速度的一些例子:

• p = 1, q ∈ (0, 1), 线性收敛:
xk = 1 +

1

2k

• p = 1, q = 0, 超线性收敛:
xk = k−k

• p = 1, q = 1, 次线性收敛:
xk =

1

k

• p > 1, q < +∞, 超线性收敛

定理 1.1 (超线性收敛的刻画) 设 xk → x∗, 记 hk = xk − x∗ 且 sk = xk+1 − xk, 则 {xk} 超线
性收敛等价于下列四式中任意一个:
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(i) hk+1 = o(∥hk∥);

(ii) hk+1 = o(∥sk∥);

(iii) sk = −hk + o(∥hk∥);

(iv) sk = −hk + o(∥sk∥)

定义 1.2 (R 收敛速度) 给定 p ⩾ 1, 设迭代点序列 {xk} 满足

Rp{xk} =


lim
k→∞

∥xk − x∗∥
1
k

lim
k→∞

∥xk − x∗∥
1

pk

R 收敛速度不依赖于范数的选取.

定理 1.2 若 {xk} 具有 p 阶 Q 收敛速度, 则它也有 p 阶 R 收敛速度. 特别地, 若 p = 1, 则

Q1{xk} ⩾ R1{xk}

设 q = Q1{xk}, 则对任意 ε > 0, 当 k 充分大时总有

∥xk+1 − x∗∥ ⩽ (q + ε)∥xk − x∗∥p

当 p = 1 时, 有
∥xk − x∗∥ ⩽ (q + ε)k−k0∥xk0

− x∗∥

因此

∥xk − x∗∥
1
k ⩽ (q + ε)1−

k0
k ∥xk0

− x∗∥
1
k

令 k → ∞, 有
R1{xk} = lim

k→∞
∥xk − x∗∥

1
k ⩽ q + ε

令 ε→ 0, 得到 R1{xk} ⩽ Q1{xk}. 在 p > 1 时, 类似可以得到

∥xk − x∗∥ ⩽ (q + ε)s(k−k0)∥xk0
− x∗∥p

k−k0

其中

s(m) =
m−1∑
i=0

pi =
pm − 1

p− 1

于是

∥xk − x∗∥
1

pk ⩽ (q + ε)
p−k0−p−k

p−1 ∥xk0
− x∗∥−pk0

令 k → ∞, 有
Rp{xk} = lim

k→∞
∥xk − x∗∥

1

pk ⩽ (q + ε)
p−k0
p−1 ∥xk0

− x∗∥−pk0

即 Rp{xk} 是一个有限值.
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2 线搜索准则

在得到下降方向 dk 后, 一个关键的步骤是在 dk 上求步长 α, 使得目标函数

f(xk + αdk)

下降到较低的水平. 为简单起见, 我们去掉下标 k 并讨论 f(x + αd) 的优化问题. 进退法是用
来确定搜索区间的一种简单策略, 它输出一个区间 [a, b], 使得一定有极小点位于此区间中.

关于 f(x+ αd) 的优化问题可以简化为关于一维函数

φ(α) = f(x+ αd) (2.1)

的优化, 此时
φ′(α) = dTg(x+ αd) (2.2)

2.1 精确线搜索准则

所谓的精确线搜索就是求 φ(α) 在指定区间上的最小值, 即求步长 αk 使得

αk = arg min
α
φ(α) (2.3)
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黄金分割 (0.618 方法) 可以方便地求单峰函数的最小值.
Algorithm 1: 0.618 方法
输入: 初始区间 [a, b]

输出: 极小点 θ ∈ [a, b]

给定一个小常数 ε0, 计算常数 τ =
√
5−1
2

while true do
计算试探函数点 λ = a+ (1− τ)(b− a), µ = a+ τ(b− a)

if φ(λ) > φ(µ) then
(左边函数值大, 极小点在 [λ, b])
a = λ, λ = µ, µ = a+ τ(b− a)

if b− a < ε0 then
θ = µ

return
end

else
(右边函数值大, 极小点在 [a, µ])
b = µ, µ = λ, λ = a+ (1− τ)(b− a)

if b− a < ε0 then
θ = λ

return
end

end
end

黄金分割法仅利用了函数值的信息, 没有用到导数信息, 具有一阶收敛速度.

精确线搜索方法的收敛性分析:

定理 2.1 (下降量的估计) 设步长 αk 由精确线搜索得到, 且∥∥∇2f(xk + αdk)
∥∥ ⩽M

对一切 α > 0 成立. 则有
fk − fk+1 ⩾

1

2M
∥gk∥2 cos2 θk

其中 θk 是下降方向 dk 和负梯度方向 −gk 的夹角.

定理 2.2 (精确线搜索的收敛性) 设 ∇f(x) 在水平集 L = {x ∈ Rn : f(x) ⩽ f(x0)} 上存在且
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一致连续. 若精确线搜索产生的迭代序列满足

θk ⩽ π

2
− µ, 对某个 µ > 0

则或者对某个 k 有 gk = 0, 或者 fk → −∞, 或者 gk → 0.

[Proof: 袁亚湘 p63-64]

反证法, 若结论不成立, 则存在一个无穷集 K 使得

∥gk∥ ⩾ ε, ∀k ∈ K

因此利用夹角条件可以给出 −gT
k dk 的下界估计:

−gT
k dk = cos θk∥gk∥∥dk∥ ⩾ ε1∥dk∥, ∀k ∈ K

下面利用 Taylor 展开对每步下降量 fk − fk+1 作出估计: 对任何 α ⩾ 0, 有

f(xk + αdk) = f(xk) + αdT
k g(ξk)

其中 ξk ∈ [xk, xk + αdk]. 因此

fk+1 − fk ⩽ f(xk + αdk)− fk

= αdT
k g(ξk)

= αdT
k gk + αdT

k [g(ξk)− gk]

⩽ −αε1∥dk∥+ αdT
k [g(ξk)− gk]

由于 g(x) = ∇f(x) 一致连续, 故存在 ᾱ > 0 使得

α∥dk∥ ⩽ ᾱ =⇒ |g(ξk)− gk| ⩽
ε1
2

此时

fk+1 − fk ⩽ −αε1∥dk∥+ α∥dk∥
ε1
2

= −α
2
ε1∥dk∥

特别地, 我们可以取 α∥dk∥ = ᾱ, 从而得到

fk+1 − fk ⩽ − ᾱ
2
ε1, ∀k ∈ K

即每一步函数的下降量都至少是一个常数. 但
∞∑
k=1

(fk − fk+1) 为有限值, 矛盾!

精确线搜索的特点是比任何其它步长选择都更好.
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2.2 插值法

插值法的基本思想是用一个简单的函数 q(α)(常常是多项式函数) 对目标函数 φ(α) 进行逼近,
然后用 q(α) 的极小点对 φ(α) 的极小点进行近似. 由于 q(α) 要用来刻画 φ(α) 的极小点, 应当
至少使用二次多项式, 即

q(α) = aα2 + bα+ c (2.4)

来逼近 φ(α). 该函数的极小点为
α∗ ≈ ᾱ = − b

2a
(2.5)

一点二次插值法 在给定的点 α1 处, 使用 φ(α1), φ
′(α1), φ

′′(α1) 对 φ(α) 进行插值, 得到

a =
1

2
φ′′(α1), b = φ′(α1)− φ′′(α1)α1

因此计算所得 q(α) 的极小点为

ᾱ = − b

2a
= α1 −

φ′(α1)

φ′′(α1)

相应的迭代格式为

αk+1 = αk −
φ′(αk)

φ′′(αk)

两点二次插值 I 在区间 [α1, α2] 上给定 φ(α1), φ
′(α1), φ(α2) 的值, 则 q(α) 的参数为

a =
φ1 − φ2 − φ′

1(α1 − α2)

−(α1 − α2)2

b = φ′
1 + 2 · φ1 − φ2 − φ′

1(α1 − α2)

(α1 − α2)2
· α1

计算所得 q(α) 的极小点为

ᾱ = α1 −
(α1 − α2)φ

′
1

2
[
φ′
1 − φ1−φ2

α1−α2

]
相应的迭代格式为

αk+1 = αk −
(αk − αk−1)φ

′
k

2
[
φ′
k −

φk−φk+1

αk−αk+1

]
两点二次插值 II 在区间 [α1, α2] 上给定 φ′(α1), φ

′(α2) 的值, 极小点为

ᾱ = α1 −
α1 − α2

φ′
1 − φ′

2

φ′
1

相应的迭代格式为

αk+1 = αk −
αk − αk−1

φ′
k − φ′

k−1

φ′
k−1
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2.3 单调非精确线搜索方法

我们在本节介绍单调非精确线搜索方法, 这里单调的含义是保证目标函数在每步迭代之后单调
下降, 即 f(xk + αkdk) ⩽ f(xk). 非精确意味着步长 αk 不需要被精确计算, 只需满足特定的不
等式条件即可. 我们仍然记 φ(α) = f(xk + αdk), 则 φ(0) = fk, φ′(0) = gT

k dk.

Armijo 准则
φ(α) ⩽ φ(0) + ρφ′(0)α

其中 ρ ∈ (0, 1).

Goldstein 准则

φ(α) ⩽ φ(0) + ρφ′(0)α

φ(α) ⩾ φ(0) + (1− ρ)φ′(0)α

其中 ρ ∈ (0, 1
2
).

Wolfe 准则

φ(α) ⩽ φ(0) + ρφ′(0)α

φ′(α) ⩾ σφ′(0)

其中 1 > σ > ρ > 0.

强 Wolfe 准则

φ(α) ⩽ φ(0) + ρφ′(0)α

|φ′(α)| ⩽ −σφ′(0)

当 σ → 0 时, 强 Wolfe 准则接近精确线搜索. 是当 σ ⩽ ρ 时, 满足 Wolfe 准则的点可能不存在.

引理 2.1 (非精确线搜索的性质) 假设 φ′(0) < 0, 则

(1) 当 α 充分小时, Armijo 成立; Goldstein(2) 和 Wolfe(2) 不成立.

(2) 若 φ(α) 有下界, 则 α 充分大时, Goldstein(2) 成立; Armijo 不成立.

定理 2.3 (非精确线搜索步长的存在性) 假设 φ′(0) < 0 且 φ(α) 有下界, 则存在 α > 0 满足

Goldstein 或强 Wolfe 准则.
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由于 α 充分小时 Armijo 准则成立, 故可设 α0 是使得 Armijo 准则成立的最大 α. 下面证明,
存在 α ∈ (0, α0] 使得 Goldstein(2) 或 Wolfe(2) 成立.

Goldstein 准则 若 ∀α ∈ (0, α0] 都有

φ(α) < φ(0) + (1− ρ)φ′(0)α

取 α = α0, 有
φ(α0)− φ(0) = ρφ′(0)α0 < (1− ρ)φ′(0)α0

这与 ρ ∈ (0, 1
2
) 矛盾!

强 Wolfe 准则 若 ∀α ∈ (0, α0] 都有

|φ′(α)| > −σφ′(0)

由 Armijo 准则和 Lagrange 中值定理, 存在 α ∈ (0, α0] 使得

ρφ′(0)α0 = φ(α0)− φ(0) = φ′(α)α0

故 φ′(α) = ρφ′(0) ⩾ σφ′(0). 矛盾!

定理 2.4 (f(x) 下降量的下界估计) 设 f(x) 连续可微, 且 g(x) 满足 Lipschitz 条件

∥g(x)− g(y)∥ ⩽ L∥x− y∥ (2.6)

若 f(xk + αdk) 在 α > 0 时有下界, 则对满足 Wolfe 准则的 αk, 有

f(xk)− f(xk + αkdk) ⩾
ρ(1− σ)

L
∥gk∥2 cos2 θk (2.7)

证明 令 sk = αkdk 为下降步, 则只需证明:

f(xk)− f(xk + sk) ⩾
ρ(1− σ)

L
∥gk∥2 cos2 θk

由 Wolfe 准则有
sT
k g(xk + sk) ⩾ σsT

k gk

因此

(σ − 1)sT
k gk ⩽ sT

k (g(xk + sk)− gk) ⩽ L∥sk∥2

而夹角条件给出

(σ − 1)sT
k gk ⩾ (1− σ)∥sk∥∥gk∥ cos θk
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因此

∥sk∥ ⩾ 1− σ

L
∥gk∥ cos θk

由 Armijo 准则,

f(xk)− f(xk + sk) ⩾ −ρgT
k sk ⩾ ρ∥gk∥∥sk∥ cos θk ⩾ ρ(1− σ)

L
∥gk∥2 cos2 θk

定理 2.5 (非精确线搜索的收敛性: Wolfe) 设 g(x) 在水平集 L(x0) := {x : f(x) ⩽ f(x0)} 上
满足 Lipschitz 条件, 且 dk 与 −gk 的夹角 θk 满足

0 ⩽ θk ⩽ π

2
− µ

则对于 Wolfe 准则, 或者对某个 k 有 gk = 0, 或者 fk → −∞, 或者 gk → 0.

[Proof: 袁亚湘 p105-106]

定理 2.6 (非精确线搜索的收敛性: Goldstein) 设 g(x)在水平集 L(x0) := {x : f(x) ⩽ f(x0)}
一致连续, 且 dk 与 −gk 的夹角 θk 满足

0 ⩽ θk ⩽ π

2
− µ

则对于 Goldstein 准则, 或者对某个 k 有 gk = 0, 或者 fk → −∞, 或者 gk → 0.

[Proof: 袁亚湘 p103-104]

如果在某个无穷集 K 上有 ∥gk∥ ⩾ ε1, 则由夹角条件可以得到

−gT
k sk = ∥gk∥∥sk∥ cos θk ⩾ ε1∥sk∥

由 Armijo 准则,
fk+1 ⩽ fk + ρgT

k sk

故单步下降量满足

fk − fk+1 ⩾ −ρgT
k sk ⩾ ρε1∥sk∥, ∀k ∈ K

由于 lim
k→∞

(fk − fk+1) = 0, 故
lim
k∈K

∥sk∥ = 0

即相邻迭代点的间距会在 k ∈ K 时收敛到 0. 因此当 k ∈ K 且 k 充分大时, 可以进行 Taylor
展开(进行更精细的估计)

fk+1 − fk = sT
k g(ξk) = sT

k gk + o(∥sk∥)
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由 Goldstein 准则,
fk+1 − fk ⩾ (1− ρ)gT

k sk

因此

ρgT
k sk ⩾ o(∥sk∥)

矛盾! 因此 Goldstein 线搜索准则在夹角条件下必定收敛.

关于证明的评注: 在上面的证明中, 一个关键的步骤是利用 Taylor 展开进行更精细的估计. 由
于所有非精确线搜索方法都需要用到 f(x) 的一阶导数信息, 因此进行 Taylor 展开是必要的.

