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then wu is called a harmonic function. A harmonic function is smooth and its derivatives can be
bounded by the function itself.

Theorem 1.1 (harmonic function deriative estimation) Let u € C?(Q) be a harmonic func-
tion on Q C R™, then for any ball B(z,r) C Q and multi-index o with || = k, we have

o Ch
WquWMLWy@m (1.2)
where
1 (n+ k)" F(n 4+ 1)k
Co = k=

a(n)’ a(n)(n + 1)+t

The theorem implies the high order derivatives of v can be bounded by the function value itself.
We consider the Laplace equation with Dirichlet boundary conditions:

—Au=0, z¢€ B(0,R)
(1.3)
u=g, x€0B(0,R)
where we assume g € C(0B(0, R)). Using the Poisson kernel defined as
R2 _ |I|2
K(z,y) = x € B(0,R), y € 0B(0,R) (1.4)

na(n)Rlz —y|"’
The solution can be explicitly expressed in the following theorem:

Theorem 1.2 (solution of Laplace equation) Let the ball B(0, R) C R", and g be a continuous
function on 0B(0, R). The solution of the Laplace equation can be expressed as

u@w:/ K (2,1)9(4)dS(y) (1.5)
dB(0,R)

then
1. u(x) is infinitely differentiable in B(0, R);
2. Au(z) =0, z € B(0,R);
3. for any xzo € dB(0, R), as z € B(0,R) and x — x9, u(z) = g(xo).

The theorem implies the solution u(z) € C*°(Q2) N C(12).

Remark If the weak solution v(x) € H'(Q) of the Laplace equation is continuous in , we can
prove that u(z) and v(z) are exactly the same.

2 Functional analysis

Theorem 2.1 (Holder inequality) Let Q C R™ be an open bounded region. p,q > 1 be constants
satisfying 1 = % + %. Foru € LP(Q) and v € LI(RY), then uwv € L'(Q) and

‘/qudx < (/Q|u|”dx>;(/g|v|qu>; (2.1)




When 1 =1/p+ 1/q+ 1/r, the result can be generalized to

’/quwdx < (/qujdx)é(/gvlqu);(/gwﬁdx)i (2.2)

Theorem 2.2 (Riesz representation) Let H be a Hilbert space with inner product (-,-). Let
f+Hw— R be a bounded linear functional, then there exists a unique uw € H such that

(f,v) = (u,v), YveH

That is to say, any bounded linear functional in a Hilbert space can be represented by a single
element.

Theorem 2.3 (Banach—Alaoglu) Let X be a normed vector space. Any closed unit ball in X*
is compact in the weak*-topology.

In particular, the closed unit ball in the Hilbert space is compact in the weak topology, which
immediately implies the following theorem.

Theorem 2.4 (Bolzano—Weierstrass) Let H be a Hilbert space, and {x}r>1 be an bounded
sequence, then there exists a subsequence {xy; }j>1 that converges weakly in H.

Theorem 2.5 (Lax—Milgram) Let H be a Hilbert space with a(u,v) being a bilinear functional
on H x H satisfying

* la(u,v)| < Mfullllv]l, Yu,v € H;
e 30>0, alu,u) > 8|ul’.
Let f be a bounded linear functional in H, then there exists a unique uw € H such that
a(u,v) = (f,v), YwveH

Proof Fixing u € H, a(u,-) : H — R is a linear functional in H. Then by Reisz representation
theorem, there exists w € H such that

a(u,v) = (w,v), YweH
Define the mapping A : H — H such that w = Au, then
a(u,v) = (Au,v), Vu,ve€ H

then A : H — H is a linear operator. Now we prove that A is bounded linear operator and a
bijection in H. Using

(A, v)| = a(u,v)] < M|ull|lv]l, Yu,veH
By choosing v = Au, we have ||Aul|> < M|u|||Aul|, thus
|Au|| < M||ul|, Yue H
which implies A is bounded. Also, from
Sull® < alu, u) = (Au,u) < || Au|l||u]

we have || Au| > 6]ju||>. To prove A is bijective, we need to verify



e R(A) is closed.

Consider a convergent sequence Au,, € R(A), now we prove that Au, — Au for some u € H.
To prove this result, notice that

lim || Aty — Au,|| =0

m,n— o0
and ||A(um — un)|| = Ol|tm — unl|, we have

lm ||t —un|| =0
m,n—00

which implies {u, } is convergent in H. Let u, — u, then Au,, — Au € R(A).
o« R(A)L=0.
Otherwise, let w € R(A)* and w # 0, then
(w,Au) =0, Yue H

which implies a(w,u) = 0, Vu € H. Choosing v = w, we have a(w,w) = 0 = w = 0,
contradiction.

The results above imply R(A) = H, thus A is bijective. The equation Au = f can be solved
explicitly as u = A7 f.

Remark The key of the Lax-Milgram theorem is the coercivity of the functional. The theorem
does not require the symmetry of the functional a(-,-).

3 Sobolev spaces

3.1 Basic properties

Let 2 C R™ be an open bounded region. For the multi-index o = (a1, ,ay), 0%u denotes the
a-weak derivative of w.

Definition 3.1 (Sobolev space) Let m > 0 be an integer and p > 0. The function space
W ={ue LP(Q) : 0% € LP(Q), |a| < m}
is the Sobolev space W™P(Q). The Sobolev space is a Banach space with norm

nwmm< 3 Aywmmn)

0<lal<m

and the correspondong seminorm is

wmm=(

which only involves derivatices of orderm. WP (Q) is defined as the closure of C§°(§2) in W™P ().

(9"‘”d5

|a]=m



Theorem 3.1 (Poincare-Friedrichs) Let Q C R"™ be an open bounded region. There exists a
constant K (n,m,p) that

(tlm.p < Nullp < Km0, p) el p, Vo€ Wo™"

The theorem implies the norm and the seminorm in W™ are equivalent.

