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1 Classical PDE theory
Let Ω ⊂ Rn be an open region and u ∈ C2(Ω). If u satisifies

∆u =

n∑
i=1

∂2u

∂x2i
= 0 (1.1)
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then u is called a harmonic function. A harmonic function is smooth and its derivatives can be
bounded by the function itself.

Theorem 1.1 (harmonic function deriative estimation) Let u ∈ C2(Ω) be a harmonic func-
tion on Ω ⊂ Rn, then for any ball B(x, r) ⊂ Ω and multi-index α with |α| = k, we have

|Dαu(x)| ⩽ Ck

rn+k

∫
B(x,r)

|u(y)|dy (1.2)

where
C0 =

1

α(n)
, Ck =

(n+ k)n+k(n+ 1)k

α(n)(n+ 1)n+1

The theorem implies the high order derivatives of u can be bounded by the function value itself.
We consider the Laplace equation with Dirichlet boundary conditions:{

−∆u = 0, x ∈ B(0, R)

u = g, x ∈ ∂B(0, R)
(1.3)

where we assume g ∈ C(∂B(0, R)). Using the Poisson kernel defined as

K(x, y) =
R2 − |x|2

nα(n)R|x− y|n
, x ∈ B(0, R), y ∈ ∂B(0, R) (1.4)

The solution can be explicitly expressed in the following theorem:

Theorem 1.2 (solution of Laplace equation) Let the ball B(0, R) ⊂ Rn, and g be a continuous
function on ∂B(0, R). The solution of the Laplace equation can be expressed as

u(x) =

∫
∂B(0,R)

K(x, y)g(y)dS(y) (1.5)

then

1. u(x) is infinitely differentiable in B(0, R);
2. ∆u(x) = 0, x ∈ B(0, R);
3. for any x0 ∈ ∂B(0, R), as x ∈ B(0, R) and x→ x0, u(x) → g(x0).

The theorem implies the solution u(x) ∈ C∞(Ω) ∩ C(Ω̄).

Remark If the weak solution v(x) ∈ H1(Ω) of the Laplace equation is continuous in Ω̄, we can
prove that u(x) and v(x) are exactly the same.

2 Functional analysis
Theorem 2.1 (Hölder inequality) Let Ω ⊂ Rn be an open bounded region. p, q > 1 be constants
satisfying 1 = 1

p + 1
q . For u ∈ Lp(Ω) and v ∈ Lq(Ω), then uv ∈ L1(Ω) and∣∣∣∣ ∫

Ω

uvdx

∣∣∣∣ ⩽ (∫
Ω

|u|pdx
) 1

p
(∫

Ω

|v|qdx
) 1

q

(2.1)
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When 1 = 1/p+ 1/q + 1/r, the result can be generalized to∣∣∣∣ ∫
Ω

uvwdx

∣∣∣∣ ⩽ (∫
Ω

|u|pdx
) 1

p
(∫

Ω

|v|qdx
) 1

q
(∫

Ω

|w|rdx
) 1

r

(2.2)

Theorem 2.2 (Riesz representation) Let H be a Hilbert space with inner product (·, ·). Let
f : H 7→ R be a bounded linear functional, then there exists a unique u ∈ H such that

〈f, v〉 = (u, v), ∀v ∈ H

That is to say, any bounded linear functional in a Hilbert space can be represented by a single
element.

Theorem 2.3 (Banach–Alaoglu) Let X be a normed vector space. Any closed unit ball in X∗

is compact in the weak*-topology.

In particular, the closed unit ball in the Hilbert space is compact in the weak topology, which
immediately implies the following theorem.

Theorem 2.4 (Bolzano–Weierstrass) Let H be a Hilbert space, and {xk}k⩾1 be an bounded
sequence, then there exists a subsequence {xkj}j⩾1 that converges weakly in H.

Theorem 2.5 (Lax–Milgram) Let H be a Hilbert space with a(u, v) being a bilinear functional
on H ×H satisfying

• |a(u, v)| ⩽M‖u‖‖v‖, ∀u, v ∈ H;
• ∃δ > 0, a(u, u) ⩾ δ‖u‖2.