3 Newton 型方法

3.1 基本 Newton 方法

基本 Newton 方法的下降方向 dNk 由方程

Gkd
N
k = −gk (3.1)

给出. 当迭代格式由
xk+1 = xk + dNk (3.2)

给出时, 相应的方法称为基本 Newton 方法. 关于基本 Newton 方法的评注:

• 基本 Newton 方法可以看作是在每个点 xk 处用一个二次函数

mk(p) = fk + gT
k p+ pTGkp (3.3)

来近似, 因此上述函数的极小点在 p∗ = −G−1
k gk 处取到. 因此下降方向取为

dNk = −G−1
k gk (3.4)

• Newton 方法的一大优势是可以达到二阶收敛速度.

定理 3.1 (基本 Newton 方法的收敛性) 设 f ∈ C2, 且 f 的 Hesse 矩阵满足 Lipschitz 条件.
若 x0 充分接近 x∗, 且 G∗ 正定, 则基本 Newton 方法具有 2 阶收敛速度.

直观上, 上述结果可以使用 Taylor 展开证明. 要证明 2 阶收敛, 只需证明

∥xk+1 − x∗∥ ⩽ C∥xk − x∗∥2 (3.5)
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对某个常数 C > 0 成立. 由于 xk+1 = xk + dNk , 且 dNk = −G−1
k gk, 故

xk+1 − x∗ = xk − x∗ −G−1
k gk (3.6)

而

−gk = g(x∗)− g(xk)

= Gk(x
∗ − xk) +O(∥xk − x∗∥2)

故

−G−1
k gk = x∗ − xk +O(∥xk − x∗∥2) (3.7)

故

∥xk+1 − x∗∥ = O(∥xk − x∗∥2) (3.8)

在实际中, 也可以把 Newton 方向与线搜索方法 (精确线搜索, Wolfe 准则) 结合起来使用.
Newton 方法的优缺点:

1. 优点: 二次终止性, 二阶收敛速度

2. 缺点: 全局收敛性不好, 每步需要求解线性方程组

当 Hesse 矩阵 G 不是正定的情况下, Newton 方向 dNk = −G−1
k gk 不一定是下降方向.

取定 η > 0 是一个小常数, θk 为 dNk 与 −gk 的夹角, 我们可以使用下面的策略选择下降方向:

dk =


dNk , cos θk ⩾ η

− dNk , cos θk ⩽ −η

− gk, else

当 dNk 不是下降方向时, 选取 −dNk 下降即可. 基本 Newton 方法也可以收敛到鞍点.

定理 3.2 (基本 Newton 方法的鞍点收敛性) 考虑迭代格式 xk+1 = xk +αkd
N
k , 其中 Gk 非奇

异, αk = sgn[gT
kG

−1
k gk]. 假定

(1) {xk} 收敛到 x∗;

(2) gT
k dk ̸= 0

则 x∗ 是 f(x) 的稳定点, 且非局部极小点.

在上面的定理中, αk 的取法是使得方向 dk = αkd
N
k 一定是下降方向, 即 gT

k d
N
k < 0. 若 x∗ 是局

部极大点, 则在 x∗ 恒有

yTG(x)y < 0, ∀x ∈ B(x∗), y ̸= 0

13



因此存在 η > 0, 使得
λmax(G(x)) ⩽ −η, ∀x ∈ B(x∗)

因此

f(xk − dNk ) ⩽ f(xk)− gT
k d

N
k +

1

2
(dNk )TGkd

N
k + o(

∥∥dNk ∥∥2
)

= fk +
3

2
(dNk )TGkd

N
k + o(

∥∥dNk ∥∥2
)

⩽ fk −
3

2
η
∥∥dNk ∥∥2

+ o(
∥∥dNk ∥∥2

)

因此当 k 充分大时, 应有 f(xk+1) ⩽ f(xk), 因此其收敛点 x∗ 不可能是局部极大点, 矛盾!

Newton 方法是可能使得迭代收敛到鞍点的.

3.2 修正 Newton 方法

在实际应用 Newton 方法时, Hesse 矩阵 G 可能不是正定的, 给实际应用带来了很大的困难.
我们可以将其做一定的修正, 使其成为正定的矩阵.

3.2.1 特征值修正方法

设 G 的所有特征值为 λ1, · · · , λn, 特征向量为 u1, · · · , un, 则 G 可以表示为

G =
n∑

i=1

λiuiu
T
i (3.9)

若取 βi = min(|λi|, δ), 则一个合理的对 G 进行修正的方式是

Ḡ =
n∑

i=1

βiuiu
T
i (3.10)

然而, 在实际计算中求解每步迭代矩阵 G 的特征值既困难也不稳定, 因此一般不会被采用.

3.2.2 修正 Cholesky 分解

在本节我们考虑对一般的对称矩阵 G ∈ Rn×n 的修正 Cholesky 分解. 对于正定对称的情形,
Cholesky 分解一般由下式给出:

G = LDLT (3.11)
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但是当 G 不正定时, 上述算法可能数值不稳定, 因此我们考虑修正 Cholesky 分解

G+ E = LTDL

其中 L 为单位下三角矩阵, D 为正定对角矩阵, E 为对角修正矩阵. L,D,E ∈ Rn×n 的计算由

以下算法给出:
Algorithm 2: 修正 Cholesky 分解
输入: 对称矩阵 G ∈ Rn×n, 参数 δ, β > 0

输出: L,D ∈ Rn×n

for j = 1, · · · , n do
for i = j + 1, · · · , n do

gij = gij −
∑j−1

s=1 dslisljs

end
θj = maxj<i⩽n |gij |
dj = max(|gjj |, θ2j/β2, δ)

for i = j + 1, · · · , n do
lij = gij/dj

gii = gii − djl
2
ij

end
end

上述算法的关键在于 djj 的选取保证 D 是对称正定的, 因此计算 lij = gij/dj 时不会发生数值

不稳定性. 参数 β 应当选取满足

β2 = max{γ, ξ/
√
n2 − 1}

其中 γ 是矩阵 A ∈ Rn×n 的对角元的最大模, ξ 是 A 的非对角元的最大模. 将修正 Cholesky
分解应用于 Hessian 矩阵 G, 得到

G+ E = LDLT

于是下降方向由

dk = −(LDLT)−1gk = −L−TD−1L−1gk

给出. 为了避免算法收敛到鞍点, 引入如下的负曲率方法. 设对角矩阵 D,E 由

D = diag(d1, · · · , dn), E = diag(e1, · · · , en)

给出.

15



Algorithm 3: Gill-Murray 负曲率方向
输入: 修正 Cholesky 分解 G+ E = LDLT

输出: 负曲率方向 d ∈ Rn

计算 ψj = dj − ej , j = 1, · · · , n
求下标 t 使得 ψt = min

1⩽j⩽n
ψj

if ψt < 0 then
令 1t 是仅有第 t 个元素为 1 的单位向量
令 d 为 LTd = 1t 的解

输出负曲率方向 d ∈ Rn

else
不输出结果

end

可以证明上述算法的输出一定是一个负曲率方向. 事实上, 容易计算

dTGd+ et = dTLDLTd = 1T
t D1t = dt

因此

dTGd = dt − et = ψt < 0

即 d ∈ Rn 是负曲率方向.

根据, 在 β 的选取方式下, 若 G 有负特征值, 则一定存在一个 t 是的 ψt < 0.

最后, 我们使用如下的稳定 Newton 算法来实现对 Hesse 矩阵 G ∈ Rn×n 的修正:

16



Algorithm 4: Gill-Murray 稳定 Newton 方法
输入: 梯度 g ∈ Rn, Hesse 矩阵 G ∈ Rn×n, 允许误差 ε > 0

输出: 下降方向 d ∈ Rn

对 G 进行修正 Cholesky 分解 G+ E = LDLT

(用于判断使用 Newton 方向还是负曲率方向)
令 c = true

if ∥gk∥ ⩽ ε then
求解 Gill-Murray 负曲率方向 dk

如果不输出结果, 令 c = true

(输出负曲率方向)
如果成功输出, 令 c = false. 令 gTd > 0, 令 d = −d

end
if c then

(输出 Newton 方向)
求解下降方向 LDLTd = −g 得到下降方向 d.

end

3.3 非精确 Newton 算法

基本 Newton 算法要求在每一步求解方程

Gkd
N
k = −gk (3.12)

如果 Gk 的维数太大, 那么线性方程组的求解会变得困难. 在实际中我们可以对该方程进行近
似求解. 如果近似的下降方向为 dk, 那么 dk 对 Newton 方向 dNk 的逼近程度可以用残量

rk = Gkdk + gk (3.13)

来刻画. 如果残量满足
∥rk∥ ⩽ ηk∥gk∥ (3.14)

对某个小的常数 ηk 成立, 则收敛速度可以得到保证.

定理 3.3 (非精确 Newton 局部收敛) 设 G∗ 正定, 且下降方向 dk 满足残量

rk = Gkdk + gk, ∥rk∥ ⩽ ηk∥gk∥

且 ηk ⩽ η, η ∈ (0, 1). 则对于迭代更新格式

xk+1 = xk + dk
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若 x0 充分接近 x∗, 则 xk 线性收敛到 x∗.

我们从 g(x) 的 Taylor 展开计算 gk+1 的估计.

gk+1 − gk = Gk(xk+1 − xk) +O(∥xk+1 − xk∥2)

= Gkdk +O(∥dk∥2)

= rk − gk +O(∥dk∥2)

因此

gk+1 = rk +O(∥dk∥2) (3.15)

由于

dk = G−1
k (rk − gk) (3.16)

因此 dk = O(∥gk∥). 因此我们得到

∥gk+1∥ ⩽ η∥gk∥+ o(∥gk∥) (3.17)

最后, 我们注意到从 gk 的线性收敛速度可以得到 xk 的收敛性. 由于

gk − g∗ = G∗(xk − x∗) +O(∥gk∥) (3.18)

因此 ∥xk − x∗∥ = O(∥gk∥). 故迭代序列 xk 具有线性收敛速度. 由上面的定理证明也可以得到

定理 3.4 (非精确 Newton 超线性收敛) 若非精确 Newton 方法产生的迭代序列 xk 收敛到

x∗, 并且 ηk → 0, 则该方法具有超线性收敛速度, 即

lim
k→∞

∥gk+1∥
∥gk∥

= 0 (3.19)

事实上, 上述极限结果可以由不等式

∥gk+1∥ ⩽ ηk∥gk∥+ o(∥gk∥) (3.20)

直接得到.

3.4 全局非精确 Newton 方法

在全局非精确 Newton 方法中, 除了基本的判定准则 ∥rk∥ ⩽ ηk∥gk∥ 之外, 我们会加上一条额
外的额外的准则.
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定义 3.1 (全局非精确 Newton 方向) 给定常数 t ∈ (0, 1) 并考虑迭代格式 xk+1 = xk + dk,
则 dk 称为非精确 Newton 方向, 如果 ∥rk∥ ⩽ ηk∥gk∥

∥gk+1∥ ⩽
(
1− t(1− ηk)

)
∥gk∥

(3.21)

容易看出, 满足上述条件的下降步 dk 是存在的. 事实上, 当 k 充分大时, 有

∥gk+1∥ ⩽ ηk∥gk∥+ o(∥gk∥) (3.22)

因此 (3.21) 对一切 t < 1 都存在解. 来使得

aredk(dk) ⩾ t · predk(dk) (3.23)

定义 3.2 设当前迭代点为 xk, 下降步为 d ∈ Rn, 则实际下降量 (actual reduction) 定义为

aredk(d) = ∥gk∥ − ∥g(xk + d)∥ (3.24)

而预计下降量 (predicted reduction) 定义为

predk(d) = ∥gk∥ − ∥gk +Gkd∥ (3.25)

当条件 (3.21) 满足, 即 d 是全局非精确 Newton 方向时,

predk(d) ⩾ (1− ηk)∥gk∥ (3.26)

aredk(d) ⩾ t(1− ηk)∥gk∥ (3.27)

因此全局非精确 Newton 方法对实际和预计的下降量都提出了要求.

在非精确 Newton 方法中, 对参数 {ηk} 的一些评注:

1. ηk 是刻画求解线性方程组 Gkdk = −gk 的精度. ηk 越小, 线性方程组的求解误差就越小.

2. 如果 ηk 取得太小, 则不仅会增加求解线性方程组的复杂度, 还会降低数值解的有效性.

3. 增加一条对 dk 的约束主要是为了保证 aredk(d) 有有效的下降.

我们考虑 2 种选择 ηk 的方式.

1. 选择
ηk =

∥gk − gk−1 −Gk−1dk−1∥
∥gk−1∥

(3.28)

或

ηk =
|∥gk∥ − ∥gk−1 +Gk−1dk−1∥|

∥gk−1∥
(3.29)
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注意到有不等式

|∥a∥ − ∥b∥| ⩽ ∥a− b∥

故第一种方式得到的 ηk 更大. ηk 描述了 gk−1 + Gk−1dk−1 对 gk 的近似程度. 使用第一
种方式可以得到很好的局部收敛性:

定理 3.5 若 x0 充分接近 x∗, 且 {ηk} 由上面的式子决定, 则 xk → x∗, 且

∥xk+1 − x∗∥ ⩽ β∥xk − x∗∥∥xk−1 − x∗∥ (3.30)

这一定理意味着 {xk} 具有超线性的收敛速度, 且收敛阶为
√
5 + 1

2
≈ 1.618 > 1

2. 设 γ ∈ [0, 1] 且 α ∈ (1, 2], 选择

ηk = γ

(
∥gk∥
∥gk−1∥

)α

, k = 1, 2, · · ·

它反映了 ∥gk∥ 的下降的速度.

在实际更新 {ηk} 时, 我们也会对 ηk 添加一些安全保护机制, 以防止 ηk 的减小速度太快.

ηk = max{ηk, η
√

5+1
2

k−1 }, ηk = max{ηk, γηαk−1}

Algorithm 5: Inexact Newton Backtracking Method
输入: x0, ηmax ∈ [0, 1), t ∈ (0, 1), 0 < θmin < θmax < 1

输出: 迭代点序列 {xk}
for k = 1, 2, · · · do
选择初始 ηk, 并选择下降步 dk 满足

∥gk +Gkdk∥ ⩽ ηk∥gk∥

while ∥g(xk + dk)∥ > (1− t(1− ηk))∥gk∥ do
选择 θ ∈ [θmin, θmax]

令 dk = θkdk, ηk = 1− θ(1− ηk)

end
令 xk+1 = xk + dk

end
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4 拟 Newton 算法

4.1 拟 Newton 算法简介

拟 Newton 算法的主要目标是将 Newton 方法的思想用于求解大规模的无约束优化问题. 修正
Newton 算法和拟 Newton 算法的区别在于:

• 修正 Newton 算法主要处理 Hesse 矩阵 G ∈ Rn×n 不正定的情形, 它通过在 G 上加入

额外的正数项以使得 G 正定, 从而在求解线性方程组时不会产生数值不稳定. 由于修正
Newton 算法本质上仍然需要求解线性方程组, 因此只适用于中小规模的优化问题. 通过
合适的迭代格式可以到达超线性甚至二阶收敛.