3.2 Embedding theorem

Let X,Y be two Banach spaces. We say X is continuously embedded in Y, or denoted by X — Y,
if X C Y and there exists a constant C' such that

lzlly < Cllzlx, veeX

Recall that the norm in the Sobolev space W™P () is

lll,,, = ( T /Q |aau|”dw)

|la]<m

and the norm in C(Q) is
ol oy = ma

Theorem 3.2 (Sobolev embedding) Let Q@ C R™ be an open bounded region in R™. If 0Q is
Lipschitz continuous, then

122

= n—mp’

o Ifm < n/p, W™P(Q) — LI(Q) for 1<
o Ifm=n/p, W™P(Q)— LI(Q) for 1< g < +oo;
o Ifm>n/p, WmP(Q) < C(Q).

In particular, when m = 1 and p = 2, we have

HY(Q) — L? (D)

2n

where 2* = .
n—2

3.3 H! space
Now we state the definition of H~! space (see Evans Section 5.9).

Definition 3.2 (H~! space) Let Q2 C R™ be an open bounded region. H~1(Q) is defined as the
dual space of H}(Q).

It’s easy to see
H}(Q) C LA(Q) c H Q)

The functions in H~1(2) can be characterized as follows:



Theorem 3.3 (characterization of H~! space) Assume u € H=(Q), then there exists func-
tions fO, f1,---, f* € L?(Q) such that

= [ (f°v+§;f"vxi)dx ()

Furthermore,

sy = { [ 17w 107 satiing ()}
Q=0

Therefore, we can write a function f € H~1(Q) in the form

F=r=> 1
i=1
for f07f17"' afn€L2(Q)

4 Second-order elliptic equations

4.1 Weak solution of the elliptic equation

Let © C R™ be an open bounded region with C' boundary. Consider the second-order elliptic
equation in 2 with Dirichlet boundary conditions

—Dj(a"Diu) = f = Dif', x€Q 1)
u=0, x € 0N '
We ultimate the following assumptions (A):
1. a;; € L*(§) and there exists constants A, A > 0 that
MNP <Y ai(@)&8 <AEP, zeQ, EeRY (4.2)

ij=1
2. ¢(x) = 0and c€ L7 (Q);
3. f,fiel?)(Q),i=1,--,n.

Remark The right hand side of (4.1) is in the H~! space. Written in the form of f — D, f* makes
it easier to write the weak formulation.

Now we define the weak solution of the elliptic equation (4.1).

Definition 4.1 (weak solution) The weak solution of the second-order elliptic equation (4.1) is

/Q (aijDiuDiv + cuv) dz = /Q (fv + fiDiv) dz, VveC5P() (4.3)



It can be verified that the strong solution of (4.1) is also the weak solution. Under the assumptions
above, we can prove that the elliptic equation (4.1) has a unique weak solution in H}(Q). Note
that for Dirichlet boundary conditions (homogeneous or not), the test function space is H}(Q), i.e.,
the trace of the function must be zero.

Theorem 4.1 (existence of weak solution) Under the assumptions (A), the elliptic equation
(4.1) has a unique weak solution in Hg. That is, there exists a unique u € H} () satisfying (4.3).

Proof The proof of the existence is based on the Lax-Milgram theorem. Define the bilinear func-
tional a(-,-) in Hg(€):

a(u,v) = / <aijDiuDjv + cuv) dz, wu,v€ H}(Q) (4.4)
Q

First we prove that a(-,-) is bounded. From

,
\ [ aDnsuts| < [ a0l Dalas < A( | [ |Dv2)2 — Al s 101
we have
‘ /QaijDiUDjde < Alull g gllvll g (4.5)
From the Hoélder inequality, we have
[ cuda < ell, 1 gl (46)

where 2* = % here we used

Using the Sobolev embedding result H'(Q) < L?"(Q), we obtain

‘ / cuvdx
Q

Using (4.5)(4.7) we conclude af(-,-) is a bounded bilinear functional.
Next we prove that a(-,-) is coercive. It can be verified that

< Cllull gy vl 1 ) (4.7)

a(u,u) = / (aijDiuDju + cu2>dx > )\/ | Du|?dx (4.8)
Q Q

Using the Poincére inequality, we have

/ |Dul?dx > c/ lu|?da (4.9)
Q Q

alu,u) > cllul3 g (4.10)

and we obtain



thus a(-, -) is coercive.
Now define the linear functional F(-) in Hg () as

F(v) :/ (fv—l—fiDZ—v)dx (4.11)
Q
then 4
@) < £l z2@llollza) + 1] oIl @) < Cllvllm g (4.12)
thus F' is a bounded linear function.
Finally, by the Lax-Milgram theorem, the equation a(u,v) = F(v) has the unique solution in
H(Q). That is, the weak formulation (4.3) has a unique solution in Hg (£2).
4.2 Weak maximum principle
First we introduce the lemma of De Giorgi iterations.

Lemma 4.1 (De Giorgi) Let ¢(t) be a nonnegative and decreasing function satisfying

¢(h) < (h_ck)a[w(k)]ﬂ h>k > ko, (4.13)

where a > 0,8 > 1, then p(ko + d) = 0, where

B—1

d = C[p(ko)] = 2571, (4.14)
The lemma implies any function ¢(t) satsifying the condition must vanish for sufficiently large ¢.
Proof The proof is based on the following sequence {ks}s>o:
d
ks :koer—?, s=0,1,---

Now we define the weak upper (lower) solutions as follows.

Definition 4.2 (weak upper (lower) solution) u € H(Q) is called the weak upper (lower)
solution of the elliptic equation (4.1), if for all ¢ € C§°(Q) and ¢ > 0, we have

/ (a”DiuDj@ + cuso> de > (<)/ (fw + fti> da (4.15)
Q Q

Remark The difference between the weak upper solution (4.15) and the weak solution (4.3) is that
the test function in (4.15) has to nonnegative. If u € H}(Q) and u is both a weak upper and lower
solution, u is the weak solution. The corresponding strong form of the weak lower solution is

—D;(a"Diju) + cu < f — D; f* (4.16)

which is exactly the definition of the subharmonic function.