Let f be a bounded linear functional in H, then there exists a unique u ∈ H such that

a(u, v) = 〈f, v〉, ∀v ∈ H

Proof Fixing u ∈ H, a(u, ·) : H 7→ R is a linear functional in H. Then by Reisz representation
theorem, there exists w ∈ H such that

a(u, v) = (w, v), ∀w ∈ H

Define the mapping A : H 7→ H such that w = Au, then

a(u, v) = (Au, v), ∀u, v ∈ H

then A : H 7→ H is a linear operator. Now we prove that A is bounded linear operator and a
bijection in H. Using

|(Au, v)| = |a(u, v)| ⩽M‖u‖‖v‖, ∀u, v ∈ H

By choosing v = Au, we have ‖Au‖2 ⩽M‖u‖‖Au‖, thus

‖Au‖ ⩽M‖u‖, ∀u ∈ H

which implies A is bounded. Also, from

δ‖u‖2 ⩽ a(u, u) = (Au, u) ⩽ ‖Au‖‖u‖

we have ‖Au‖ ⩾ δ‖u‖2. To prove A is bijective, we need to verify
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• R(A) is closed.
Consider a convergent sequence Aun ∈ R(A), now we prove that Aun → Au for some u ∈ H.
To prove this result, notice that

lim
m,n→∞

‖Aum −Aun‖ = 0

and ‖A(um − un)‖ ⩾ δ‖um − un‖, we have

lim
m,n→∞

‖um − un‖ = 0

which implies {un} is convergent in H. Let un → u, then Aun → Au ∈ R(A).
• R(A)⊥ = ∅.

Otherwise, let w ∈ R(A)⊥ and w 6= 0, then

(w,Au) = 0, ∀u ∈ H

which implies a(w, u) = 0, ∀u ∈ H. Choosing u = w, we have a(w,w) = 0 ⇒ w = 0,
contradiction.

The results above imply R(A) = H, thus A is bijective. The equation Au = f can be solved
explicitly as u = A−1f .

Remark The key of the Lax-Milgram theorem is the coercivity of the functional. The theorem
does not require the symmetry of the functional a(·, ·).

3 Sobolev spaces
3.1 Basic properties
Let Ω ⊂ Rn be an open bounded region. For the multi-index α = (α1, · · · , αn), ∂αu denotes the
α-weak derivative of u.

Definition 3.1 (Sobolev space) Let m ⩾ 0 be an integer and p > 0. The function space

W = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), |α| ⩽ m}

is the Sobolev space Wm,p(Ω). The Sobolev space is a Banach space with norm

‖u‖m,p =

( ∑
0⩽|α|⩽m

∫
Ω

|∂αu|pdx
) 1

p

and the correspondong seminorm is

|u|m,p =

( ∑
|α|=m

∫
Ω

|∂αu|pdx
) 1

p

which only involves derivatices of orderm. Wm,p
0 (Ω) is defined as the closure of C∞

0 (Ω) inWm,p(Ω).
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Theorem 3.1 (Poincare-Friedrichs) Let Ω ⊂ Rn be an open bounded region. There exists a
constant K(n,m, p) that

|u|m,p ⩽ ‖u‖m,p ⩽ K(n,m, p)|u|m,p, ∀u ∈Wm,p
0

The theorem implies the norm and the seminorm in Wm,p
0 are equivalent.

3.2 Embedding theorem
Let X,Y be two Banach spaces. We say X is continuously embedded in Y , or denoted by X ↪→ Y ,
if X ⊂ Y and there exists a constant C such that

‖x‖Y ⩽ C‖x‖X , ∀x ∈ X

Recall that the norm in the Sobolev space Wm,p(Ω) is

‖u‖m,p =

( ∑
|α|⩽m

∫
Ω

|∂αu|pdx
) 1

p

and the norm in C(Ω̄) is
‖u‖C(Ω̄) = max

Ω̄
|u|

Theorem 3.2 (Sobolev embedding) Let Ω ⊂ Rn be an open bounded region in Rn. If ∂Ω is
Lipschitz continuous, then

• If m < n/p, Wm,p(Ω) ↪→ Lq(Ω) for 1 ⩽ 1 ⩽ np
n−mp ;

• If m = n/p, Wm,p(Ω) ↪→ Lq(Ω) for 1 ⩽ q < +∞;
• If m > n/p, Wm,p(Ω) ↪→ C(Ω̄).