• 拟 Newton算法主要考虑将类似于 Newton算法的思想应用于大规模的优化问题中,本质
上不需要利用二阶导数, 和基本 Newton 方法的步骤差别较大. 只能达到一阶收敛速度.

在拟 Newton 算法中, 我们希望用一个低秩或容易计算的矩阵近似 Hesse 矩阵 Gk. 例如, 可以
用矩阵 Bk 对 Gk 进行近似, 或用 Hk 对 G−1

k 进行近似, 即

Gk ≈ Bk, G−1
k ≈ B−1

k

按照 Newton 算法的思想, 我们在每个迭代点 xk 处用二次函数

mk(p) = fk + gT
k p+

1

2
pTBkp (4.1)

来近似目标函数, 则我们希望 ∇mk+1(−sk) = gk, 即上一步的梯度为 gk. 它给出

gk+1 −Bk+1sk = gk =⇒ Bk+1sk = yk (4.2)

其中 sk = xk+1 − xk, yk+1 − yk.

定理 4.1 (割线方程) 在 xk+1 处选择的拟 Newton 矩阵 Bk+1(Hk+1) ∈ Rn×n 应当满足

Bk+1sk = yk ⇐⇒ Hk+1yk = sk (4.3)

其中 sk = xk+1 − xk, yk+1 − yk.

割线方程是拟 Newton 算法应满足的最基本的准则. 具有代表性的拟 Newton 算法包括:

1. DFP 算法:
Bk+1 = (I − ρkyks

T
k )Bk(I − ρksky

T
k ) + ρkyky

T
k

其中 ρk = 1/yT
k sk. 可以等价写为

Hk+1 = Hk −
Hkyky

T
kHk

yT
kHkyk

+
sks

T
k

yT
k sk
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2. BFGS 算法:
Hk+1 = (I − ρksky

T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k

可以等价写为

Bk+1 = Bk −
Bksks

T
kBk

sT
kBksk

+
yky

T
k

yT
k sk

DFP 算法可以由下面的最优化问题得到:

定理 4.2 (DFP 的推导) 给定对称矩阵 B0 ∈ Rn×n 和向量 s, y ∈ Rn, 设对称正定矩阵 W ∈
Rn×n 满足 Wy = s. 则约束优化问题

min
B

∥B −B0∥W

s.t. B = BT, Bs = y

有唯一的最优解

B = (I − ρysT)B0(I − ρsyT) + ρyyT

其中 ρ = 1/yTs, 而 ∥·∥W 是加权的 Frobenius 范数:

∥A∥W =
∥∥∥W 1

2AW
1
2

∥∥∥
F
, ∀A ∈ Rn×n

由于此问题为凸优化问题, 因此 B 是约束优化问题的局部极小点当且仅当 B 是 KKT 点. 容
易计算问题的 Lagrange 函数为

L(B, λ,Λ) =
∥∥∥W 1

2 (B −B0)W
1
2

∥∥∥2

F
− λT(Bs− y)− Tr

[
Λ, (B −BT)

]
因此

∂L

∂B
=W (B −B0)W − λsT − (Λ− ΛT) = 0

即 KKT 条件转化为
W (B −B0)W = λsT + (Λ− ΛT)

因此

2W (B −B0)W = λsT + sλT

代入 λ =Wµ, s =Wy, 得到
2(B −B0) = µyT + yµT (4.4)

下面我们通过 (4.4) 来得到 B 的表达式. 在 (4.4) 两边同乘 s, sT, 得到

µ = ρ(2I − ρysT)(y −B0s) (4.5)

22

abnerye
Highlight



故
1

2
(µyT + yµT) = −ρB0sy

T − ρysTB0 + ρ2ysTB0sy
T + ρyyT (4.6)

因此

B = B0 +
1

2
(µyT + yµT) = (I − ρysT)B0(I − ρsyT) + ρyyT

原命题成立. 利用 Sherman-Morrison 公式可以得到对应的 Hk 的更新公式.

类似地, 可以得到 BFGS 公式的推导公式:

定理 4.3 (BFGS 的推导) 给定对称矩阵 H0 ∈ Rn×n 和向量 s, y ∈ Rn, 设对称正定矩阵 G ∈
Rn×n 满足 Gs = y. 则约束优化问题

min
H

∥H −H0∥G

s.t. H = HT, Hy = s

有唯一的最优解

H = (I − ρsyT)H0(I − ρysT) + ρssT

其中 ρ = 1/yTs, 而 ∥·∥W 是加权的 Frobenius 范数:

∥A∥G =
∥∥∥G 1

2AG
1
2

∥∥∥
F
, ∀A ∈ Rn×n

由 BFGS 方法得到的矩阵 Hk+1 可以保持正定性.

4.2 有限内存 BGFS 方法

有限内存 BFGS 方法 (L-BFGS) 主要依赖于下面的 Hk 的更新公式:

Hk+1 = (I − ρksky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k (4.7)

若定义 Vk = I − ρkyks
T
k , 则更新公式成为

Hk+1 = V T
k HkVk + ρksks

T
k (4.8)

有限内存 BFGS方法的思想是仅使用前几步的信息估计第 k 步的矩阵 Hk. 简单来说, L-BFGS
可归结为如下问题:

定义 4.1 (L-BFGS) 给定 H0 ∈ Rn×n, g ∈ Rn, 向量 {s0, s1, · · · , sk−1} 和 {y0, y1, · · · , yk−1},
g ∈ Rn, 希望计算 Hkg.

即用前 k 步的向量 si, yi 估计矩阵-向量乘积 Hkg. 实际中, 初始矩阵可以取为 H0 = γ0I,

γ0 =
sT
0 y0
yT
0 y0
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4.2.1 Two-Loop Recursion

定义 {qi}ki=0 ⊂ Rn 如下:

qk = g, qi = (I − ρiyis
T
i )qi+1, i = k − 1, · · · , 0

则由更新公式 (4.8) 可以得到

Hi+1qi+1 = V T
i HiViqi+1 + ρisis

T
i qi+1 = V T

i Hiqi + αisi

其中我们定义 αi = ρis
T
i qi+1, i = 0, 1, · · · , k − 1. 再定义 {zi}ki=0 ⊂ Rn 如下:

zi = Hiqi, i = 0, 1, · · · , k

则

zi+1 = (I − ρisiy
T
i )zi + αisi = zi + si(αi − βi)

其中我们定义 βi = ρiy
T
i zi. 因此我们可以用如下的算法计算 Hig:

Algorithm 6: Two-loop recursion for Hkg

输入: H0 ∈ Rn, g ∈ Rn, s0, · · · , sk−1, y0, · · · , yk−1 ∈ Rn

输出: Hkg ∈ Rn

令 qk = g

for i = k − 1, · · · , 0 do
αi = ρis

T
i qi+1

qi = qi+1 − αiyi

end
z0 = H0q0

for i = 0, 1, · · · , k − 1 do
βi = ρiy

T
i zi

zi+1 = zi + si(αi − βi)

end
输出 zk = Hkg

4.2.2 Compact Representation

我们将导出 BFGS 更新公式的压缩表示. 定义矩阵

Sk = [s0, · · · , sk−1] ∈ Rn×k, Yk = [y0, · · · , yk−1] ∈ Rn×k
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以及 Rk ∈ Rk×k 满足

(Rk)i,j =

s
T
i−1yj−1, i ⩽ j

0, else

则有如下引理成立:

引理 4.1 对于 Vi = I − ρiyis
T
i (i = 0, 1, · · · , k − 1), 有

V0V1 · · ·Vk−1 = I − YkR
−1
k ST

k (4.9)

该引理的证明可以直接由数学归纳法得到. 当 k = 1 时, 结论显然成立. 设结论对 k 成立, 则只
需证明 k + 1 的情形, 即

(I − YkR
−1
k ST

k )Vk = I − Yk+1R
−1
k+1S

T
k+1 (4.10)

这等价于

Yk+1R
−1
k+1S

T
k+1 = YkR

−1
k ST

k − ρkYkR
−1
k ST

k yks
T
k + ρkyks

T
k (4.11)

下面我们只需证明 (4.11). 注意到 Rk+1 具有分块矩阵的形式

Rk+1 =

[
Rk ST

k yk

0 sT
k yk

]
(4.12)

因此 R−1
k+1 也是分块对角矩阵

R−1
k+1 =

[
R−1

k −ρkR−1
k sT

k yk

0 ρk

]
(4.13)

故

Yk+1R
−1
k+1S

T
k+1 =

[
Yk yk

] [R−1
k −ρkR−1

k sT
k yk

0 ρk

][
ST
k

sT
k

]
= YkR

−1
k ST

k − ρkYkR
−1
k ST

k yks
T
k + ρkyks

T
k

故 (4.11) 成立. 由数学归纳法, 命题得证.

定理 4.4 设 H0 对称正定且 {si, yi}k−1
i=0 满足 sT

i yi > 0, 则 BFGS 更新的第 k 步由下式给出:

Hk = H0 +
[
Sk H0Yk

] [R−T
k (Dk + Y T

k H0Yk)R
−1
k −R−T

k

−R−1
k 0

][
ST
k

Y T
k H0

]
(4.14)

定理的证明参考文献. Bk 的更新也有相应的压缩表示:
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定理 4.5 设 B0 对称正定且 {si, yi}k−1
i=0 满足 sT

i yi > 0, 则 BFGS 更新的第 k 步由下式给出:

Bk = B0 −
[
B0Sk Yk

] [ST
k B0Sk Lk

LT
k −Dk

]−1 [
ST
k B0

Y T
k

]
(4.15)

其中 Lk ∈ Rk×k 由下式给出:

(Lk)i,j =

s
T
i−1yj−1, i > j

0, else

5 信赖域方法

信赖域方法 (trust region) 主要用于求解无约束问题

min
x∈Rn

f(x) (5.1)

信赖域方法在迭代点 xk 处用二次函数 mk(p) 对目标函数 f(xk + p) 进行近似. 根据 f(x) 在

xk 处的 Taylor 展开,

f(xk + p) = fk + gT
k p+

1

2
pT∇2f(xk)p+ o(∥p∥2) (5.2)

其中 fk = f(xk), gk = ∇f(xk), p ∈ Rn 表示该步信赖域的下降步. 因此 mk(x) 可取为

mk(p) = fk + gT
k p+

1

2
pT
kGkpk (5.3)

其中 Gk ∈ Rn×n 是 Hesse 矩阵 ∇2f(xk).

5.1 信赖域方法的基本框架

信赖域方法通过求解一系列信赖域子问题来解原优化问题. 在每个 xk 处, 信赖域子问题形如

min
p∈Rn

mk(p) = fk + gT
k p+

1

2
pTGkp (5.4)

s.t. ∥p∥ ⩽ ∆k (5.5)

其中 ∆k > 0 为信赖域半径, 它刻画了二次函数 mk(p) 对目标函数 f(xk + p) 的逼近有多精确.
我们用下面的实际下降量 (actual reduction)和预测下降量 (predicted reduction)的比值 ρk 来

定量的刻画逼近的精确性:
ρk =

f(xk)− f(xk + p)

mk(0)−mk(p)
(5.6)

我们可以利用ρk 的大小来决定信赖域半径 ∆k 的更新方式:

26



• 若 ρk ≈ 1, 则上述逼近是精确的, 可以增大信赖域半径.

• 若 ρk 接近 0 或为负值, 则应该减少 ∆k 的值.

• 若 ρk < 0, 则该步的结果应当被舍弃.

注意: 老师的讲稿上使用的符号是

gk(d) = fk + gT
k d+

1

2
dTGkd

其中 Gk ∈ Rn×n 是 Hesse 矩阵, d ∈ Rn 是下降步.
Algorithm 7: 信赖域方法
输入: 最大半径 ∆̂ > 0, 初始半径 ∆0 > 0, η ∈ [0, 1/4)

输出: 迭代点序列 {xk}k⩾0

for k = 1, 2, · · · do
近似求解信赖域子问题 (5.5) 得到下降步 pk;
按照 (5.6) 计算下降量比值 ρk;
if ρk < 1

4
then

∆k+1 =
1
4
∆k

else
if ρk > 3

4
且 ∥pk∥ = ∆k then

∆k+1 = min(2∆k, ∆̂)
else

∆k+1 = ∆k

end
end
if ρk > 0 then

xk+1 = xk + pk

else
xk+1 = xk

end
end

关于此算法的一些评注:

• 在上述算法中, 信赖域半径 ∆k 增加当且仅当 pk 达到了边界 B(0,∆k).

• 信赖域算法可以保证每一步目标函数值至少是下降的. 如果目标函数上升, 即 ρk ⩽ 0, 则
该步会被直接拒绝掉.

• 算法对常数 1
4
, 3
4
不敏感.
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5.2 Cauchy 点及性质

去掉子问题中的下标 k 得到子问题

min
p∈Rn

m(p) = p+ gTp+
1

2
pTGp, s.t. ∥p∥ ⩽ ∆ (5.7)

一种简单的下降步 p 的取法是, 在负梯度方向 g 极小化 m(p), 所得的结果即为 Cauchy 点 pC .

定义 5.1 (Cauchy 点) 对于信赖域子问题 (5.7), Cauchy 点定义为

pC = −τ ∆

∥g∥
g (5.8)

其中 τ 的取法是

τ =


1, 如果 gTGg ⩽ 0

min
(

∥g∥3

∆gTGg
, 1

)
, 其它

Cauchy 点是信赖域子问题在一维子空间 (负梯度方向) 上的最优解. 使用 Cauchy 点可以为
m(p) 带来一定的下降量:

引理 5.1 (Cauchy 点的下降量) Cauchy 点 pC 满足

m(0)−m(pC) ⩾ 1

2
∥g∥min

(
∆,

∥g∥
∥G∥

)
(5.9)

该引理的证明可参见 Nocedal 的 Lemma 4.3. 在实际设计线搜索方法时, 我们希望方法达到的
下降量应当至少不比 Cauchy 点少.

5.3 信赖域方法的收敛性

信赖域方法的一大好处从它可以得到好的全局收敛性, 而这种收敛性主要

定理 5.1 (信赖域方法的全局收敛性) 设 Ω ⊂ Rn 是有界集, 且 xk ∈ Ω, ∀k ∈ B. 若 f ∈ C2 且

在迭代过程中 ∥Gk∥ ⩽M , 则信赖域算法产生一个满足一阶和二阶必要条件的聚点x∞.

关于此定理的评注:

• 此定理首先要求算法是稳定的: 即迭代点稳定在一个有界的区间当中.

• 对于无约束问题, 一阶必要条件意味着 g(x∗) = 0, 二阶必要条件意味着 G(x∗) 半正定.