Theorem 4.2 (weak maximum principle) If the assumption (A) holds, and if u € H*(Q) is a
weak lower solution of (4.1), then for any p > n,

esssupu < supu® +C (1. + |77, ) 1215, (4.17)
Q o0
where np
p n+p p

Proof Take kg = supu® > 0, then for k > ko, ¢ = (u — k)™ € H}(Q). Since u is a weak lower
o0

solution, by choosing ¢ = (u — k)T in (4.15), we have
/ (aijDiuDj(u — k)" + cu(u — k)+>dx < / <f(u — k)" + fiDi(u— k)+)dx, Vk > ko (4.18)
Q Q
Note that in (4.18), D;(u — k) = D;j(u — k)™ — D;(u — k)~ and thus
Di(u - k)D](u — k‘)+ = D,(u — k‘)+Dj (u — k‘)+

and we have

/ aDiuDj(u— k)T dr = / a""Di(u —k)D;(u — k)*dx

Q

Q

= / a“"Di(u— k)t D;(u—k)*dx
Q

> )\Z/Q (Di(u—k)*)*de = A||D(u - k)*”iz(m
=1

that is,
/ @' Dy — k)" da > X[ D(w — k)4 a0, (4.19)
Q
Also, note that in (4.18), u(u — k)* > 0 for each z € Q. If u(u — k)™ < 0 for some z € 2, using

(u— k)T > 0 we have u(z) < 0 and (u(z) — k)™ > 0. This implies u(z) > k > 0, contradiction!
Therefore,

/ cu(u —k)Tdz >0 (4.20)
Q
From (4.18)(4.19)(4.20) we conclude

MDD = k)20 < / <f(u — k)t + fiD;(u— k)+) dz, Yk > ko (4.21)
Q

Now we estimate the RHS of (4.21). Using the Holder inequality,

‘ /Q Flu— k)*dz

<1l gl = B) T[] on ) | AR 22 (4.22)



where Ay := {x € Q: u(z) > k} and we used

1 1 n+p n—2 1 1
De 2% np 2n 2 p
From the embedding H'(R2) < L2 (Q) and the Poincare inequality, for (u — k)* € H} () we have
[ = &)l 2 @ S Cll(u— k)+HH1(Q) <C[Du - k)+HL2(Q) (4.23)
hence (4.21) gives
+ + 53—+
[t k] < Ol |00 = 7 g0l (4.24)
Similarly,
\ /inDiw*k)*dx <Y 1P = B)F]] 2 1 AR 27> (4.25)

i=1

(4.24)(4.25) yield

/Q (f(u — k) + i Dy(u— k)*)dx

< C<|f||m 'y ||fi||Lp> 1D(u— k)*| o AnE (426
=1

Let F = | f|l 0. + Z ||| ., be a constant. (4.21)(4.26) give

i=1

1D = k) 2 < CF|A|> > (4.27)
Again from the Sobolev embedding and the Poincare inequality,
(= k)| ey < CF|Ax|? "7 (4.28)
For any h > k > ko, we have
ot
(h—k)> | Ag| < (CF|Ak|%—é) (4.29)

Now consider decreasing function Ay on [kg,+00). Applying the De Giorgi iteration lemma,
Ak0+d = O7 where
n(p—2) 1
d=CF|A,|" " #25-m < CF|Q" > (4.30)
which implies

1 1
v p

5Th (4.31)

esssupu < ko +d < supu’t + C(Hf”LP* + HfZHLP) 2
Q o0

and concludes our result.

Remark The maximum principle requires higher integrity on f than the existence of the weak
solution. The maximum principle in the weak solution is the same with the harmonic function.

In the case of n = 2, the proof is a little different.

’ /Q Flu— k)*dz

<[P = k) || ol [ ARIE 7

10



4.3 Variantional principle

We can derive the existence of the weak solution from the variational principle. That is to say,
minimize some functional in a proper function space. For simplicity, let 2 C R™ be an open bounded
region and consider the elliptic equation with Dirichlet boundary conditions

—D;(a"Diu) =0, z€Q
(@ Di) ! (4.32)
u=g, €I
where the coefficients a* satisfy the uniform elliptic condition:
AP <> a68 < AP (4.33)
i,j=1
Now we aim to minimize the functional
1 .
Fu) =5 / aDiuDjudz, ue HY(Q) (4.34)
Q
within the function space
W={uecH'(Q):u—ge H;(Q)} (4.35)

The proof is consists of 3 parts:

1. The functional F' has minimizer in W,
2. The minimizer yields the weak solution of (4.32).

3. The minimizer of F' is unique.

First we prove the existence of the minimizer. Suppose {u,} C W satisfies

lim F(uy,) = inf F(u)

n— 00 ueW

From N
F(u) > 7/ | Du|?da
2 Jo

we know that ||Duy|| . is bounded, thus || D(u, — g)|| ;- is bounded. From the Poincére inequality,
lun — gl g1 is bounded. Thus there exists a subsequence {uy, } and u* € H'(Q) such that

Up, — u* in L2(Q)

Up, —u* in HY(Q)

thus u* satisfies
Fu*) < lim F(u,) = inf F(u)
n—o00 ueW
which implies «* is a minimizer.
Note that the Gauteux derivative of F' is

%(u) = / aDiuDjvdr, v € Hy(Q)
Q

11



If »* is a minimizer, we have
/ aD;(u*)Djvdz =0, Vv e HJ(Q)
Q

thus v* is a weak solution.

If v* and ©** are both weak solutions, then
3F oy _ OF
v )

Consider the function f(t) := F(tu* + (1 — ¢t)u*™*), then f is quadratic and f(¢) is has 2 stationary
points at ¢ = 0,1. Hence f is constant, which implies D(u* — u**) = 0. v* = u**.