In particular, when m = 1 and p = 2, we have

H1(Ω) ↪→ L2∗(Ω)

where 2∗ = 2n
n−2 .

3.3 H−1 space
Now we state the definition of H−1 space (see Evans Section 5.9).

Definition 3.2 (H−1 space) Let Ω ⊂ Rn be an open bounded region. H−1(Ω) is defined as the
dual space of H1

0 (Ω).

It’s easy to see
H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω)

The functions in H−1(Ω) can be characterized as follows:
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Theorem 3.3 (characterization of H−1 space) Assume u ∈ H−1(Ω), then there exists func-
tions f0, f1, · · · , fn ∈ L2(Ω) such that

〈f, v〉 =
∫
Ω

(
f0v +

n∑
i=1

fnvxi

)
dx (∗)

Furthermore,

‖f‖H−1(Ω) =

{∫
Ω

n∑
i=0

|f i|2dx : f0, f1, · · · , fn satisfying (∗)
}

Therefore, we can write a function f ∈ H−1(Ω) in the form

f = f0 −
n∑

i=1

f ixi

for f0, f1, · · · , fn ∈ L2(Ω).

4 Second-order elliptic equations
4.1 Weak solution of the elliptic equation
Let Ω ⊂ Rn be an open bounded region with C1 boundary. Consider the second-order elliptic
equation in Ω with Dirichlet boundary conditions{

−Dj(a
ijDiu) = f −Dif

i, x ∈ Ω

u = 0, x ∈ ∂Ω
(4.1)

We ultimate the following assumptions (A):

1. aij ∈ L∞(Ω) and there exists constants λ,Λ > 0 that

λ|ξ|2 ⩽
n∑

i,j=1

aij(x)ξiξj ⩽ Λ|ξ|2, x ∈ Ω, ξ ∈ Rn; (4.2)

2. c(x) ⩾ 0 and c ∈ L
n
2 (Ω);

3. f, f i ∈ L2(Ω), i = 1, · · · , n.

Remark The right hand side of (4.1) is in the H−1 space. Written in the form of f −Dif
i makes

it easier to write the weak formulation.

Now we define the weak solution of the elliptic equation (4.1).

Definition 4.1 (weak solution) The weak solution of the second-order elliptic equation (4.1) is∫
Ω

(
aijDiuDiv + cuv

)
dx =

∫
Ω

(
fv + f iDiv

)
dx, ∀v ∈ C∞

0 (Ω) (4.3)
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It can be verified that the strong solution of (4.1) is also the weak solution. Under the assumptions
above, we can prove that the elliptic equation (4.1) has a unique weak solution in H1

0 (Ω). Note
that for Dirichlet boundary conditions (homogeneous or not), the test function space is H1

0 (Ω), i.e.,
the trace of the function must be zero.

Theorem 4.1 (existence of weak solution) Under the assumptions (A), the elliptic equation
(4.1) has a unique weak solution in H1

0 . That is, there exists a unique u ∈ H1
0 (Ω) satisfying (4.3).

Proof The proof of the existence is based on the Lax-Milgram theorem. Define the bilinear func-
tional a(·, ·) in H1

0 (Ω):

a(u, v) :=

∫
Ω

(
aijDiuDjv + cuv

)
dx, u, v ∈ H1

0 (Ω) (4.4)

First we prove that a(·, ·) is bounded. From∣∣∣∣ ∫
Ω

aijDiuDjvdx

∣∣∣∣ ⩽ ∫
Ω

|aij ||Diu||Div|dx ⩽ Λ

(∫
Ω

|Du|2
∫
Ω

|Dv|2
) 1

2

= Λ‖u‖H1(Ω)‖v‖H1(Ω)

we have ∣∣∣∣ ∫
Ω

aijDiuDjvdx

∣∣∣∣ ⩽ Λ‖u‖H1(Ω)‖v‖H1(Ω) (4.5)

From the Hölder inequality, we have∣∣∣∣ ∫
Ω

cuvdx

∣∣∣∣ ⩽ ‖c‖
L

n
2 (Ω)