分 2 种情形讨论: inf
k
∆k = 0 或 inf

k
∆k > 0.
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• 在第一种情形中, 可以取一个子列 {ki}, 使得存在无穷 i, 满足

∆ki+1 =
1

4
∆ki

, ∆ki+1 <
1

2
∆ki−1+1

因此存在一个子序列 K ⊂ N, 使得

ρk <
1

4
, ∆k+1 → 0, k ∈ K (5.10)

由于 ∆k+1 =
1
4
∆k, 故 ∆k → 0. 由于每一步的下降步 pk 满足 ∥pk∥ ⩽ ∆k, 故

∥pk∥ → 0, k ∈ K (5.11)

取 x∞ 为序列 {xk}k∈K 的聚点. 我们来证明 g∞ = 0 以及 G∞ 半正定.

反设 g∞ ̸= 0. 由于每一步的下降量至少为 Cauchy 点的下降量, 故当 k ∈ K 时,

mk(0)−mk(pk) ⩾
1

2
∥gk∥min

(
∆k,

∥gk∥
M

)
(5.12)

当 k 充分大时, gk → g∞, 而 ∆k → 0, 故

mk(0)−mk(pk) ⩾
1

2
∥gk∥∆k (5.13)

从而
∥pk∥2

mk(0)−mk(pk)
⩽ 2∥pk∥2

∆k∥gk∥
⩽ 2∥pk∥

∥gk∥
(5.14)

当 k 充分大时, gk → g∞, pk → 0, 因此

∥pk∥2

mk(0)−mk(pk)
→ 0, k ∈ K (5.15)

但实际下降量满足

f(xk + pk)− f(xk) = mk(0)−mk(pk) + o(∥pk∥2)

故下降量的比

rk =
f(xk + pk)− f(xk)

mk(0)−mk(pk)
= 1 + o(1), k ∈ K

故 rk → 1, 这与 ∆k+1 =
1
4
∆k 矛盾! 因此必有 g∞ = 0.

再证明 G∞ 是半正定的. 若否, 则设 G∞ 的最小负特征值为 λ. 在第 k 步迭代时, 令 vk

是 G∞ 的最小负特征向量, 且适当选择 v 的方向来保证

vTgk ⩽ 0 (5.16)
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于是

mk(0)−mk(pk) ⩾ mk(0)−mk(∆kvk) ⩾ −1

2
∆2

kv
T
kGkvk =

1

2
∆2

k(−λ+ o(1)) (5.17)

再次利用

f(xk + pk)− f(xk) = mk(0)−mk(pk) + o(∥pk∥2)

可以得到

rk =
f(xk + pk)− f(xk)

mk(0)−mk(pk)
= 1 + o(1), k ∈ K

矛盾! 因此 G∞ 是半正定的.

• 在第二种情形中, 可以取一个子列 K 使得

ρk ⩾ 0.25, hk ⩾ h̄ > 0, ∀k ∈ K

恒成立. 由于

f(x1)− f(x∞) =
∞∑
k=1

(f(xk)− f(xk+1)) <∞

故 lim
k→∞

f(xk)− f(xk+1) = 0. 由于当 k ∈ K 时,

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
⩾ 1

4

故

mk(0)−mk(pk) ⩽ 4
(
f(xk)− f(xk + pk)

)
→ 0, k ∈ K

令在 x∞ 处的极限二次函数为

m∞(p) = f∞ + pTg∞ +
1

2
pTG∞p

且 p̄ 为 m∞(p) 的极小点, 则

mk(p̄) ⩾ mk(pk) ⩾ mk(0) + o(1) = f(xk) + o(1)

在上式中取 k → ∞, 有
m∞(p̄) ⩾ f(x∞) = f∞

这意味着二次函数 m∞(p) 在 B(0, h̄) 上的最小值就是 f∞. 这必然意味着 g∞ = 0 以及

G∞ 半正定.

注: 从定理的证明可以看出, 对任何一个满足条件的聚点 x∞, 它都满足一阶和二阶必要条件.
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定理 5.2 (信赖域方法的二阶收敛性) 若上述定理的聚点 x∞ 满足 f 的 Hesse 矩阵 G∞ 正定,
则对原序列 {xk} 有 ρ→1, xk → x∞, glb(xk) > 0, 以及对充分大的 k, 有 ∥pk∥ ⩽ ∆k. 此外, 收
敛速度是二阶的.

上面的定理实际上说明了当二阶充分条件满足时, 收敛点 x∞ 是唯一存在的.

5.4 Levenberg-Marquardt 方法

在介绍信赖域子问题求解的数值方法前, 我们先介绍一些理论结果. 考虑信赖域子问题 (5.7)

min
p∈Rn

m(p) = f + gTp+
1

2
pTGp, s.t. ∥p∥ ⩽ ∆

关于信赖域子问题 (5.7) 的最优解, 有如下定理成立:

定理 5.3 (子问题的最优解) 向量 p∗ ∈ Rn 是子问题 (5.7) 的最优解当且仅当 p∗ 为可行点, 且
存在 λ ⩾ 0, 使得

(G+ λI)p∗ = −g

λ(∆− ∥p∗∥) = 0

(G+ λI) 半正定

(5.18)

我们可以使用利用 KKT 条件对此定理进行证明. 对给定的 λ ∈ R, 定义 Lagrange 函数

L(p) = f + gTp+
1

2
pT(G+ λI)p = m(p) +

λ

2
∥p∥2

则 L(p) 是关于 p 的二次函数.

• 充分性: 若条件 (5.18) 成立, 则 p∗ 是 L(p) 在 Rn 上的极小点, 因此对任何 p ∈ Rn, 有

L(p) ⩾ L(p∗) =⇒ m(p) +
λ

2
∥p∥2 ⩾ m(p∗) +

λ

2
∥p∗∥2

因此

m(p) ⩾ m(p∗) +
λ

2
(∥p∗∥2 − ∥p∥2)

下面分 2 种情形讨论.

– 若 λ = 0, 则上式直接给出

m(p) ⩾ m(p∗), ∀∥p∥ ⩽ ∆

– 若 λ > 0, 则 ∥p∗∥ = ∆, 因此当 ∥p∥ ⩽ ∆ 时,

m(p) ⩾ m(p∗) +
λ

2
(∥p∗∥2 − ∥p∥2) ⩾ m(p∗), ∀∥p∥ ⩽ ∆
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在以上情形中, 均有 m(p) ⩾ m(p∗) 对 ∥p∥ ⩽ ∆ 恒成立. 因此 (5.18) 给出的 p∗ 是子问题

的最优解.

• 必要性: 若 p∗ 是最优解, 则对任何 ∥p∥ ⩽ ∆, 有 m(p) ⩾ m(p∗). 考虑约束函数

c(p) =
1

2
(∆2 − ∥p∥2)

由于约束规范条件满足, 故 p∗ 也是 KKT 点, 故存在 λ ⩾ 0 使得

∇m(p∗) = λ∇c(p∗) =⇒ (G+ λI)p∗ = −g

即 ∇L(p∗) = 0. 而互补性条件给出 λ(∆− ∥p∗∥) = 0. 最后我们只需证明 G+ λI 半正定.
事实上, 对于 Lagrange 函数 L(p), 在 p∗ 进行 Taylor 展开有

L(p) = L(p∗) +
1

2
(p− p∗)T(G+ λI)(p− p∗)

即

m(p) = m(p∗) +
λ

2
(∥p∗∥2 − ∥p∥2) + 1

2
(p− p∗)T(G+ λI)(p− p∗)

根据 m(p) ⩾ m(p∗), 有

λ

2
(∥p∗∥2 − ∥p∥2) + 1

2
(p− p∗)T(G+ λI)(p− p∗) ⩾ 0, ∀∥p∥ ⩽ ∆

下面分 2 种情形分析:

– 若 λ = 0, 则 (p− p∗)TG(p− p∗) ⩾ 0, 因此在一个半空间上 vTGv ⩾ 0, 故 G 半正定.

– 若 λ ̸= 0, 则 ∥p∗∥ = ∆, 则我们取 ∥p∥ = ∆, 可以得到

1

2
(p− p∗)T(G+ λI)(p− p∗) ⩾ 0, ∀∥p∥ = ∆

因此 vT(G+ λI)v ⩾ 0 在一个半空间上成立.

因此 G+ λI 半正定.

关于上述定理的评注:

• 上述定理证明的关键是构造 Lagrange 函数 L(p) 并讨论极小点处的性质. 由于 L(p) 是

二次函数, 故其 Taylor 展开式可以直接写出.

• 该定理的内容不完全等于 KKT 条件.
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• 方程组 (B + λI)p = −g

∥p∥ = ∆

中有 p ∈ Rn 和 λ ∈ R 共 n+ 1 个未知数和 n+ 1 方程, 因此理论上可以显式求解.

从上述定理可以得到

推论 5.1 若 G 正定且 ∥G−1g∥ ⩽ ∆, 则极小点一定在 p∗ = −G−1g 处取到. 否则, m(p) 的最

小值一定可以在 ∥p∗∥ = ∆ 时取到.

下面给出基于上述定理的 Levenberg-Marquardt 方法:
Algorithm 8: Levenberg-Marquardt 方法
输入: 当前迭代点 xk 和常数 λk

输出: 下步迭代点 xk+1 和常数 λk+1

1. 分解 Gk + λkI 并判断其是否正定. 若否, 令 λk = 4λk 并重复此步.

2. 求解 LM 方程 (Gk + λkI)pk = −gk 得到下降步 pk

3. 计算下降量的比值
ρk =

f(xk)− f(xk + pk)

mk(0)−mk(pk)

并利用 ρk 的大小决定 λk 的更新步骤:

• 若 ρk < 0.25, λk+1 = 4λk

• 若 ρk > 0.75, λk+1 = λk/2

• 其它情形: λk+1 = λk

利用 ρk 的正负性决定 xk 的更新步骤:

• 若 ρk ⩽ 0, xk+1 = xk

• 其它情形: xk+1 = xk + pk

最后, 我们说明
∥p(λ)∥ =

∥∥(G+ λI)−1p
∥∥

是一个关于 λ 的递减函数.

定理 5.4 设 λ1 是 G ∈ Rn×n 的最小特征值, 则当 λ > −λ1 时, ∥p(λ)∥ 关于 λ 单调递减.

由于

(G+ λI)p(λ) = −g
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故对 λ 求导可得

p(λ) + (G+ λI)p′(λ) = 0

因此

p′(λ) = −(G+ λI)−1p(λ)

故
d

dλ∥p(λ)∥ =
p(λ)

∥p(λ)∥
· p′(λ) = − 1

∥p∥
pT(G+ λI)−1p

当 λ > −λ1 时, G+ λI 正定, 故由 p ̸= 0, 可得

d
dλ∥p(λ)∥ < 0

因此 ∥p(λ)∥ 在 λ > −λ1 时单调递减.

5.5 信赖域子问题的最优解分析

为简便起见, 假设对称矩阵 G ∈ Rn×n 的正交对角化的形式为 G = QΛQT, 其中

Λ = diag(λ1, · · · , λn)

为 G 的所有特征值, 且 λ1 ⩽ · · · ⩽ λn, 而

Q = [q1, · · · , qn] ∈ Rn×n

为正交阵, 且 q1, · · · , qn 为 G 的全部特征向量.

下面我们根据 G ∈ Rn×n 的正定性对最优解 p∗ 的性质做进一步的分析.

1. 若 G ∈ Rn×n 是正定的, 则对任何 λ ⩾ 0, 方程 (G+ λI)p = −g 总存在解

p(λ) = −(G+ λI)−1g

且 ∥p(λ)∥ 在 [0,+∞) 严格单调下降. 当 λ = 0 时, p(0) 恰好为 Newton 下降步

pN = −G−1g

因此, 信赖域子问题 (5.7) 的最优解必然满足以下情形之一:

•
∥∥pN∥∥ ⩽ ∆, 最优解为 p∗ = pN ;

•
∥∥pN∥∥ > ∆, 最优解由 p∗ = p(λ) = −(G+ λI)−1g, 其中 λ > 0 使得 ∥p(λ)∥ = ∆.
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2. 若G ∈ Rn×n不是正定的,则信赖域子问题的最优解一定可以在边界上取到,即 ∥p∗∥ = ∆.
由于 λ 应使得 G+ λI 半正定, 故 λ ⩾ −λ1. 下面讨论方程 (G+ λI)p = −g 的解的性质.

设 I = {i = 1, · · · , n : λi = λ1} 为最小特征值 λ1 的指标集.

• 若 qT
j g 对 j ∈ I 不全为 0, 则方程的解可表示为

p(λ) = −(G+ λI)−1g = −
n∑

j=1

qT
j g

λj + λ
qj

∥p(λ)∥ 在 λ→ −λ1 时取值为 +∞, 即

pLS =
n∑

j=1

qT
j g

λj − λ1

qj

满足 ∥pLS∥ = +∞. 由于 ∥p(λ)∥ 在 (−λ1,+∞) 上单调递减趋于 0, 存在唯一的
λ ∈ (−λ1,+∞) 使得 ∥p(λ)∥ = ∆.

• 若 qT
j g = 0, j ∈ I 全为 0, 则方程

(G− λ1I)p = −g

有解, 且

pLS = −
∑
j ̸∈I

qT
j g

λj − λ1

qj

是所有可能的解当中范数最小的, 即最小二乘解. 分 2 种情形讨论:

– 若 λ > −λ1, 则 G+ λI 正定, 且方程的解为

p(λ) = −
∑
j ̸∈I

qT
j g

λj + λ
qj

显然, 当 λ→ −λ1 时, p(λ) → pLS , 因此

∥p(λ)∥ ∈ (0, ∥pLS∥)

– 若 λ = −λ1, 则 G− λ1I 半正定, 且方程的解为

p(τ) = −
∑
j ̸∈I

qT
j g

λj − λ1

qj +
∑
j∈I

τjqj = pLS +
∑
j∈I

τjqj

其中 τj , j ∈ I 可以是任意常数. 这实际上就是信赖域子问题求解中的hard case.
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注意到 qj 是单位正交的, 故

∥p(τ)∥2 = ∥pLS∥2 +
∑
j∈I

τ2j ⩾ ∥pLS∥2

因此 ∥pLS∥ 的取值范围是

∥p(τ)∥ ∈ [∥pLS∥,+∞)

因此, 我们可以通过判断 ∥pLS∥ 的值和 ∆ 的关系来判断最优解是否属于 hard case.

hard case 的本质特征是: 当信赖域子问题的解

p(λ) = (G+ λI)−1g

无法到达边界 ∥p(λ)∥ = ∆ 时, 信赖域方法会因为每次的迭代量太小而变得低效. 解决 hard
case 的方法就是在原本的 p(λ) 上加上额外的负曲率方向.