(W) =0, Yve HY(Q)

F:/ |Vu|pdx+/fu, ue Wwh?
Q Q

4.4 Regularity of the solution

The regularity the weak solution of the elliptic equation can be derived given techincal assumptions.
Consider the elliptic equation

—Di(a" Dju) + b'Dju + cu = f (4.36)

with appropriate Dirichlet boundary conditions. Under the conditions of (A), we make stronger
assumptions (B) on the coefficients:

1. @' € Whe(Q);
2. b',ce L*™(Q);
3. feL*Q).
Theorem 4.3 (H? regularity) Let u € HY(Q) be the weak solution. Then for any ) CC Q,
u e H*(Q), and
el gz gy < C (ll sy + 1 22 (4.37)

where the constant C' depends on n, A, | ainWLx, ||biHLoo, llcll o and dist(£Y',09).

When we make no assumptions on the shape of 2, the constant C' might grow large as ' enlarges.
The proof is based on the difference function. Given the direction v € R™ with |v| = 1, define the
translation operator

Thu(x) = u(z + hv), heR

and the difference operator in the direction v,

Apu(z) = — (u(z + hv) —u(z)), heR

SRS

With this notation, we can write

A_pu(z) = —(u(z — hv) — u(z))

S

12



We can verify the following identity
Ap(uw) = T Apv + (Apu)v

Proof Set ¢ = f — b'D;u — cu € L?(2), then the weak formulation can be written as

/ a" DiuDjpdr = / qpdz, Yo € HY(D) (4.38)
Q Q

Choose the test function p = A_,v

Let v € H(Q2) with compact support in Q. For sufficiently small h, Ajv is well-defined. By
choosing the test function ¢ = A_,v € H}(Q), we have

/ aijDiuDjA,hvdx = / qA _pvgz (4.39)
Q Q
which implies
Ap(a” Dju)Dyvdz = —/ gA_pvdr (4.40)
Q Q
Using N N
Ap(a” Diju) = mha ApDiu + Diulpa,; (4.41)
hence we obtain
/ ma? ApDiuDvde = —/ (AhaijDiuDjv + qA_hv> dz (4.42)
Q Q
Note that
’/ Apa DiuDjvdz| < C’HDainLOOHuHHl | Dv|| .-
Q
and
‘/Qthvde < Cllallg2llDollps MNallpe < Cllfllg2 + Cllull g
Hence
| i anDsub;uds < C(Jullgs + 171, ) Dol (4.43)
Q

Further choose v = n?Aju

For simplicity, let F' = ||u|| 4. + || f|| .2 be the constant. Choosing n € C§° with n =1 for z €
and v = n?Apu, we have

Dv = D(n?Apu) = n(nDApu + ApuDn)
hence
/ nQThaijDiAhuDjAhudm + 2/ nTha' Di Apu(Din) Apudz
Q Q

< (Il + 171152 ) (InDAwull g + 2 ApuDn] . )
< CF|nDAwul| . + CF?

13



That is,
/ n’ma" DiApuD;Apudr + 2/ nma D;Apu(Din) Apudz < OF||nDAyul| . + CF?
Q Q
Now we estimate the LHS of (4.44).

/n2ThaijDiAhuDjAhudx > )\/ |nAhDu|2dx
Q Q

2’ / nha'l Dy Apu(Din) Apuda
Q

A
<o [ paPiswiar + 5 [ midwlas
Q 2 Jq

Thus
/ n*m,a" D; ApuDjApudz > |[nDAyul3. — CF?
Q

Therefore (4.44) gives
InDARu|72 < CF|nDAul| 2 + CF

which implies
InDApul > < CF

and its exactly what need.

If the boundary 0f2 is smooth, we can derive more accurate estimations.

(4.44)

(4.45)

Theorem 4.4 (H? regularity) Additionally suppose 9Q € C?, g € H*(Q) and u — g € H}(Q),

where u € HY(Q) is a weak solution of the elliptic equation. Then u € H*(Q) and

||“HH2(Q) < C(HUHL2(9) + ||fHL2(Q) + ||g||H2(Q)>

where the constant C' depends on n, A, ||ai-7'HW1,oo, HbiHLm7 llell o and 0.

(4.46)

The proof of the global estimation of the H2-norm is based on the technique that the boundary of

09 can be stretched to be plane.

Proof First assume g = 0. Let 2° € 9Q and ¢ : V + B; maps V N Q to B, as shows below.

Ip)
” 2 H %lx)
_—
1% M X = %7y
By choosing the test function ¢ € C§° (), the weak formulation is given by

/aijDiungo:/qgodx
Q Q

14
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where ¢ = f — cu € L?(Q). If we choose ¢ € C§°(V N Q), then

/ (aij D;uDjp + cu<p> dx = fedx (4.48)
vnQ vnQ

Using the transformation y = 1(x), we reformulate the expression in the coordinates of y.

_ Ou _ OuOyp _ Oy ~

Dju = = = D
Similarly
oy =
D:p=—"D
AT
Hence
/ a" DyuDjpdx :/ a* DyuDypdy (4.49)
vnQ B
where we define the new coefficent 90 B
~kl ii OYk OY1
= Jaii 22k 29
“ “ 63:1 8xj
Similarly,
s (4.50)

5 Schauder estimate: [GT]
In this part we discuss of the regularity of the solution for the Poisson equation
Ay = f (5.1)

When f(z) is Holder continuous, we hope to prove that the solution is also continous. Some
notations:

 (boundness of D*u) [u]y.0.0 = |D*ulo.q = ‘s?p Slglzp | DPul
Bl=k

+ (continuity of D*u) [u]g 0.0 = [D*u]a.0 = sup [DPulaq
|Bl=k
The seminorms indicate the corresponding norms

k k

« (boundness of D*u) ||UHck(Q) = |ulg;0 = ulk00 = Z[u]j’o;g = Z |DIujo.q
i=0 =0

« (continuity of D*u) ull gra @) = lulk,ae = [ulka + [U]kaoe = |ulke + [DFu) 000

Compared to the norm in C*(€2), the norm in C* includes the a-Hélder continuity of D*u. The
scaled norms of u are also useful in applications. (The prime notation denotes the scaling)

k k
« (scaled boundness of D*u) ”“”/Ck(n) = ulp = Zdj[ub"o;Q = Zdj‘DjUh);Q
7=0 3=0

15



« (scaled continuity of D*u) ||ullgr.a = [ul}, 0. = [ulpo+d" ulran = |ulfo+d"[DFulaq
It is notable that the definition of Hu||/ck(m and Hu||/ck,w(9) both has scaling variance, when the

underlying region is scaled.