‖u‖L2∗ (Ω)‖v‖L2∗ (Ω) (4.6)

where 2∗ = 2n
n−2 . here we used

2

n
+

1

2∗
+

1

2∗
=

2

n
+
n− 2

2n
· 2 = 1

Using the Sobolev embedding result H1(Ω) ↪→ L2∗(Ω), we obtain∣∣∣∣ ∫
Ω

cuvdx

∣∣∣∣ ⩽ C‖u‖H1(Ω)‖v‖H1(Ω) (4.7)

Using (4.5)(4.7) we conclude a(·, ·) is a bounded bilinear functional.
Next we prove that a(·, ·) is coercive. It can be verified that

a(u, u) =

∫
Ω

(
aijDiuDju+ cu2

)
dx ⩾ λ

∫
Ω

|Du|2dx (4.8)

Using the Poincáre inequality, we have∫
Ω

|Du|2dx ⩾ c

∫
Ω

|u|2dx (4.9)

and we obtain
a(u, u) ⩾ c‖u‖2H1(Ω) (4.10)
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thus a(·, ·) is coercive.
Now define the linear functional F (·) in H1

0 (Ω) as

F (v) =

∫
Ω

(
fv + f iDiv

)
dx (4.11)

then
|F (v)| ⩽ ‖f‖L2(Ω)‖v‖L2(Ω) +

∥∥f i∥∥
L2(Ω)

‖v‖H1(Ω) ⩽ C‖v‖H1(Ω) (4.12)

thus F is a bounded linear function.
Finally, by the Lax-Milgram theorem, the equation a(u, v) = F (v) has the unique solution in

H1
0 (Ω). That is, the weak formulation (4.3) has a unique solution in H1

0 (Ω).

4.2 Weak maximum principle
First we introduce the lemma of De Giorgi iterations.

Lemma 4.1 (De Giorgi) Let ϕ(t) be a nonnegative and decreasing function satisfying

ϕ(h) ⩽ C

(h− k)α
[ϕ(k)]β , h > k ⩾ k0, (4.13)

where α > 0, β > 1, then ϕ(k0 + d) = 0, where

d = C
1
α [ϕ(k0)]

β−1
α 2

β
β−1 . (4.14)

The lemma implies any function ϕ(t) satsifying the condition must vanish for sufficiently large t.

Proof The proof is based on the following sequence {ks}s⩾0:

ks = k0 + d− d

2s
, s = 0, 1, · · ·

Now we define the weak upper (lower) solutions as follows.

Definition 4.2 (weak upper (lower) solution) u ∈ H1(Ω) is called the weak upper (lower)
solution of the elliptic equation (4.1), if for all ϕ ∈ C∞

0 (Ω) and ϕ ⩾ 0, we have∫
Ω

(
aijDiuDjϕ+ cuϕ

)
dx ⩾ (⩽)

∫
Ω

(
fϕ+ f iDiϕ

)
dx (4.15)

Remark The difference between the weak upper solution (4.15) and the weak solution (4.3) is that
the test function in (4.15) has to nonnegative. If u ∈ H1

0 (Ω) and u is both a weak upper and lower
solution, u is the weak solution. The corresponding strong form of the weak lower solution is

−Dj(a
ijDiu) + cu ⩽ f −Dif

i (4.16)

which is exactly the definition of the subharmonic function.
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Theorem 4.2 (weak maximum principle) If the assumption (A) holds, and if u ∈ H1(Ω) is a
weak lower solution of (4.1), then for any p > n,

ess sup
Ω
u ⩽ sup

∂Ω
u+ + C

(
‖f‖Lp∗ +

∥∥f i∥∥
Lp

)
|Ω|

1
n− 1

p , (4.17)

where
p∗ =

np

n+ p
< p.

Proof Take k0 = sup
∂Ω

u+ ⩾ 0, then for k > k0, ϕ = (u − k)+ ∈ H1
0 (Ω). Since u is a weak lower

solution, by choosing ϕ = (u− k)+ in (4.15), we have∫
Ω

(
aijDiuDj(u− k)+ + cu(u− k)+

)
dx ⩽

∫
Ω

(
f(u− k)+ + f iDi(u− k)+

)
dx, ∀k > k0 (4.18)