根据以上对子问题最优解的分析, 容易得到求解信赖域子问题的通用算法:
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Algorithm 9: 信赖域子问题的求解算法
输入: g ∈ Rn, G ∈ Rn×n, ∆ > 0

输出: 信赖域子问题的最优解 p∗ ∈ Rn

令 (λ1, q) 为对称阵 G ∈ Rn×n 的最小特征对, 其中 λ1 为最小特征值, ∥q∥ = 1

a = max(0,−λ1) (λ 的取值下界)
if λ1 > 0 then

(G 对称正定)
pN = −G−1g (Newton 下降方向)
if

∥∥pN∥∥ ⩽ ∆ then
p∗ = pN (无约束最小点)
return

end
else if qTg = 0 then

pLS = −(G− λ1I)
−1g 为最小二乘解

if ∥pLS∥2 ⩽ ∆ then
(hard case)
τ =

√
∆2 − ∥pLS∥2

p∗ = pLS + τq

return
end

end
(normal cases)
b = ∥g∥/∆ + a (λ 的取值上界)
在区间 [a, b] 上求方程 ∥p(λ)∥ = ∆ 的解, 输出解 p∗ = p(λ)

上述算法对可能出现的各种情形都进行了处理, 最终信赖域子问题的求解化归为在一个有限区
间 [a, b] 上求解非线性方程 ∥p(λ)∥ = ∆.

5.6 数值求解信赖域子问题的算法

基于以上对 hard case 的一些讨论, 我们介绍一些求解信赖域子问题 (5.7) 的数值算法. 注意
LM 方法仅包含对常数 λk 的简单修正, 因此没有对 hard case 进行额外的处理.
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5.6.1 Hebden 方法

我们讨论非线性函数

φ(λ) = ∥p(λ)∥ −∆ (5.19)

在 [a, b] 上的根 λ 的求解算法, 其中 p(λ) = −(G+ λI)−1g. Hebden 方法的基本思想是用一个
有理函数

φ̄(λ) =
β

α+ λ
−∆ (5.20)

逼近 φ(λ), 其中 α, β ∈ R. 给定 λ ∈ R, 若取 α, β ∈ R 使得 φ(λ) = φ̄(λ) 且 φ′(λ) = φ̄′(λ), 则

α = −λ− φ(λ) + ∆

φ′(λ)
, β = (φ(λ) + ∆)(λ+ α) (5.21)

则由 φ̄(λ) = 0 可以得到

λ = λ− φ(λ) + ∆

∆

φ(λ)

φ′(λ)
(5.22)

显然, 此方程的不动点为 φ(λ) = 0 的解, 因此我们得到 λ(l) 的迭代计算公式:

λ(l+1) = λ(l) − φ(λ(l)) + ∆

∆

φ(λ(l))

φ′(λ(l))
(5.23)

相应的数值算法为

Algorithm 10: Hebden 迭代: 在 [a, b] 上求解 ∥p(λ)∥ = ∆

输入: g ∈ Rn, G ∈ Rn×n, ∆ > 0, 区间 [a, b]

输出: ∥p(λ)∥ = ∆ 的解

λ(0) = −1, λ(1) = λ;
for l = 1, 2, · · · do

pl = −(G+ λ(l)I)−1g

φ(λ(l)) = ∥pl∥ −∆

φ′(λ(l)) = − 1

∥pl∥
pT
l (G+ λ(l)I)−1pl

计算下一步迭代点

λ(l+1) = λ(l) − φ(λ(l)) + ∆

∆

φ(λ(l))

φ′(λ(l))

令 λ(l) = max(λ(l), 1.01a);
end
输出 p(λ) = p(l).
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5.6.2 More-Sorensen 方法

与 Hebden 方法不同, More-Sorensen 方法考虑用 Newton 迭代算法求解非线性方程

φ(λ) =
1

∥p(λ)∥
− 1

∆
(5.24)

的解, 因为 φ(λ) 在 λ = −λ1 处连续, 所以 φ(λ) 具有良好的正则性. Newton 迭代格式为

λ(l+1) = λ(l) − φ(λ(l))

φ′(λ(l))
(5.25)

容易计算

φ(λ) =
∆− ∥p∥
∆∥p∥

, φ′(λ) =
1

∥p∥3
pT(G+ λI)−1p

故
φ(λ)

φ′(λ)
=

∆− ∥p∥
∆

· ∥p∥2

pT(G+ λI)−1p
(5.26)

因此相应的数值算法为

Algorithm 11: More-Sorensen 迭代
输入: g ∈ Rn, B ∈ Rn×n, ∆ > 0, a ⩾ 0, 满足 ∥p(λ)∥ ⩽ ∆ 的初始点

输出: ∥p(λ)∥ = ∆ 的解

λ(0) = −1, λ(1) = λ;
for l = 1, 2, · · · do
如果 |λ(l) − λ(l−1)| < 10−6, 跳出循环;
做 Cholesky 分解 G+ λ(l)I = RTR;
求解 RTRpl = −g, RTql = pl, 然后计算下一步迭代点

λ(l+1) = λ(l) +

(
∥pl∥2

∥ql∥2

)(
∥pl∥ −∆

∆

)
令 λ(l) = max(λ(l), 1.01a);

end
输出 p(λ) = p(l).

在上述方法中可以证明

∥ql∥2 = pT
l (G+ λ(l))−1pl
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5.6.3 Dogleg 方法

Dogleg 方法是对 Cauchy 点的一个简单改进, 它只能应用于 Hesse 矩阵 G ∈ Rn×n 对称正定的

情形. 设
pU = − gTg

gTGg
g

是负梯度方向上的无约束最小点, 而

pN = −G−1g

是 Newton 方法给出的最小点, 则 Dogleg 方法在一条折线

p̃(τ) =

τp
U , 0 ⩽ τ ⩽ 1

pU + (τ − 1)(pN − pU ), 1 ⩽ τ ⩽ 2

上计算目标函数的最小值. 可以证明 Dogleg 折线具有如下性质:

引理 5.2 (Dogleg 折线) 设 G ∈ Rn×n 对称正定, 则

(1) ∥p̃(τ)∥ 关于 τ 单调递增;

(2) m(p̃(τ)) 关于 τ 单调递减.

因此, 为了计算 Dogleg 点, 只需计算 Dogleg 折线与边界 B(0,∆) 的交点.

5.6.4 二维子空间极小化方法

二维子空间极小化方法的思想是在 Rn 的一个二维子空间上求解 f(x) 的最小值. 当 B ∈ Rn×n

正定时, 考察由 g,B−1g 生成的二维子空间

min
p∈Rn

m(p) = f + gTp+
1

2
pTBp, s.t. ∥p∥ ⩽ ∆, p ∈ span[g,B−1g] (5.27)

则 (5.27) 的解可以作为子问题 (5.7) 的近似解. 当 B 非正定时, 取定 α > 0 使得 B +αI 正定,
则相应的极小化问题为

min
p∈Rn

m(p) = f + gTp+
1

2
pTBp, s.t. ∥p∥ ⩽ ∆, p ∈ span[g, (B + αI)−1g] (5.28)
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一般地, 二维子空间方法由如下算法给出:
Algorithm 12: 二维子空间极小化方法
输入: g ∈ Rn, B ∈ Rn×n, ∆ > 0

输出: 信赖域子问题 (5.7) 的近似解
令 (λ1, q) 为对称阵 B ∈ Rn×n 的最小特征对, 其中 λ1 为最小特征值, ∥q∥ = 1

取定常数 ε0 = 10−6

if λ1 ⩾ ε0 then
(B 对称正定)
pB = −B−1g (Newton 下降方向)
if

∥∥pN∥∥ ⩽ ∆ then
p = pB (无约束极小点)
return

else
S = span[g,−B−1g] (构造二维子空间)

end
else if |λ1| < ε0 then

(B 几乎奇异)
p = pC (Cauchy 点)
return

else
(B 为不定矩阵)
选择常数 α = 1.5|λ1| ∈ (−λ1,−2λ1]

p = −(B + αI)−1g

if ∥p∥ ⩽ ∆ then

γ = −pTq +

√
(pTq)2 +∆2 − ∥p∥2

p = p+ γq (hard case 增加的额外项)
return

else
S = span{g, p} (构造二维子空间)

end
end
在二维子空间 S 上极小化二次函数 m(p), 得到近似的最优解 p∗

在上述算法中, 我们对于 ∥(B + αI)−1g∥ ⩽ ∆ 使用了类似于 hard case 的处理方式. 当 B 是不

定矩阵时, 可以通过在
p = −(B + αI)−1g
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加上负曲率方向 q 来使得 ∥p+ γq∥ = ∆. 容易验证, 此式等价于方程

γ2 + 2γpTq = ∆2 − ∥p∥2 (5.29)

此方程的解恰好为 γ = −pTq +

√
(pTq)2 +∆2 − ∥p∥2.

在以上算法中, 仍需解决的问题是求解一般形式的二维子空间极小化问题

min
p∈Rn

m(p) = f + gTp+
1

2
pTBp, s.t. ∥p∥ ⩽ ∆, p ∈ span[m1,m2] (5.30)

其中 m1,m2 是二维子空间 S 的一个标准正交基. 利用 (m1,m2), 下降步 p ∈ Rn 可以表示为

p = xm1 + ym2 =Mq (5.31)

其中 M = [m1,m2] ∈ Rn×2, q ∈ R2. 因此 (5.30) 变为

m(q) = f + gTMq +
1

2
qTMTBMq = f + UTq +

1

2
qTGq (5.32)

这里我们定义 U = MTg ∈ R2 和 G = MTBM ∈ R2. 经过以下推导, 二维子空间极小化问题
(5.30) 简化为

min
q∈R2

m(q) = f + UTq +
1

2
qTGq, s.t. ∥q∥ ⩽ ∆ (5.33)

它可以转化为一个四次多项式的根问题. 具体的细节这里不再赘述.

6 约束优化理论

6.1 约束优化的基本概念

考虑约束优化问题

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E

ci(x) ⩾ 0, i ∈ I

(6.1)

其中 f(x) 是目标函数, ci(x) 是约束函数. i ∈ E 时为等式约束, i ∈ I 时为不等式约束.

定义 6.1 约束优化问题 (6.1) 的可行域为

X = {x ∈ Rn : ci(x) = 0, i ∈ E; ci(x) ⩾ 0, i ∈ I} (6.2)

因而约束优化问题转化为 f(x) 在 X 上的最小值的求解.
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定义 6.2 若 x∗ ∈ X 满足

f(x) ⩾ f(x∗), ∀x ∈ X (6.3)

则 x∗ 是问题的全局极小点(最优解). 如果对 x ̸= x∗ 都有

f(x) > f(x∗), ∀x ̸= x∗ (6.4)

则 x∗ 是问题的严格全局极小点(最优解).

类似地还可以定义局部极小点和严格局部极小点. 在给定的点 x ∈ Rn 处, 约束条件 ci(x) 称为

积极的, 如果在此处 ci(x) = 0. 引入定义

定义 6.3 对任何 x ∈ Rn, 称下标集合

A(x) = E ∪ I(x) (6.5)

为积极约束集合, 其中
I(x) = {i : ci(x) ⩽ 0} (6.6)

简而言之, 积极约束描述来优化问题的临界状态: 可行方向的范围受到积极约束的限制.

6.2 一阶必要条件

判断一个点 x∗ 是否为局部极小点主要依赖于它在局部的性质, 因此可行方向在最优性条件中
起到重要的作用.

定义 6.4 设 x∗ ∈ X, d ∈ Rn 称为可行方向, 如果存在 δ > 0 使得

x∗ + td ∈ X, ∀t ∈ [0, δ] (6.7)

x∗ 处的所有可行方向的集合记为 FD(x∗, X).

沿着可行方向的一整条线段都落在可行域中.

定义 6.5 设 x∗ ∈ X, d ∈ Rn, x∗ 称为线性化可行方向, 如果

dTci(x) = 0, i ∈ E (6.8)

dTci(x) ⩾ 0, i ∈ I(x∗) (6.9)

x∗ 处的所有线性化可行方向记为 LFD(x∗, X).

在线性化可行方向上,
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• 等式约束的 ci(x) 应当不变, 即 dTci(x) = 0;

• 有效不等式约束的 ci(x) 应当增加, 即 dTci(x) ⩾ 0;

• 无效不等式约束的 ci(x) 没有限制.

因此其定义如上所示.

定义 6.6 设 x∗ ∈ X, d ∈ Rn, 如果存在序列 dk 和 δk → 0 使得

x∗ + δkdk ∈ X (6.10)

且 dk → d, δk → 0, 则 d 称为 x∗ 处的序列可行方向, 记为 SFD(x∗, X).

三种方式定义的可行方向有如下关系:

引理 6.1 若 x∗ ∈ X 且所有约束函数在 x∗ 处可微, 则

FD(x∗, X) ⊂ SFD(x∗, X) ⊂ LFD(x∗, X) (6.11)

可行方向对 d ∈ Rn 的约束太强, 通常不会用到. 线性化可行方向对应于线性方程组的解, 在实
际中较为常用. 序列可行方向在局部极小点的判断中较为有用.

引理 6.2 (一阶必要条件: 序列可行) 设 x∗ 是局部极小点, 若 f(x), ci(x) 在 x∗ 处可微, 则

dT∇ci(x∗) ⩾ 0, ∀d ∈ SFD(x∗, X) (6.12)

上述定理揭示了局部极小点处序列可行方向的性质.

引理 6.3 (Farkas 引理) 设 a0, ai(i = 1, · · · , l), bi(i = 1, · · · , l′) ∈ Rn, 则线性方程组

dTai = 0, i = 1, · · · , l (6.13)

dTbi ⩾ 0, i = 1, · · · , l′ (6.14)

dTa0 < 0 (6.15)

无解当且仅当存在实数 λi(i = 1, · · · , l) 和非负实数 µi(i = 1, · · · , l′) 使得

a0 =
l∑

i=1

λiai +
l′∑

i=1

µibi (6.16)

在 Farkas 引理中, dTai = 0 对应于等式约束, dTbi ⩾ 0 对应于不等式约束, dTa0 < 0 对应于下

降方向的条件. 如果可行方向上没有下降方向, 则梯度方向 a0 一定是约束梯度方向的线性组

合, 并且不等式约束上的分量非负. 基于这种原因, 我们常常希望所谓的约束规范条件成立.

44



定义 6.7 (约束规范条件) 设 x∗ ∈ X, 称 x∗ 处约束规范条件满足, 如果

LFD(x∗, X) = SFD(x∗, X) (6.17)

注意, 在各种可行方向和约束规范条件的定义中, 我们没有涉及目标函数的性质. 本质上说, 约
束规范条件是对定义域性质和约束条件的刻画.