5.1 Classical theory of the Newtonian potential

This part is based on the Chapters 2,4 of [GT]*. Recall that the fundamental solution to the Laplace
equation is

1
27\x|2’", n>2
D)= { "B (52)
by log | x|, n=2
which satisfies the equation
AT(z) = §(z) (5.3)

The definition of T'(x) is slightly different from others where I'(x) is set to satisfy AT'(z) = —é(x).
By direct calculation, the derivatives of I'(x) are given by

Theorem 5.1 (Derivatives of the fundamental solution) The first and second order deriva-
tives of I'(z) are given by

1
DlF = —X; -
(@) = il
1 e
Dl]F(I‘) = Twn (|:C‘25U — nxzxj)|:17| 2

The theorem implies the derivatives are bounded by

‘JZ|17"

1
D;I’ <
DI (@) < —
1 —n
D@ < -l

This result implies that
/ |DT(z)|dz < +oo, / |D?T(x)|dz = +o0
BR BR

That is, DT is integrable but D?I' is not. Now we consider the Poisson equation Au = f in a
regular region (2 C R". Let’s first define the Newtonian potential corresponding to f by

w(z) = /Q @ —)f(s)dy, =R (5.4)

Some basic notations on w(z):

« Although f(z) is defined in €2, the Newtonian potential w(x) is defined in R®.

L[GT] denotes the classical textbook Elliptic Partial Differential Equations of Second Order by Gilbarg and
Trudinger.
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o The boundary conditions are not included in w(z), thus w(z) is only one possible solution.

o If w(x) is well-defined, then it vanishes as © — oc.

o In a physical view, w(z) is the Coulomb potential generated by the charge distributed as f(x).
Some simple assumptions on f(z) may produce that the Newtonian potential w(z) is well-defined.
Theorem 5.2 (Regularity of Newtonian potential) The Newtonian potential w(x) satisfies

o If f is bounded and integrable in €2, then w € C*(R™) and

Diw(z) = /Q DTz — 4)f(y)dy (5.5)

o If f is bounded and locally Hélder continuous (with exponent o < 1), then w € C*(R™) and
Aw = f in Q, and

Dijuw(x) = ; DUz —y)(f(y) — f(2))dy — f(z) - Dil(x —y)n;(y)dS, (5.6)

The RHS of (5.6) is calculated from
Di;T(x — ) (y)dy

. Di;U(z —y)(f(y) — f(2))dy + f(z) ; DIz — y)dy

= [ Dil'(z—y)(f(y) — f(x))dy — f(x) D;T'(z — y)n;(y)dS,
Qo Q0

The integral in (5.6) is well-defined because the integral

/Q Dy T( — )l — y|*dy (5.7)
0

is well-defined for o« > 0. The theorem implies that we can derive the regularity of w from very
weak assumptions on f.

Remark It is crucial to observe that although w(z) is well-defined in R™, w(x) is C? only in the
region Q. In fact, for z € 9Q, D?w may not be defined.
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Finally, we note that bounds of the derivatives w(z) can be written. Suppose  is contained in the
ball Br(zo), where R is the radius. Then (5.5) implies

D) < / IDIT(z — )||£()ldy
Q
< flo / DTz — )|dy
X H % d
< |floe /B DT

< |f|079/ |x‘17ndx
Bar

NWn,

2R
_ floe 'wn/ dr
nwy, 0

2R
= 7‘f|0§2
n

and (5.6) implies

|Dijw(z)| < |f(x)|R1‘" s, + [flao /B e — y|*"dy

NWy, Bon Wn

<27 f(@) + =R [flao

Theorem 5.3 (Estimation of Newtonian derivatives) Let w(x) be the Newtonian potential
corresponding to f(x), where f(x) defined in Q is bounded and local Holder continuous with exponent
«. Then the derivatives are approrimated as

D) < 2 floo
n z e (5.8)
IDygula)] <277 + BRI Flao

Note that these inequalities are both scaling invariant. From the results above we obtain the
following theorem.

Theorem 5.4 (Unique solution of the Poisson equation) Let Q be an bounded domain and
suppose that each point of O is regular. If f is bounded and Hélder continuous in €Y, then the
classical Dirichlet problem Au = f is uniquely solvable with continuous boundary conditions.

5.2 Holder estimates of second-order derivatives

In the first part we have defined the Newtonian potential w(z) corresponding to f(z), i.e.,
w(@) = [ T = sy (59)

We have shown that, if f is bounded and local Holder continuous, then w € C?(£2) and satisfies the
classical equation Aw = f. In this part we consider more accurate bounds for the a-continuity of
the solution.
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Theorem 5.5 (continuity of Newtonian potential) Let By = Bgr(zg) and Bs = Bagr(zg) be
concentric balls in R™. Suppose f € C*(Bs), 0 < a < 1, and let w be the Newtonian potential of f
in By, then w € C*>%(By) and

|D*wly o5, < C| 0,05, (5.10)

or equivalently,
|D2w|0§B1 + RQ[D2w]a;B1 < C(flo;ps + R flasB,) (5.11)

where C' = C(n, a).

The inequality is scaling invariant, since C' only depends on n and «. Although it has been shown
that w € C?(Bzy), the boundness of its derivatives can only be done in B;. This is why it is called
an interior estimate. The proof of this theorem is done by directly estimating the difference

D?w(z1) — D?*w(xs) using the expression of the second-order derivatives (5.6). The result above
directly implies

Theorem 5.6 (solution regularity: compact support) Let u € C2(R") and f € C§(R") sat-

isfy the Poisson’s equation Au = f in R™. Then u € C’g’a(R”) and if B = Bgr(zo) is any ball

containing the support of u, we have
|D2u|6,a;B C|f|6,o¢;B’ C= C(’I’L, CY)

<
< CR*|flop, C=C(n)

‘u|/1;B

The first inequality is about the regularity of D?w, and the second inequality is about the derivatives
of lower orders. The proof is based on the fact that u(x) is exactly the Newtonian potential

u(w) = [ T )f)dy (512)

While D;u can be directly bounded by (5.8), the bound of u itself is obtained from the integration
from the boundary.