Note that in (4.18), Di(u− k) = Di(u− k)+ −Di(u− k)− and thus

Di(u− k)Dj(u− k)+ = Di(u− k)+Dj(u− k)+

and we have∫
Ω

aijDiuDj(u− k)+dx =

∫
Ω

aijDi(u− k)Dj(u− k)+dx

=

∫
Ω

aijDi(u− k)+Dj(u− k)+dx

⩾ λ

n∑
i=1

∫
Ω

(
Di(u− k)+

)2
dx = λ

∥∥D(u− k)+
∥∥2
L2(Ω)

that is, ∫
Ω

aijDiuDj(u− k)+dx ⩾ λ‖D(u− k)+‖2L2(Ω) (4.19)

Also, note that in (4.18), u(u − k)+ ⩾ 0 for each x ∈ Ω. If u(u − k)+ < 0 for some x ∈ Ω, using
(u − k)+ ⩾ 0 we have u(x) < 0 and (u(x) − k)+ > 0. This implies u(x) > k ⩾ 0, contradiction!
Therefore, ∫

Ω

cu(u− k)+dx ⩾ 0 (4.20)

From (4.18)(4.19)(4.20) we conclude

λ
∥∥D(u− k)+

∥∥2
L2(Ω)

⩽
∫
Ω

(
f(u− k)+ + f iDi(u− k)+

)
dx, ∀k > k0 (4.21)

Now we estimate the RHS of (4.21). Using the Hölder inequality,∣∣∣∣ ∫
Ω

f(u− k)+dx

∣∣∣∣ ⩽ ‖f‖Lp∗ (Ω)

∥∥(u− k)+
∥∥
L2∗ (Ω)

|Ak|
1
2−

1
p (4.22)
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where Ak := {x ∈ Ω : u(x) > k} and we used
1

p∗
+

1

2∗
=
n+ p

np
+
n− 2

2n
+

1

2
− 1

p
= 1

From the embedding H1(Ω) ↪→ L2∗(Ω) and the Poincáre inequality, for (u− k)+ ∈ H1
0 (Ω) we have∥∥(u− k)+

∥∥
L2∗ (Ω)

⩽ C
∥∥(u− k)+

∥∥
H1(Ω)

⩽ C
∥∥D(u− k)+

∥∥
L2(Ω)

(4.23)

hence (4.21) gives ∣∣∣∣ ∫
Ω

f(u− k)+dx

∣∣∣∣ ⩽ C‖f‖Lp∗ (Ω)

∥∥D(u− k)+
∥∥
L2(Ω)

|Ak|
1
2−

1
p (4.24)

Similarly, ∣∣∣∣ ∫
Ω

f iDi(u− k)+dx

∣∣∣∣ ⩽ n∑
i=1

∥∥f i∥∥
Lp(Ω)

∥∥D(u− k)+
∥∥
L2(Ω)

|Ak|
1
2−

1
p (4.25)

(4.24)(4.25) yield∣∣∣∣ ∫
Ω

(
f(u− k)+ + f iDi(u− k)+

)
dx

∣∣∣∣ ⩽ C

(
‖f‖Lp∗ +

n∑
i=1

∥∥f i∥∥
Lp

)∥∥D(u− k)+
∥∥
L2 |Ak|

1
2−

1
p (4.26)

Let F = ‖f‖Lp∗ +

n∑
i=1

∥∥f i∥∥
Lp be a constant. (4.21)(4.26) give

∥∥D(u− k)+
∥∥
L2(Ω)

⩽ CF |Ak|
1
2−

1
p (4.27)

Again from the Sobolev embedding and the Poincáre inequality,∥∥(u− k)+
∥∥
L2∗(Ω)

⩽ CF |Ak|
1
2−

1
p (4.28)

For any h > k > k0, we have

(h− k)2
∗
|Ak| ⩽

(
CF |Ak|

1
2−

1
p

)2∗

(4.29)

Now consider decreasing function Ak on [k0,+∞). Applying the De Giorgi iteration lemma,
Ak0+d = 0, where

d = CF |Ak0
|
1
n− 1

p 2
n(p−2)
2(p−n) ⩽ CF |Ω|

1
n− 1

p (4.30)
which implies

ess sup
Ω
u ⩽ k0 + d ⩽ sup

∂Ω
u+ + C

(
‖f‖Lp∗ +

∥∥f i∥∥
Lp

)
|Ω|

1
n− 1

p (4.31)

and concludes our result.
Remark The maximum principle requires higher integrity on f than the existence of the weak
solution. The maximum principle in the weak solution is the same with the harmonic function.