下面我可以得到局部极小点满足的一阶必要条件:

定理 6.1 (一阶必要条件: KKT) 设 x∗ 是局部极小点, 如果 x∗ 处约束规范条件满足, 即

SFD(x∗, X) = LFD(x∗, X) (6.18)

则必存在 λ∗ 使得

∇f(x∗) =
∑

i∈E∪I(x∗)

λ∗
i∇ci(x∗) (6.19)

且

λ∗
i ⩾ 0, λ∗

i ci(x
∗) = 0, i ∈ I (6.20)

证明 根据一阶必要条件和约束优化规范条件,

dT∇ci(x∗) ⩾ 0, ∀d ∈ LFD(x∗, X) (6.21)

故下面的线性方程组无解:

dT∇ci(x∗) = 0, i ∈ E (6.22)

dT∇ci(x∗) ⩾ 0, i ∈ I(x∗) (6.23)

dT∇f(x∗) < 0 (6.24)

因此, 由 Farkas 引理, 存在 λ∗
i (i ∈ E ∪ I(x∗)) 使得

∇f(x∗) =
∑
i∈E

λ∗
i∇ci(x∗) +

∑
i∈I(x∗)

λ∗
i∇ci(x∗) (6.25)

其中 λ∗
i ⩾ 0, i ∈ I(x∗). 反过来, 我们也可以通过 KKT 条件来得到一阶必要条件:

dT∇f(x∗) =
∑
i∈E

λ∗
i d

T∇ci(x∗) +
∑

i∈I(x∗)

λ∗
i d

T∇ci(x∗) ⩾ 0 (6.26)

因此 (6.21) 成立. 综上, KKT 条件等价于 (6.21). 我们可以使用直观的方式来理解 KKT 条件:

• 最优性: ∇f(x∗) =
∑

i∈E∪I

λ∗
i∇ci(x∗)
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• 非负性: λ∗
i ⩾ 0, i ∈ I

• 互补性: λ∗
i ci(x

∗) = 0, i ∈ I

一种更直观的方式是利用有效约束改写 KKT 条件:

• 最优性: ∇f(x∗) =
∑

i∈A(x∗)

λ∗
i∇ci(x∗)

• 非负性: λ∗
i ⩾ 0, i ∈ I(x∗)

KKT 条件里的 x∗ 称为 KKT 点, λ∗ 称为 Lagrange 乘子. 本质上, 我们只需要有效约束上的
λ∗
i 就可以判断是否为 KKT 点.

例 1 考虑约束优化问题

min
x∈Rn

−x1 − x2 (6.27)

s.t. x2 − x21 ⩾ 0 (6.28)

1− x21 − x22 ⩾ 0 (6.29)

求出该问题的所有 KKT 点.

在该问题中, f(x) = −x1 − x2, 约束函数

c1(x) = x2 − x21, c2(x) = 1− x21 − x22

于是

∇f(x) =

[
−1

−1

]
, ∇c1(x) =

[
−2x1

1

]
, ∇c2(x) =

[
−2x1

−2x2

]
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因此 KKT 条件给出 −1 = −2x1λ1 − 2x1λ2

−1 = λ1 − 2x2λ2

因此 λ2 ̸= 0, 否则 λ1 = −1 < 0. 下面分别讨论 λ1 = 0 和 λ1 ̸= 0 的情形:

• λ1 = 0, 则 x1 = x2, 因此 x1 = x2 = ± 1√
2
. 由于 λ2 > 0, 故 x1 = x2 =

1√
2
, 因此

x∗ =
( 1√

2
,
1√
2

)
, λ∗ =

(
0,

1√
2

)
• λ1 ̸= 0, 则两个约束条件都起作用, 有

1 = x21 + x41

因此

x1 = ±

√√
5− 1

2
, x2 =

√
5− 1

2

但 x1(λ1 + λ2) = 1 > 0, 故 x1 > 0, 从而

x1 =

√√
5− 1

2

因此对应的点 x∗ 和 Lagrange 乘子 λ∗ 为

x∗ = (a, a2), λ∗ =

(
a− 1

2a2 + 1
,

2a+ 1

2a(2a2 + 1)

)
其中

a =

√√
5− 1

2
< 1

因此 λ∗
1 < 0, 故 x∗ 不是 KKT 点！

综上, x∗ = ( 1√
2
, 1√

2
) 是唯一的 KKT 点.

在下面的例子我们将看到, 也可以用 dT∇f(x∗) ⩾ 0 判断给定的点是否为 KKT 点.

例 2 (Nocedal 12.15) Consider the following problem where t is a parameter to be fixed
prior to solving the problem:

min
x

(
x1 −

3

2

)2

+ (x2 − t)4, s.t.


1− x1 − x2

1− x1 + x2

1 + x1 − x2

1 + x1 + x2

 ⩾ 0
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(a) For what values of t does the point x∗ = (1, 0)T satisfy the KKT conditions?

(b) Show that when t = 1, only the first constraint is active at the solution, and find the
solution.

在此问题中, 目标函数为 f(x) = (x1 − 3
2
)2 + (x2 − t)4, 约束函数 c1(x), c2(x), c3(x), c4(x) 由上

述不等式给出. 由于

∇f(x) =

[
2x1 − 3

4(x2 − t)3

]
故在可行点 x 处的 KKT 条件为 2x1 − 3 = −λ1 − λ2 + λ3 + λ4

4(x2 − t)3 = −λ1 + λ2 − λ3 + λ4

(a) 在 x∗ = (1, 0) 处, 约束条件 c3(x), c4(x) 不起作用, 因此 λ3 = λ4 = 0, 于是可得 −1 = −λ1 − λ2

−4t3 = −λ1 + λ2

因此得到 Lagrange 乘子为
λ1 =

1

2
+ 2t3, λ2 =

1

2
− 2t3

根据 λ1, λ2 ⩾ 0 的条件, x∗ 是 KKT 点当且仅当 λ1, λ2 ⩾ 0, 即 |t| ⩽ 1
3√4

.

(b) 分情况讨论:

• 当 t = 1 时, 我们首先证明约束 c1(x) = 0 必须被满足. 否则, 若 x ∈ R2 使得 c1(x) > 0,
则 d = (1, 1) 是线性化可行方向, 但是沿着 d 的方向

dTg(x) = (2x1 − 3) + 4(x2 − 1)3 < 0
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故 x 一定不是 KKT 点. 在 KKT 点处, 必须有 c1(x) = 0 满足.

• 在 x = (1, 0) 处, 线性化可行方向 d = (−1, 1) 使得

dTg(x) = −(2x1 − 3) + 4(x2 − 1)3 = −3 < 0

因此 x = (1, 0) 不是 KKT 点.

• 在 x = (0, 1) 处, 线性化可行方向 d = (1,−1) 使得

dTg(x) = (2x1 − 3)− 4(x2 − 1)3 = −3 < 0

因此 x = (0, 1) 不是 KKT 点.

• 因此, KKT 点只能出现在 c1(x) = 0 对应的开线段上. 此时 c2(x), c3(x), c4(x) 均不起作

用, 故 λ2 = λ3 = λ4 = 0, 且由 KKT 条件可得
2x1 − 3 = −λ1

4(x2 − 1)3 = −λ1

x1 + x2 = 1

其解为 x1 ≈ 0.7281.

综上, 此问题在 c1(x) = 0 上存在唯一的 KKT 点.

例 3 考虑约束优化问题

min
x∈R2

(x1 − 2)2 + x22 (6.30)

s.t. (1− x1)
3 − x2 ⩾ 0 (6.31)

x1, x2 ⩾ 0 (6.32)

回答以下问题:

(1) 求出该问题的所有 KKT 点;

(2) 求问题的局部极小点.
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目标函数为

f(x) = (x1 − 2)2 + x22

约束函数为

c1(x) = (1− x1)
3 − x2, c2(x) = x1, c3(x) = x2

因此

∇f(x) =

[
2(x1 − 1)

2x2

]
, ∇c1(x)

[
−3(1− x1)

2

−1

]
, ∇c2(x) =

[
1

0

]
, ∇c3(x) =

[
0

1

]
相应的 KKT 条件为 2(x1 − 2) = −3λ1(1− x1)

2 + λ2

2x2 = −λ1 + λ3

由于 λ1 ⩾ 0, 故 λ3 ⩾ 2x2. 下面分 3 种情形讨论上述方程的解:

• 若 x2 ̸= 0, 则 λ3 > 0, 因此 c3(x) = x2 = 0 为有效约束. 但这意味着 x2 = 0, 矛盾!

• 因此必须 x2 = 0. 若 x1 ∈ [0, 1), 则在 x∗ = (x1, 0) 处, 沿着方向 d = (1, 0) 一定会使目标

函数 f(x) 的值下降, 因为
dT∇f(x) = 2(x1 − 2) < 0

但 d = (1, 0) ∈ LFD(x∗, X) 为线性化可行方向, 与 KKT 条件矛盾! 因此 x1 ∈ [0, 1) 时,
x∗ 不可能是 KKT 点.

• 剩下唯一的可能性: x∗ = (1, 0). 此时 c2(x) = x1 为无效约束, λ2 = 0. 但 KKT 条件给出−2 = λ2

0 = −λ1 + λ3
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矛盾!

综上, 该问题不存在 KKT 点.

但是, 这显然不意味着这个问题没有局部极小点. 实际上, 除了 x∗ = (1, 0) 之外, 其它所有
点处都有约束规范条件成立, 因此那些点一定不是局部极小点. 因此, 唯一的局部极小点就是
x∗ = (1, 0), 但是在这个点, 约束规范条件不成立.

下面我们给出使得约束规范条件 (6.17) 成立的若干条件:

定理 6.2 (约束规范条件) 若以下之一成立, 则约束规范条件 SFD(x∗, X) = LFD(x∗, X) 成立:

1. 所有 ci(x), i ∈ A(x∗) 是线性函数.

2. LICQ: ∇ci(x∗), i ∈ A(x∗) 线性无关.

综合以上结果, 我们可以给出完整的一阶最优条件刻画:

定理 6.3 (一阶必要条件) 设 x∗ 是局部极小点, 如果 ∇ci(x), i ∈ A(x∗) 线性无关, 则 x∗ 是

KKT 点, 即存在 Lagrange 乘子 λ∗ 使得 KKT 条件成立.

6.3 一阶充分条件

我们讨论局部极小点的一阶充分条件.

定理 6.4 设 x∗ ∈ X. 如果 f(x) 和 ci(x) 在 x∗ 处可微, 且

dT∇f(x∗) > 0, ∀0 ̸= d ∈ SFD(x∗, X) (6.33)

则 x∗ 是严格局部极小点.

由于 SFD(x∗, X) ⊂ LFD(x∗, X), 因此我们得到以下结果:

推论 6.1 设 x∗ ∈ X. 如果 f(x) 和 ci(x) 在 x∗ 处可微, 且

dT∇f(x∗) > 0, ∀0 ̸= d ∈ LFD(x∗, X) (6.34)

则 x∗ 是严格局部极小点.

在实际中, 更加实用的判断极小点的方式是直接验证不等式:
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定理 6.5 (实用充分条件) 设 x∗ 是约束优化问题的 KKT 点, λ 是相应的 Lagrange 乘子. 如
果

L(x∗, λ) ⩽ L(x, λ) (6.35)

在 x∗ 的某个邻域 B(x∗, δ) 中成立, 则 x∗ 是局部极小点. 若不等式对 x ∈ Rn 恒成立, 则 x∗ 是

全局极小点.

在 KKT 点处, 有 L(x∗, λ) = f(x∗). 由

L(x, λ) = f(x)−
n∑

i=1

λici(x) ⩾ L(x∗, λ) = f(x∗)

可以得到, 当 x 位于可行域中时,

f(x) ⩾ f(x∗) +
n∑

i=1

λici(x) ⩾ f(x∗)

因此 x∗ 为局部极小点.

例 4 求解如下的约束优化问题

minx21 + x22 (6.36)

s.t. x21 + x2 − 1 ⩾ 0 (6.37)

首先我们求出问题的 KKT 点. 目标函数 f(x) = x21 + x22, 约束函数 c(x) = x21 + x2 − 1, 故

∇f(x) =

[
2x1

2x2

]
, ∇c(x) =

[
2x1

1

]

因此 KKT 条件给出 2x1 = 2x1λ

2x2 = λ

按照 x1 分情况讨论:

• 如果 x1 ̸= 0, 则 λ = 1, x2 = 1
2
, 并且约束有效. 此时 x1 =

1√
2
(或者相应的负值). 故

x∗ =
( 1√

2
,
1

2

)
, λ∗ = 1

它是一个 KKT 点. 为了证明它是局部极小点, 我们证明

L(x, λ∗) ⩾ f(x∗)
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对 x ∈ R2 恒成立. 事实上,

L(x, λ∗) = f(x)− c(x)

= x22 − x2 + 1

⩾ 3

4
= f(x∗)

因此当 x 位于可行域中时

f(x) ⩾ f(x∗) + c(x) ⩾ f(x∗)

因此 x∗ = ( 1√
2
, 1
2
) 是局部极小点.

• 如果 x1 = 0, 则 x2 ⩾ 1, 故 λ2 > 0, 为有效约束. 因此 x2 = 1, λ = 2, 故

x∗ = (0, 1), λ∗ = 2

它是一个 KKT 点. 为了证明它不是局部极小点, 考虑

xε = (ε, 1− ε2), ε > 0

则 xε 位于可行域中, 且 ε 充分小时,

f(xε) = ε2 + (1− ε2)2 < f(x∗)

故 x∗ 不是局部极小点.

综上, 该问题的极小点为 x∗ = (± 1√
2
, 1
2
).

我们对一阶最优性条件做一总结:

必要 dT∇f(x∗) ⩾ 0, ∀d ∈ SFD(x∗, X)
约束规范⇐========⇒ dT∇f(x∗) ⩾ 0, ∀d ∈ LFD(x∗, X): KKT 条件

充分 dT∇f(x∗) > 0, ∀0 ̸= d ∈ SFD(x∗, X) ⇐========= dT∇f(x∗) > 0, ∀0 ̸= d ∈ LFD(x∗, X)

实用充分 L(x∗, λ) ⩽ L(x, λ),∀x ∈ Rn

表 1:: 一阶最优性条件

求 KKT 点的解题策略:

1. 求解 KKT 方程组

2. 验证 x 不是 KKT 点时, 取一线性化可行方向 d 使得 dT∇f(x) < 0
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验证局部极小点的解题策略:

1. 排除其它所有可能是局部极小点的地方 (适用于 KKT 点只有 1 个的情形)

2. 当约束函数和目标函数简单时, 使用基本不等式证明

3. 证明 L(x∗, λ) ⩽ L(x, λ), ∀x ∈ Rn

4. 使用定义证明某一点不是局部极小点

6.4 二阶最优性条件

二阶最优性条件主要适用于已经求出 KKT 点, 但是利用已知的一阶条件不足以判断它是否是
最优的情形. 不过, 在实际情形中, 我们可以用其它的方法来判断某个点是否是最优的, 比如目
标函数比较简单的情形. 计算 Lagrange 函数的二阶导数实际上还是相对复杂的, 零约束子空
间实际上也没那么好求.