The above estimation of the Newtonian potential gives the following Schauder estimate.

Theorem 5.7 (Schauder interior estimate) Let Q be a domain in R™ and let u € C?(2) and
f € C*(Q), satisfy the Poinsson’s equation Au = f. Then u € C*%(Q) for any two concentric balls
B; = Br(xg) and Bz = Bag(x) CC ), we have

|u|l2,o¢;Bl < C(‘U’|O;Bz + R2|f|10,o¢;32) (513)
Some important notations:
e The inequality is scaling invariant. The constant C' does not depend on w or R or €.

e u is a-Holder continuous in the whole region €2, but its derivatives are only approximated in
a smaller ball Bg.

o The theorem also holds true if the condition is weakened as u € C?(Bs) and f € C%(B,).
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Proof The proof is based on the fact that any solution to the Poisson equation can be written as
the sum of the Newtonian potential and a harmonic function. That is,

u(z) =v(z) +w(z), =€ By (5.14)

where v(z) is harmonic in By and w is the Newtonian potential corresponding to f, that is,
w(z) = / L(z—y)f(y)dy, =z€ B (5.15)
B2

(To apply the continuity theorem of the Newtonian potential, we must restrict our domain to B,
a ball rather than the whole region Q!) For w(z), by applying the continuity theorem we have
R|Dwlo;p, + R*|D*w]y o,5, < CR?|flo,0:, (5.16)

where the estimation of Dw is deduced from |Dwlo.p, < CR|flo;,- For the harmonic v(z), its
derivatives are bounded by the function value itself, thus

R|Dv|o.5, + R*|D*v

0,a;B1 < C|U|0;BQ (517)

Again use v = u —w. When n > 2, the function value of w can be approxiamted by

o (@)| < |10, /B Dz — y)ldy < CR?|flois, (5.18)
2
and thus
‘U 0;B2 < C(‘u|0;32 + R2|f|0;32) (519)

When n = 2, the proof is derived from u(z1,23) = u(x1,z2,z3). Finally we obtain the result
desired.

The result above implies the solutions of the Poisson equation are equicontinuous. By the Ascoli
lemma,

Theorem 5.8 Any bounded sequence of the Poisson equation Au = f with in Q with f € C*(Q)
contains a subsequence uniformly on compact subdomains of §2.

The Schauder interior estimate can be stated in alternative ways. Given the region €2 and x,y € €,
define
d, = dist(z,09), dy, = min(d,,d,)

and the weighted norms

[uioe=[lio=sup diD u(z)|
z€Q,|B|=k
k
ulk0.0 = lulko0 = Z[u]jﬂ
=0
D? —-D?
Wiwa= sup ditel27H® = D)l
T eyeqlp=k |z —yl

|u|z,a;Q = ‘U|Z,O;Q + [U]Z,a;a
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We also introduce the quantity

1800 = sup sl )| + sup iyl
i z€Q

5.20
z,yeN |$ - y|a ( )

The Schauder interior estimate can now be stated as

Theorem 5.9 (Schauder interior estimate) Let u € C*(Q) and f € C%(Q) satisfies Au = f
in an open set  of R™, then

[l 002 < Cllulose + 1£152.0) (5.21)
where C = C(n, ).

The proof is based on the interior estimate with the radius R = %dw at given x € ().

It is important to note that the theorem contains the result of Theorem 5.7, a raw version of the
Schauder interior estimate. By choosing the region €2 directly equal to the ball By = Bag(xo), we
obtain

Cllulo;, + 1150 8,) < Cllulo, + B £lo,0:5,) (5.22)

and

0.8, + R|Dulo;s, + R*|Dulo,p, + R*T*[D*ua;p,

|u|l2,a;Bl = |U

D? — D?
= sup |u(z)| + R sup |Du(z)| + R? sup |D*u(z)| + R*T™ sup |D"u(z) uw)|
zeB; zeB; r€B1 z,yc€B; |$ - yla

D? - D?
< sup |u(z)| + sup dg|Du(z)| + sup d2|D*u(x)| + sup di?;a| u(@) u(w)|

zeB; zeB; zeB; x,yeB1 “r - y‘a
D2 _ D2
< sup |u(z)| + sup dg|Du(z)| + sup d2|D*u(x)| + sup dit’;’l| u(@) u()l
€ Bs € Bs € Bs x,y€Ba - ‘(E - y‘a
= |U’ 37(1;32

(note that d, is the distance between « € By and 0B», and we must have d; > R and dg, > R.)
Therefore we obtain the Schauder estimate for two concentric balls.

5.3 Estimations on the boundary

In order to establish the global estimate, we need to derive the Schauder estimate on the boundary.
Let R} be the upper half space {z,, > 0}, and T be the hyperplane {z,, = 0}. B; = Bg(zo) and
By = Byg(x0) as before. Let B = B; NR.

Theorem 5.10 (continuity of Newtononian potential) Let u € CY(BS) and let w be the
Newtonian potential of f in By . Then w € C%>*(B{") and
(D2, e < Cm,0) e (5.2

where C' = C(n, a).
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This result is scaling invariant. The constant C' does not depend on the radius R, and even how
much By interacts with its boundary. The proof is based on the fact that when either i or j is not
n, the second-order derivative of the Newtonian potential w(z) can be written as

Dijuw(z) = / DiU(x —y)(f(y) — f(2)dy — f(=) DiI'(x — y)n;(y)dS, (5.24)
Bf aBF

and the integral on the boundary 0B; vanishes on T'. Thus we can derive the continuity of D;;jw(x)
except Dy, and

‘Dijw|/07a;3;r g Cl]<n7 a)|f|/07a;32+ (525)

Finally, the estimation of D,,w is derived from Aw = f, which implies
n—1
Dpnw(z) = f(z) = > Diw(x) (5.26)
i=1

Now we can derive the Schauder estimate on the boundary.