In the case of n = 2, the proof is a little different.∣∣∣∣ ∫
Ω

f(u− k)+dx

∣∣∣∣ ⩽ ∥∥D(u− k)+
∥∥
L2‖f‖Lp∗ |Ak|

1
2−

1
p
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4.3 Variantional principle
We can derive the existence of the weak solution from the variational principle. That is to say,
minimize some functional in a proper function space. For simplicity, let Ω ⊂ Rn be an open bounded
region and consider the elliptic equation with Dirichlet boundary conditions{

−Dj(a
ijDiu) = 0, x ∈ Ω

u = g, x ∈ ∂Ω
(4.32)

where the coefficients aij satisfy the uniform elliptic condition:

λ|ξ|2 ⩽
n∑

i,j=1

aijξiξj ⩽ Λ|ξ|2 (4.33)

Now we aim to minimize the functional

F (u) =
1

2

∫
Ω

aijDiuDjudx, u ∈ H1(Ω) (4.34)

within the function space
W = {u ∈ H1(Ω) : u− g ∈ H1

0 (Ω)} (4.35)
The proof is consists of 3 parts:

1. The functional F has minimizer in W ;
2. The minimizer yields the weak solution of (4.32).
3. The minimizer of F is unique.

First we prove the existence of the minimizer. Suppose {un} ⊂W satisfies

lim
n→∞

F (un) = inf
u∈W

F (u)

From
F (u) ⩾ λ

2

∫
Ω

|Du|2dx

we know that ‖Dun‖L2 is bounded, thus ‖D(un − g)‖L2 is bounded. From the Poincáre inequality,
‖un − g‖H1 is bounded. Thus there exists a subsequence {unk

} and u∗ ∈ H1(Ω) such that

unk
→ u∗ in L2(Ω)

unk
⇀ u∗ in H1(Ω)

thus u∗ satisfies
F (u∗) ⩽ lim

n→∞
F (un) = inf

u∈W
F (u)

which implies u∗ is a minimizer.

Note that the Gauteux derivative of F is
δF

δv
(u) =

∫
Ω

aijDiuDjvdx, v ∈ H1
0 (Ω)

11



If u∗ is a minimizer, we have ∫
Ω

aijDi(u
∗)Djvdx = 0, ∀v ∈ H1

0 (Ω)

thus u∗ is a weak solution.

If u∗ and u∗∗ are both weak solutions, then

δF

δv
(u∗) =

δF

δv
(u∗∗) = 0, ∀v ∈ H1

0 (Ω)

Consider the function f(t) := F (tu∗ + (1− t)u∗∗), then f is quadratic and f(t) is has 2 stationary
points at t = 0, 1. Hence f is constant, which implies D(u∗ − u∗∗) = 0. u∗ = u∗∗.

F =

∫
Ω

|∇u|pdx+

∫
Ω

fu, u ∈W 1,p

4.4 Regularity of the solution
The regularity the weak solution of the elliptic equation can be derived given techincal assumptions.
Consider the elliptic equation

−Di(a
ijDju) + biDiu+ cu = f (4.36)

with appropriate Dirichlet boundary conditions. Under the conditions of (A), we make stronger
assumptions (B) on the coefficients:

1. aij ∈W 1,∞(Ω);
2. bi, c ∈ L∞(Ω);
3. f ∈ L2(Ω).

Theorem 4.3 (H2 regularity) Let u ∈ H1(Ω) be the weak solution. Then for any Ω′ ⊂⊂ Ω,
u ∈ H2(Ω′), and

‖u‖H2(Ω′) ⩽ C
(
‖u‖H1(Ω) + ‖f‖L2(Ω)

)
(4.37)

where the constant C depends on n, λ,
∥∥aij∥∥

W 1,∞ ,
∥∥bi∥∥

L∞ , ‖c‖L∞ and dist(Ω′, ∂Ω).