下面我们假设在某个 x∗ 处, 一阶必要条件满足, 但充分条件不满足, 即:

dT∇f(x∗) ⩾ 0, ∀d ∈ SFD(x∗, X) (6.38)

dT∇f(x∗) = 0, ∃0 ̸= d ∈ SFD(x∗, X) (6.39)

则这些条件不足以判断 x∗ 是否是局部极小点. 假设约束规范条件成立, 则第一个条件给出
KKT 条件, 因此

∇f(x∗) =
∑

i∈A(x∗)

λ∗
i∇ci(x∗) (6.40)

于是 d 使得 dT∇f(x∗) = 0 当且仅当

λ∗
i d

T∇ci(x∗) = 0, ∀i ∈ I(x∗) (6.41)

自然地, 我们引入如下定义

定义 6.8 设 x∗ 是 KKT 点且 λ∗ 为相应的 Lagrange 乘子. 若 d ∈ LFD(x∗, X) 且

λ∗
i d

T∇ci(x∗) = 0, ∀i ∈ I(x∗) (6.42)

则 d 称为 x∗ 处的线性化零约束方向. x∗ 处的所有线性化零约束方向的集合记为 G(x∗, λ∗).

关于线性化零约束方向 d 的评注:

• d 首先得是一个可行方向;
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• d 的定义与目标函数没有直接关系, 间接关系是最优性条件:

∇f(x∗) =
∑
i∈E

λ∗
i∇ci(x∗) +

∑
i∈I(x∗)

λ∗
i∇ci(x∗) (6.43)

一方面, d 可行意味着
dT∇ci(x∗) = 0, i ∈ E

另一方面, d 是线性化零约束方向意味着

λ∗
i d

T∇ci(x∗) = 0, i ∈ I(x∗)

因此在 x∗ 处沿着 d 的方向 f(x) 的值不改变. 这是它称为线性化零约束方向的原因.

• 在老师的笔记中, 线性化零约束方向被定义为

LFD1(x
∗, X) =

d ̸= 0 :

dT∇c(x∗) = 0, i ∈ E

dT∇c(x∗) = 0, i ∈ I(x∗), λ∗
i ̸= 0

dT∇c(x∗) ⩾ 0, i ∈ I(x∗), λ∗
i = 0

 (6.44)

这两种定义是等价的.

类似地还可以定义序列零约束方向:

定义 6.9 设 x∗ 是 KKT 点且 λ∗ 为相应的 Lagrange 乘子. 如果存在序列 dk 和 δk > 0 使得

x∗ + δkdk ∈ X

m∑
i=1

λ∗
i ci(x

∗ + δkdk) = 0

且 dk → d 和 δk → 0, 则称 d 是 x∗ 处的序列零约束方向.

在上面的定义中, 上面的等式等价于

λ∗
i ci(x

∗ + δkdk) = 0, ∀i ∈ I

事实上, 由于 x∗ + δkdk 是可行点, 故

c(x∗ + δkdk) = 0, i ∈ E

引理 6.4 设 x∗ 是 KKT 点且 λ∗ 是相应的 Lagrange 乘子, 则

S(x∗, λ∗) ⊂ G(x∗, λ∗) (6.45)
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在等式
m∑
i=1

λ∗
i

ci(x
∗ + δkdk)− ci(x

∗)

δk
= 0 (6.46)

中令 k → ∞, 有
m∑
i=1

λ∗
i d

T∇ci(x∗) = 0 (6.47)

对于等式约束, 已经有 dT∇ci(x∗) = 0; 对于无效不等式约束, 有 λ∗
i = 0, 因此上式变成∑

i∈I(x∗)

λ∗
i d

T∇ci(x∗) = 0 (6.48)

由于其中的每一项非负, 故每一项均为 0. 下面我们给出二阶必要条件和充分条件:

定理 6.6 (二阶必要条件) 设 x∗ 是局部极小点, λ∗ 是 Lagrange 乘子, 则

dT∇2
xxL(x

∗, λ∗)d ⩾ 0, ∀d ∈ S(x∗, λ∗) (6.49)

注意: x∗ 是局部极小点时, 由约束规范条件 x∗ 是 KKT 点, 故 λ∗ 一定存在.

定理 6.7 (二阶充分条件) 设 x∗ 是 KKT 点, λ∗ 是相应的 Lagrange 乘子. 若

dT∇2
xxL(x

∗, λ∗)d > 0, ∀0 ̸= d ∈ G(x∗, λ∗) (6.50)

则 x∗ 是严格极小点.

关于二阶条件我们有以下评注:

1. 为什么是Lagrange 函数 L(x, λ∗) 而不是目标函数 f(x)? 因为 Lagrange 函数才满足

∇xL(x
∗, λ∗) = 0 (6.51)

即一阶导数为 0. 对这样的函数考虑二阶导数才合理.

2. 为什么只在零约束方向上考虑二阶导数? 因为在其它方向上, f(x) 沿着 d 的方向一定是

递增的, 也就是一阶条件已经够用了, 没必要考虑二阶条件.

6.5 鞍点理论

对给定的约束优化问题 (6.1), 考虑 Lagrange 函数

L(x, λ) = f(x)−
∑

i∈E∪I

λici(x) (6.52)

其中 x ∈ Rn, λ ∈ K, 区域 K 定义为

K = {λ : λi ⩾ 0, i ∈ I} (6.53)
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定义 6.10 x̄ ∈ Rn 和 λ̄ ∈ K 称为 L(x, λ) 的鞍点, 如果对任何 x ∈ Rn 和 λ ∈ K, 都有

L(x̄, λ) ⩽ L(x̄, λ̄) ⩽ L(x, λ̄) (6.54)

鞍点理论最重要的结果是: 鞍点一定是最优解.

定理 6.8 (鞍点定理) 设 (x̄, λ̄) 是 L(x, λ) 的鞍点, 则 x̄ 是约束优化问题 (6.1) 的最优解.

首先证明: L(x̄, λ) ⩽ L(x̄, λ̄) 恒成立给出 x̄ 是可行点. 由 L(x, λ) 的表达式, 可得

f(x̄)−
∑

i∈E∪I

λici(x̄) ⩽ f(x̄)−
∑

i∈E∪I

λ̄ici(x̄), λ ∈ K (6.55)

即 ∑
i∈E

λ̄ici(x̄) +
∑
i∈I

λ̄ici(x̄) ⩽
∑
i∈E

λici(x̄) +
∑
i∈I

λici(x̄) (6.56)

当 i ∈ E 时, 必须 ci(x̄) = 0; 当 i ∈ I 时, 必须 ci(x̄) ⩾ 0. 因此 x̄ 是可行点.

下面考察右端的不等式. 当 x 是可行点时, 由 L(x̄, λ̄) ⩽ L(x, λ̄) 可以得到

f(x̄) ⩽ f(x)−
∑
i∈I

λici(x) (6.57)

故

f(x) ⩾ f(x̄) +
∑
i∈I

λici(x) ⩾ f(x̄) (6.58)

因此 x̄ 一定是最优解. 鞍点的这一条性质反过来不一定对.

定理 6.9 (鞍点逆定理) 设凸规划问题是强相容的, 则若 x∗ 是约束优化问题的最优解, 则存在
λ∗ 使得 (x∗, λ∗) 是 Lagrange 函数 L(x, λ) 的鞍点, 且 λ∗

i ci(x
∗) = 0, i ∈ I.

求一个 Lagrange 函数的鞍点的方法:

1. 求出约束优化问题的最小点;

2. 求出最小点的 Lagrange 乘子;

3. 验证相应的 (x∗, λ∗) 是鞍点.

6.6 对偶问题

根据鞍点理论,最优点的计算可以通过 L(x, λ)的鞍点的计算得到. 更具体地说,计算分为 2步:

1. 将 L(x, λ) 对 x ∈ Rn 取最小值得到 θ(λ);
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2. 对 θ(λ) 在定义域 K 取最大值.

我们可以将上述思想说明得更加形式化:

定义 6.11 (对偶问题) 对于约束优化问题

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E

ci(x) ⩾ 0, i ∈ I

设它的 Lagrange 函数为
L(x, λ) = f(x)−

∑
i∈E∪I

λici(x)

其中 x ∈ Rn, λ ∈ K, 且
θ(λ) = min

x∈Rn
L(x, λ)

则相应的对偶问题为

min θ(λ)

s.t. λi ⩾ 0, i ∈ I

我们用一些简单的例子来说明上述思想.

例 5 考虑约束最优化问题

min x1 + x2 (6.59)

s.t. x21 + x22 ⩽ 2 (6.60)

在此问题中, f(x) = x1 + x2, c(x) = 2− x21 − x22, 因此 Lagrange 函数为

L(x, λ) = f(x)− λc(x)

= λ(x21 + x22) + x1 + x2 − 2λ

当 λ > 0 时, 该函数的最小值在
x1 = x2 = − 1

2λ

处取到. 因此
θ(λ) = max

x
L(x, λ) = − 1

2λ
− 2λ ⩽ −2

且等号成立当且仅当 λ = 1
2
. 因此最优点为 x∗ = (−1,−1), 相应的 Lagrange 乘子 λ∗ = 1

2
.
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例 6 考虑约束最优化问题

min x21 + x22 (6.61)

s.t. x1 + x2 ⩾ 4 (6.62)

x1, x2 ⩾ 0 (6.63)

(6.64)

此问题的 Lagrange 函数为

L(x, λ) = x21 + x22 − λ1(x1 + x2 − 4)− λ2x1 − λ3x2

对 x1, x2 取最小值, 可以得到

θ(λ) = min
x
L(x, λ) = −(λ1 + λ2)

2

4
− (λ1 + λ3)

2

4
+ 4λ1

其中 λ1, λ2, λ3 ⩾ 0. 下面求 θ(λ) 的最大值.

θ(λ) ⩽ −λ
2
1

2
+ 4λ1 ⩽ 8

等号成立当且仅当 λ1 = 4, λ2 = λ3 = 0. 此时

x1 =
λ1 + λ2

2
= 2, x2 =

λ1 + λ3

2
= 2

因此最优点 x∗ = (2, 2).

例 7 考虑优化问题

min x1

s.t. |x1|+ |x2| ⩽ 1

求出该问题的对偶问题并求解之.

该问题的目标函数为 f(x) = x1, 约束函数为

c1(x) = 1− x1 − x2

c2(x) = 1− x1 + x2

c3(x) = 1 + x1 − x2

c4(x) = 1 + x1 + x2
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因此 Lagrange 函数为

L(x, λ) = f(x)− λ1c1(x)− λ2c2(x)− λ3c3(x)− λ4c4(x)

= x1 + λ1(x1 + x2 − 1) + λ2(x1 − x2 − 1) + λ3(−x1 + x2 − 1) + λ4(−x1 − x2 − 1)

= x1(1 + λ1 + λ2 − λ3 − λ4) + x2(λ1 − λ2 + λ3 − λ4)− λ1 − λ2 − λ3 − λ4

定义区域

K =

λ ∈ R4 :

1 + λ1 + λ2 − λ3 − λ4 = 0

λ1 − λ2 + λ3 − λ4 = 0

λ1, λ2, λ3, λ4 ⩾ 0


则在 K 上有 λ4 = λ1 +

1
2
, λ3 = λ2 +

1
2
. 因此对偶 Lagrange 函数为

θ(λ) =

− λ1 − λ2 − λ3 − λ4, λ ∈ K

−∞, λ ̸∈ K

因此 λ ∈ K 时,
θ(λ) ⩽ −1

且等号成立当且仅当 λ1 = λ2 = 0, λ3 = λ4 = 0. 由于 c3(x) = c4(x) = 0 为有效约束, 故
x1 = −1, x2 = 0, 即原问题的最优点为 x∗ = (−1, 0).

现在一个自然的问题是, 原问题与对偶问题的最优解是否是相同的, 即是否有

min
x∈X

f(x) = max
λ∈K

θ(λ)

定理 6.10 (弱对偶定理) 设 x ∈ X, λ ∈ K, 则

f(x) ⩾ θ(λ)

按照 θ(λ) 的定义,

θ(λ) = min
x∈Rn

{f(x)−
∑

i∈E∪I

λici(x)} ⩽ f(x)−
∑

i∈E∪I

λici(x)

当 x ∈ X, λ ∈ K 时, ∑
i∈E∪I

λici(x) ⩾ 0

因此 θ(λ) ⩽ f(x). 由弱对偶定理可以得到

inf
x∈X

f(x) ⩾ sup
λ∈K

θ(λ)
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定义 6.12 (对偶间隙) 给定约束优化问题 f(x) 和相应的对偶函数 θ(λ), 定义其对偶间隙为

γ = inf
x∈X

f(x)− sup
λ∈K

θ(λ) (6.65)

下面我们的任务是探讨在何种情形下对偶间隙为 0.

定义 6.13 (Slater 条件) 对凸规划问题, 若

D =

x ∈ Rn :
ci(x) = 0, i ∈ E

ci(x) > 0, i ∈ I


非空, 则称约束函数满足 Slater 条件.

定理 6.11 (强对偶定理) 对凸规划问题, 若 Slater 条件满足, 则对偶间隙 γ = 0.

考虑一个具体的例子: 二次规划.

min
x∈Rn

f(x) =
1

2
xTGx+ gTx (6.66)

s.t. aT
i x = bi, i ∈ E (6.67)

aT
i x ⩾ bi, i ∈ I (6.68)

此问题的 Lagrange 函数为

L(x, λ) = f(x)− λT(Ax− b)

=
1

2
xTGx+ gTx− λT(Ax− b)

=
1

2
xTGx+ xT(g −ATλ) + bTλ

其中 λ ∈ K, 区域 K 定义为

K =

λ :
λi = 0, i ∈ E

λi ⩾ 0, i ∈ I


因此对偶函数

θ(λ) = min
x∈Rn

L(x, λ) = −1

2
(−g +ATλ)TG−1(−g +ATλ) + bTλ

原优化问题的对偶函数为

max 1

2
(−g +ATλ)TG−1(−g +ATλ) + bTλ (6.69)

s.t. λi ⩾ 0, i ∈ I (6.70)
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下面我们来计算对偶间隙 (y = −g +ATλ):

f(x)− θ(λ) = λT(Ax− b) +
1

2
(xTGx+ yTG−1y + 2xTy) (6.71)

其中当 x ∈ D, λ ∈ K 时, λT(Ax − b) ⩾ 0, 因此对偶间隙非负. 可以验证, 对偶间隙为 0 当且
仅当

λT
2 (Ax2 − b2) = 0

且

ATλ = Gx+ g

这恰好就是原优化问题对应的 KKT 条件! 对偶理论主要用于线性规划和二次规划.

7 可行方向法

在前面的章节我们已经讨论过约束优化问题的基本理论: KKT 条件. 在本节我们讨论求解约
束优化问题的基本算法. 有一类简单的罚函数方法, 它通过增加罚函数将约束问题转化为无约
束问题. 例如, 对于等式约束问题

min f(x)

s.t. ci(x) = 0, i ∈ E

则相应的罚函数为

p(x, σ) = f(x) + σ
∑
i∈E

c2i (x) (7.1)

当 σ → +∞ 时, p(x, σ) 的极小点收敛到约束优化问题的极小点.