Theorem 5.11 (Schauder estimate: boundary) Let u € C*(Bf) N C(B]) and f € C*(BY)
satisfy Au = f in By andu =0 on T. Then u € C*>*(B;) and

|u|/2,o¢;Bl+ g C’(|U"0;B;r + R2|f‘67a;33) (527)
where C' = C(n, a).

Proof Let z* = (2/, —z,,) be the reflecting point of 2 € R™. The crucial step in this theorem is to
construct a Newtonian-like potential function

wi@) = [ M=) =T =)l (5.29)

2

which satisfies
e w(z) =0 for z, =0;
e Aw(z) = f(x) in the upper half ball By .

Since w(x) can be written as
w) =2 [ TSy = [ T @y (5.29)

By applying the continuity theorem on By and D, we conclude that w € C®(Bj). Thus the
difference v = u — w satisifies

e v(x)=0in T}

e v(x) is harmonic in By .

Since the derivatives of v(z) can be approximated, the result holds for a general solution u. Similarly
we obtain
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Theorem 5.12 (Schauder interior estimate: boundary) Let Q be an open subset of in R’}
with a boundary portion T on x, = 0. Let u € C*(Q)NC(QUT) be the solution to Au = f, where

feC*Q), andu=0 on T, then

5saur < Cllluloall + 1 FIE.)

|u

where C = C(n, ).

6 Schauder estimate: [CW]|

6.1 Existence of the solution

Theorem 6.1 (maximum principle) Consider the elliptic operator L given by

Lu= —aijDiju +b'Diju+ cu

satisfying
o MNP <aV ()6 < AP, 2 €Q, R
o |b(z)| < M, xzey

o ¢(z)=20,2€0Q
If u € C*(Q) N C(Q) satisfies Lu < f in Q, then

supu < suput + C|flo.
Q 09

for some constant C.

This theorem is exactly the maximum principle for the second-order elliptic equation.

(1) First assume there is a constant ¢y such that ¢(x) > ¢g. Translate the function u(z) by

v(z) =u(x) —suput, z€Q
o0

then v satisfies

Lv=f—csupu™ < f, 2€Q
oQ

v <0, x € 0N

Suppose v attains maximum at xy € €2, then
D?v(29) <0, Duv(zg) =0
From Lv(zo) < f(zo) we obtain

c(zo)v(zo) < fl20) < |flose

which implies v(zg) < %\ﬂog Recall that v(zg) is the maximum attained by v, we have

sup v(x) < oo
e €o
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which ends the proof.

(2) For the general case, we set v(z) = z(x)w(x), where z(x) is a given function. Then w(x) satisfies
the second-order equation

—a" Dyjw + <bi - %aij g;z)Dvw + [c + %(biDiz —a"D;;2)|w < g (6.8)
When Q is contained in the region 0 < 27 < d, 2(x) can be chosen as
2(z) = €294 — g™ (6.9)
where a > 0 is a given constant.
7 Schauder estimate: Paper
Let’s consider the Poisson equation
Au=f, =z € B1(0) (7.1)
Suppose f is Dini continuous, namely
[0 < oo, i) = s 1f@) = 1) (72)

then we have the following estimation of D?u, if u is a C? solution to the equation (7.1).

Theorem 7.1 (Schauder estimate) Let u € C%(By) be a classical solution to the Laplace equa-
tion (7.1). Then for x,y € B1(0),

|D2u(z) — D*uly)| < Co [dsglp | + /O ’ “’ff“) dr+ d /d 1 wg ) } (7.3)

where d = |x — y|, C,, only depends on n.

Remark w(r) is an increasing function of . When f is a-Holder continuous, it can be shown that

/Od“’(”dmd/dl“g) = 0(d®) (7.4)

r

which implies |D?u(z) — D?u(y)| < Cd®, and D?u is thus Hélder continuous.

Proof
1. Definition of the function sequence u; shrinking to x
Let p = % be a constant. Fix some point g € B 1 (0) and define the family of balls centered at xo,
defined by
B = {x eR": [x —xo| <p¥}, k=1 (7.5)
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and Béo) = B1(0). It’s easy to see B,(CO) C B1(0) for any k > 0, and Blio) shrinks to 0 as k — oo.

Now let uy, be the classical solution to the Poisson equation with Dirichlet boundary conditions:

Aug = f(xg), € B,(CO)
© (7.6)
Up = U, x € 0B,
then uy, € C? (B,(CO)) and satisfies
Alup —u) = f(xo) = f, =z € B (7.7)

For z € B,(CO)7 we always have |f(zo) — f(2)| < p*. Note that u; — u also vanishes at the boundary
(0) . .
0B;.”, hence from the maximum principle,

luk = ull o 500y < CP™lp"), k20 (78)
Differencing (7.8) at k and k + 1, we obtain
k= sl e 00 ) < Co*w(p"), k>0 (7.9)

Since uj — ug+1 is harmonic in B,i?@ (whose radius is O(p*)), the derivatives of uy — ug,; in the

ball Bl(;:gz can be approximated as
1Dk = ks 1)l e 50,y < Co w0 (p") (7.10)

HDQ(uk — “k+1>HLoo(B(°> ) < Cw(pk) (7.11)
k+2
2. ui characterizes the local differentiability of u at xg

Since u € C?(By), let ¢(x) be the quadratic part of u localized at zg, i.e.,
1
q(z) = u(xo) + Du - (x — o) + 5(35 —20) " D?u(xo)(x — z0), x€ By (7.12)
then ¢(x) has the same local properties with u(x) at o, i.e.,
Dq(zo) = Du(zo), D?*q(x) = D*u(xg) (7.13)
and ug — ¢ is thus harmonic in B,io). Also note that from the Taylor expansion,
u(z) — q(x) = o(lz — xol?), & — w0 (7.14)
hence there exists a sequence 5, — 0 such that
e = all e g0y < ep™, k=0 (7.15)
Using (7.8)(7.15) we obtain there exists a sequence g, — 0 such that

||uk - q”LOO(BI(cO)) g EkPka vk 2 0 (716)
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Using the fact that ui — ¢ is harmonic, we obatin the derivative estimate
| Dug (o) — Du(z0)| < Cepp”
| D%uy (z0) — D?u(xg)| < Ceyp

Let k — oo, we finally obtain

lim Duyg(z¢) = Du(xo), lim D%uy(zo) = D?u(xo)

k—o0 k—o0
3. Estimate D?u(z) — D?*u(x() near x
Now let’s estimate D?u(z) — D?u(zo) when the space variable z is near zo. Write
|D?u(z) — D*u(xo)| < I + I + I3

where Iy, I, I3 are given by

I = |D?ui(2) — D%up(z0)|

IQ = |D2uk(a:0) - D2u(9c0)|

I3 = |D?uy(z) — D%u(z)|

(7.17)
(7.18)

(7.19)

(7.20)

Suppose there exists k > 1 such that p*** < |2 —x¢| < p**3. Now we estimate I, I, I3 respectively.

o I is about the local continuity of D?uy(x) at x. For j =1,---  k — 1, define

hi(z) = uj1 () —u;(z), xe€BY

then (7.11) implies that
1p?

Ky .
thLm(B;(i)Q) < Cw(p®), j=1,---,k—-1

Note that z € BI(C?F)Q and |z — zg| = O(p¥), thus (7.22) implies

D1y (2) — Dy (wo)| < Cp~Iw(p?)]2 — 2

Now use
k—1
D?u(z) — D*u(xg) = (D*uo(z) — D*ug(w0)) + Z(Dth (z) — D?h;(0))
§=0
We have
k—1

|D?us(2) = D?up(wo)| < |Dug(2) — DPug(wo)| + ) [D*h;(2) — D1y (0)|

j=0
k—1 4 4
< |D?ug(2) — D?ug(o)| + Clz — xo| Y p~ w(p!)
j=0
2 2 ! w(r)
< |D?up(z) — D?ug(xo)| + Clz — x| 2 dr
|z—z0|
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2

Therefore, our problem reduces to the approximation of | D?ug(z) — D?*ug(z0)|. Again define

the quadratic part of ug(x) as
1
qo(z) = ug(wg) + Dug - (x — z9) + 5(3: —20)TD%ug(z — z0), =z € B1(0) (7.25)

then D?%qq(x¢) = D?ug(g), up — qo is harmonic. Note that ug is a classical solution to the
Poisson equation, we have

uo(z) — qo(z) = O(|z — xo|*), x € B1(0) (7.26)
hence there exists a constant C such that
|D?ug(z) — D?ug(z0)| < C|z — z0||Juol| e, € B1(0) (7.27)

Using the approximation (7.8), we obtain

ID%u0(2) - DPua(ao)] < Clz = ol Jull = + Cul)) (7.28)
Finally, we obtain
1
I < Clz — x| <||um +/ w(pdr) (7.29)
|lz—x0| r

I is about the difference between D?uy, and D?u. Using (7.11) we have

|Mﬂhﬂhwuﬁz)<cmmﬁ% Vi>k (7.30)

which implies ‘
|D?uj(x0) — D*ujsa(z0)| < Cw(p?), Vj>k (7.31)

Sum this result over j =k + 1,k + 2, -+, we have

o0 |z—z0] w(r)
|D2ui () — D2u(zo)] < €S w(ph) < c/ wlr) g, (7.32)
i=k 0 "
which implies
|z—0]
bgc/ w@m (7.33)
0

The estimation of I3 is similar with I5, by considering the balls
(1) ._ n . j ;
BV i={zeR": [z -z </}, j=>k+1 (7.34)
instead of Bj(-o). Correspondingly, let v;(z) (j > k + 1) be the solution to

{A’Uj =f(z), z¢€ B](-l) (7.35)

v; = u, T € aB](l)
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and v;(x) = u;(x), then similarly we have

|D?0;(2) — D2uj11(2)] < Cule?), V) > k (7.36)
which implies
|z—=o|
<C / W) g (7.37)
0 T

Finally obtain from the estimation of I, I, I3 that

|D?u(z) — D*u(zo)| < C[dng u| + /Od @dr + d/dl “’g)] (7.38)

with d = |z — | is the distance.

8 LP estimate

Definition 8.1 (Distribution function) Suppose f € L'(Q) and define the set
At) = {z e Q:[f(2) > t}

The function \(t) := meas(A(t)) is called the distribution function f.

A(t) characterizes how large is the region that |f(x)| > ¢ in it. Now LP-integral of f can be easily
expressed via the integral of A\(t).

[ee]
[1t@pas=p [~ ot
Q 0
Now we define the Marcinkiewicz space.

Definition 8.2 (Marcinkiewicz space) Forp > 1,

£l = (suptraoy )

For any ¢t > 0, we have

PA) < /A @ /Q (@) Pde

Taking the supremum of ¢ we have

sup{t”A(1)} < / (@) Pda

>0

which implies

/]

r, S fllze
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thus [|-|| ,» is weaker than the standard LP norm. Now we prove that for any ¢ < p, L%,(€2) C L9(Q2).

In fact,
/|f|qc1x:q/ tI7 I\ (¢)de
Q 0

1 [e%s}
:q/ tq’l/\(t)dt—i—/ gt I\(t)dt
0 1

< ql9 + - sup{tPA()} / vl
t>0 1
< 0

thus for 1 < ¢ < p we have
LP(Q) C LP (Q2) € LY(D)

Characterization of the LP functions:
o LP(Q): p/ tP~I\(t)dx < 400 (stronger)
Q

o LP(Q): sup{tPA(t)} < +o0 (weaker)

w
t>0
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