7.1 可行方向法的一般性质

可行方向法的基本思想是每一步迭代都必须在可行方向 FD(x,D) 上进行. 考虑

min f(x)

s.t. x ∈ D

其中 D 是由等式约束和不等式约束围成的区域:

D =

x ∈ Rn :
ci(x) = 0, i ∈ E

ci(x) ⩾ 0, i ∈ I


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在每一个迭代点 xk, 我们希望找到一个可以使得函数值下降的可行方向, 即找到 d ∈ Rn 使得

dT∇f(xk) < 0, d ∈ FD(xk, D)

这样我们就可以在 d 的方向上进行线搜索, 并且使得函数值严格下降.
Algorithm 13: 可行方向法
输入: 定义域 D, 初始点 x0 ∈ D

输出: 迭代点序列 {xk}
for k = 0, 1, · · · do
找到一个可行下降方向 dk ∈ Rn 使得

dT
k∇f(xk) < 0, dk ∈ FD(xk, D)

如果不存在, 则迭代停止;
在 dk 上进行 (精确) 线搜索得到步长 αk;
更新迭代点 xk+1 = xk + αkdk;

end

在迭代中, 要求 f(xk) 的值严格下降. 值得注意的是, 这样的可行下降方向并非总是存在. 例如
在非线性等式约束

c(x1, x2) = x21 − x2 = 0

上, 可行方向 FD(x,D) = ∅. 幸运的是, 对于凸优化问题, 除全局极小点外, 可行下降方向总是
可以找到的.

引理 7.1 (凸优化存在可行下降方向) 设定义域 D 是凸集,且目标函数 f(x)在 D 上为凸函数,
则在 x 处存在可行下降方向当且仅当 x 不是局部极小点.

当 x 是局部极小点时, 它显然不存在可行下降方向, 否则沿着此方向函数值减少. 当 x 不存在

可行下降方向时, 我们来验证它是局部极小点. 若否, 则存在 x̄ ̸= x, 且 f(x̄) < f(x). 令方向
d = x̄ − x̄, 则必有 dT∇f(x) < 0, 即沿着 d 的方向函数值严格下降. 但是 d ∈ FD(x,D), 故 d

为可行下降方向, 矛盾!

7.2 变量消去法

变量消去法的基本思想是用非基本变量 xN 表示基本变量 xB. 对于线性约束的情形, 设约束条
件为 Ax = b, 其中 A ∈ Rm×n, b ∈ Rm. 设

x =

[
xB

xN

]
, A =

[
AB AN

]
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且 AB ∈ Rm×n 非奇异, 则基本变量 xB 可以表为

xB = A−1
B (b−ANxN ) (7.2)

因此原约束优化问题成为了关于 xN 的无约束优化问题.

我们可以将上面的思想应用于一般的非线性约束中. 考虑等式约束

c(x) =


c1(x)

...
cm(x)

 = 0

并且假设 x 可以分解为

x =

[
xB

xN

]
∈ Rn

其中基本变量 xB ∈ Rm, 非基本变量 xN ∈ Rn−m, 则约束条件可以写为

c(xB, xN ) = 0 (7.3)

假设我们可以唯一地从中解出

xB = φ(xN ) (7.4)

则原约束问题转化为无约束问题

f̃(xN ) := f(φ(xN ), xN )

的优化. 下面的任务是计算 f̃(xN ) 关于 xN 的梯度, 即所谓的简约梯度.

引理 7.2 (简约梯度) 对于无约束优化函数 f̃(xN ) := f(φ(xN ), xN ), 它的简约梯度为

g̃(xN ) = ∇Nf(x)︸ ︷︷ ︸
(n−m)×1

− ∇Nc(x)︸ ︷︷ ︸
(n−m)×m

(∇Bc(x)︸ ︷︷ ︸
m×m

)−1 ∇Bf(x)︸ ︷︷ ︸
m×1

∈ R(n−m)×1 (7.5)

在上面的表达式中, 约束条件 c(x) 视为行向量, 而所有的梯度均为列向量. 首先考虑关于自由
变量 xN 的方程

c(φ(xN ), xN ) = 0

对 xN 取导数, 有

(∇φ(xN ))T∇Bc(x) +∇Nc(x) = 0 =⇒ (∇φ(xN ))T = −∇Nc(x)(∇Bc(x))
−1
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因此 f̃(xN ) 的导数为

g̃(xN ) = ∇Nf(φ(xN ), xN )

= (∇φ(xN ))T∇Nf(x) +∇Bf(x)

= ∇Nf(x)−∇Nc(x)(∇Bc(x))
−1∇Bf(x)

得证. 因此, 下降方向可以选为

• 最速下降方向: d̃ = −g̃(xN )

• 拟 Newton 方向: d̃ = −B−1g̃(xN )

在迭代点 xN 处, 我们对目标函数 f̃(xN + αd) 进行线搜索, 实际上是在对

f(φ(xN + αd), xN + αd)

进行线搜索. 因此, 每一步需要求解一个非线性方程

c(xB, xN + αd) = 0

来得到 xN = φ(xN + αd).

除了直接做变量分离

x =

[
xB

xN

]
来进行变量消去外, 我们也可以考虑一般形式

x = Y︸︷︷︸
n×m

xy + Z︸︷︷︸
n×(n−m)

xz, xy ∈ Rm, xz ∈ Rn−m

其中 AY ∈ Rm×m 非奇异, AZ = 0, 且 Z 的列线性无关. 因此可以得到

Ax = b = AY xy =⇒ xy = (AY )−1b

因此变量 x 可以用自由变量 xz 线性表出:

x = Y (AY )−1b+ Zxz, xz ∈ Rn−m

Y, Z 可以用下面的方法选取: 做 QR 分解

ATP =
[
Y Z

] [R
0

]

我们在本节考虑线性不等式约束其中 P 是任意可逆矩阵.
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7.3 Rosen 投影梯度法

在本节我们考虑不等式约束优化问题

min f(x)

s.t. Ax ⩾ b

7.3.1 投影矩阵及其性质

定义 7.1 (投影矩阵) 矩阵 P ∈ Rn×n 称为投影矩阵, 如果 P 2 = P , 称为正交投影矩阵, 如果
P 2 = P 且 P = PT. 对给定的矩阵 P ∈ Rn×n, 定义

R(P ) = {Px : x ∈ Rn}, N(P ) = {x ∈ Rn : Px = 0}

分别为其值域和零空间.

例 8 设 e ∈ Rn 为任意单位向量, 则
P = I − eeT (7.6)

是正交投影矩阵.

定理 7.1 (正交投影的性质) 若 P ∈ Rn×n 为正交投影矩阵, 则

(i) P 半正定;

(ii) R(P ) 与 N(P ) 互为正交补. 对任意 x ∈ Rn×n, 存在唯一的 p ∈ R(P ) 和 q ∈ N(P ) 使得

x = p+ q

(iii) I − P 也是正交投影, 且 R(I − P ) = N(P ), N(I − P ) = R(P ).

(i) 由于 P = PT, 故 P 是一个对称矩阵. 由于

xTPx = ∥Px∥2

故 P 半正定.

(ii) 先证明 R(P ) 与 N(P ) 相互正交. 任取 p ∈ R(P ) 和 q ∈ N(P ), 有

p = Pz, Pq = 0

因此

pTq = zTPq = 0
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故 R(P ) 和 N(P ) 正交. 由于

dimR(P ) = rank(P ), dimN(P ) = n− rank(P )

故 dimR(P ) + dimN(P ) = n, 从而 R(P ) 与 N(P ) 互为正交补.

(iii) 先证 R(I − P ) = N(P ). 任取 x ∈ Rn, 有

(I − P )x = x− Px ∈ N(P ) =⇒ R(I − P ) ⊂ N(P )

任取 z ∈ N(P ), 有

z = (I − P )z ∈ R(I − P ) =⇒ N(P ) ⊂ R(I − P )

因此 R(I − P ) = N(P ). 取正交补得到 N(I − P ) = R(P ). 由于 P 是半正定的, 可以得到

推论 7.1 (投影下降方向) 设 g ∈ Rn 是迭代点 x 处的梯度, 则

d = −Pg

满足 gTd ⩽ 0.

根据以上讨论, 正交投影矩阵 P 的作用可以看作是在 R(P ) 上的正交投影.

引理 7.3 (零空间正交投影) 设 A ∈ Rq×n 且 A 为行满秩矩阵, 则

P = I −AT(AAT)−1A (7.7)

是从 Rn 在 N(A) 上的正交投影.

给定 x ∈ Rn, 我们计算 x 在 N(A) 上的正交投影. 它可转化为约束优化问题

min
z

1

2
∥z − x∥2

s.t. Az = 0

其中 Az = 0 等价于 z ∈ N(A), 而 ∥z − x∥2 的最小值刻画了投影的性质. 由于此问题为凸优
化问题, 因此极小点等价于 KKT 点. 该问题的 Lagrange 函数为

L(z, λ) =
1

2
∥z − x∥2 − λTAz

在 KKT 点处
∂L

∂z
= z − x−ATλ = 0
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由于 Az = 0, 故
A(z − x) = AATλ =⇒ λ = −(AAT)−1Ax

因此

z = x+ATλ = x−AT(AAT)Ax = Px

故 Px = z, 即 P 是 N(A) 上的正交投影.

7.3.2 投影梯度矩阵构造可行下降方向

在不等式约束优化问题中, 投影矩阵起到重要的作用:

定理 7.2 (投影可行下降方向 I) 设 x̄ ∈ D,

(1) 对任何投影矩阵 P , 若 Pg(x̄) ̸= 0, 则

d̄ = −Pg(x̄)

是 x̄ 处的下降方向.

(2) 在不等式约束条件下, 设 Aq ∈ Rq×n 是由有效约束对应的行向量构成的矩阵, 且设 Aq 是

行满秩的, 则
Pq = I −AT

q (AqA
T
q )

−1Aq (7.8)

为正交投影矩阵, 且 d̄ = −Pqg(x̄) 为可行下降方向.

关于上述定理我们有以下评注:

1. 在沿着下降方向 d̄时,起作用约束条件没有被破坏,因为 d̄ ∈ N(Aq). 因此,算法适用于在
给定的起作用约束条件下求 f(x) 的最小值.

2. 算法有一个重要的应用条件: Pqg(x̄) ̸= 0. 如果此条件不成立, 则说明 Pqg(x̄) = 0, 因此

g(x̄) = AT
q (AqA

T
q )

−1Aqg(x̄) (7.9)

若我们定义

λ = (AqA
T
q )

−1Aqg(x̄)

则上述等式可以改写为

g(x̄) = AT
q λ =

q∑
i=1

λiai (7.10)

其中 ai ∈ Rn 是 Aq 的第 i 行, 即 g(x̄) 是 Aq 的行向量的线性组合! 这恰好对应于我们
熟知的 KKT 条件.
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3. 在 g(x̄) 的展开 (7.10) 中, 注意 ai, i = 1, · · · , q 是线性无关的, 因为 Aq 是行满秩的. 因
此, 展开式中的系数 λi 是唯一的.

4. 可以直接验证 P = I −AT(AAT)−1A 满足 AP = PAT = 0.

定理 7.3 (投影可行下降方向 II) 设 x̄ ∈ D 且 Pqg(x̄) = 0. 定义

λ = (AqA
T
q )

−1Aqg(x̄) ∈ Rq (7.11)

则有

(1) 若 λ ⩾ 0, 则 x̄ 为 KKT 点;

(2) 若 λi < 0, 则从约束条件中去掉 i 得到 Aq−1 ∈ R(q−1)×n, 则投影矩阵

Pq−1 = I −AT
q−1(Aq−1A

T
q−1)

−1Aq−1 (7.12)

使得 d̄ = −Pq−1g(x̄) 为可行下降方向.

为简便起见, 假定 i = q, 即第 q 个约束被去除了. 设

Aq =

[
Aq−1

aT
q

]
∈

[
R(q−1)×n

R1×n

]
, λ =

[
µ

λq

]
∈

[
Rq−1

R

]

则由Pqg(x̄) = 0可知

g(x̄) = AT
q−1µ+ λqaq (7.13)

因此方向 d̄ = −Pq−1g(x̄) 可以表示为

d̄ = −λqPq−1aq (7.14)

为了证明 d̄ 是可行下降方向, 需要

1. d̄ 是可行方向. 由于只有 q 一个约束条件被破坏, 所以只需要

aT
q d̄ ⩾ 0 ⇐⇒ λqa

T
q Pq−1aq ⩽ 0 (7.15)

由于 λq ⩾ 0, Pq−1 是半正定的, 上式显然成立.

2. d̄ 是下降方向, 即证明 Pq−1g(x̄) ̸= 0. 若 Pq−1g(x̄) = 0, 则 ḡ 是 Aq−1 的行向量的线性组

合, 这与唯一展开 (7.13) 矛盾!
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因此我们得到如下的求解线性不等式约束问题

min f(x)

s.t. Ax ⩾ b

的投影梯度算法:
Algorithm 14: 投影梯度法 (线性不等式约束)

for k = 0, 1, · · · do
确定有效约束 Aq ∈ Rq×n

计算正交投影矩阵 Pq ∈ Rn×n

if Pqg(xk) ̸= 0 then
(投影可行下降方向 I: 给定约束下的优化)
取可行下降方向 dk = −Pqg(xk)

else
(投影可行下降方向 II: 减少一个约束条件)
计算 Lagrange 乘子 λ = (AqAq)

TAqg(xk) ∈ Rq

if λ ⩾ 0 then
xk 是 KKT 点
return

else
设下标 i 使得 λi < 0

从有效约束 Aq 中去掉第 i 行得到 Aq−1 ∈ R(q−1)×n

计算正交投影矩阵 Pq−1 ∈ Rn×n

取可行下降方向 dk = −Pq−1g(xk)

end
end
在下降方向 dk 上进行线搜索得到步长 αk

xk+1 = xk + αkdk

end
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7.4 Zoutendijk 可行方向

考虑含有等式约束和不等式约束的优化问题

min f(x)

s.t. aT
i x = bi, i ∈ E

aT
i x ⩾ bi, i ∈ I

Zoutendijk 子问题由下给出:

定义 7.2 (Zoutendijk 子问题) 在给定的迭代点 xk 处, 考虑线性规划问题

min gT
k d

s.t. AEd = 0 (i ∈ E)

AIkd ⩾ 0 (i ∈ I(xk))

∥dk∥∞ ⩽ 1

Motzkin 定理是 Farkas 引理的一个推广.

引理 7.4 (Motzkin 定理) 设 m1,m2 ⩾ 0, m3 > 0 为整数. 再设 A1 ∈ Rm1×n, A2 ∈ Rm2×n,
Rm3×n, 则下面的两个线性系统中有且仅有一个有解:

A1x = 0, A2x ⩾ 0, A3x > 0 (7.16)

AT
1 a1 +AT

2 a2 +AT
3 a3 = 0, a2 ⩾ 0, a3 ̸= 0 (7.17)

利用上述定理可以给出 Zoutendijk 子问题的可解性:

定理 7.4 设 x̄ ∈ D, 则 x̄ 是极小点当且仅当 Zoutendijk 子问题的最优值为 0,
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