When we make no assumptions on the shape of Ω, the constant C might grow large as Ω′ enlarges.
The proof is based on the difference function. Given the direction v ∈ Rn with |v| = 1, define the
translation operator

τhu(x) = u(x+ hv), h ∈ R

and the difference operator in the direction v,

∆hu(x) =
1

h

(
u(x+ hv)− u(x)

)
, h ∈ R

With this notation, we can write

∆−hu(x) =
1

h

(
u(x− hv)− u(x)

)
12



We can verify the following identity

∆h(uv) = τh∆hv + (∆hu)v

Proof Set q = f − biDiu− cu ∈ L2(Ω), then the weak formulation can be written as∫
Ω

aijDiuDjϕdx =

∫
Ω

qϕdx, ∀ϕ ∈ H1
0 (Ω) (4.38)

Choose the test function ϕ = ∆−hv

Let v ∈ H1
0 (Ω) with compact support in Ω. For sufficiently small h, ∆hv is well-defined. By

choosing the test function ϕ = ∆−hv ∈ H1
0 (Ω), we have∫

Ω

aijDiuDj∆−hvdx =

∫
Ω

q∆−hvdx (4.39)

which implies ∫
Ω

∆h(a
ijDiu)Divdx = −

∫
Ω

q∆−hvdx (4.40)

Using
∆h(a

ijDiu) = τha
ij∆hDiu+Diu∆haij (4.41)

hence we obtain ∫
Ω

τha
ij∆hDiuDivdx = −

∫
Ω

(
∆ha

ijDiuDjv + q∆−hv

)
dx (4.42)

Note that ∣∣∣∣ ∫
Ω

∆ha
ijDiuDjvdx

∣∣∣∣ ⩽ C
∥∥Daij∥∥

L∞‖u‖H1‖Dv‖L2

and ∣∣∣∣ ∫
Ω

q∆−hvdx

∣∣∣∣ ⩽ C‖q‖L2‖Dv‖L2 , ‖q‖L2 ⩽ C‖f‖L2 + C‖u‖H1

Hence ∫
Ω

τha
ij∆hDiuDjvdx ⩽ C

(
‖u‖H1 + ‖f‖L2

)
‖Dv‖L2 (4.43)

Further choose v = η2∆hu

For simplicity, let F = ‖u‖H1 + ‖f‖L2 be the constant. Choosing η ∈ C∞
0 with η = 1 for x ∈ Ω′

and v = η2∆hu, we have

Dv = D(η2∆hu) = η(ηD∆hu+∆huDη)

hence ∫
Ω

η2τha
ijDi∆huDj∆hudx+ 2

∫
Ω

ητha
ijDi∆hu(Diη)∆hudx

⩽ C
(
‖u‖H1 + ‖f‖L2

)(
‖ηD∆hu‖L2 + 2‖∆huDη‖L2

)
⩽ CF‖ηD∆hu‖L2 + CF 2

13



That is,∫
Ω

η2τha
ijDi∆huDj∆hudx+ 2

∫
Ω

ητha
ijDi∆hu(Diη)∆hudx ⩽ CF‖ηD∆hu‖L2 + CF 2 (4.44)

Now we estimate the LHS of (4.44).∫
Ω

η2τha
ijDi∆huDj∆hudx ⩾ λ

∫
Ω

|η∆hDu|2dx

2

∣∣∣∣ ∫
Ω

ητha
ijDi∆hu(Diη)∆hudx

∣∣∣∣ ⩽ C

∫
Ω

|Dη|2|∆hu|2dx+
λ

2

∫
Ω

|ηDi∆hu|2dx

Thus ∫
Ω

η2τha
ijDi∆huDj∆hudx ⩾ ‖ηD∆hu‖2L2 − CF 2

Therefore (4.44) gives
‖ηD∆hu‖2L2 ⩽ CF‖ηD∆hu‖L2 + CF 2

which implies
‖ηD∆hu‖L2 ⩽ CF (4.45)

and its exactly what need.

If the boundary ∂Ω is smooth, we can derive more accurate estimations.

Theorem 4.4 (H2 regularity) Additionally suppose ∂Ω ∈ C2, g ∈ H2(Ω) and u − g ∈ H1
0 (Ω),

where u ∈ H1(Ω) is a weak solution of the elliptic equation. Then u ∈ H2(Ω) and

‖u‖H2(Ω) ⩽ C
(
‖u‖L2(Ω) + ‖f‖L2(Ω) + ‖g‖H2(Ω)

)
(4.46)

where the constant C depends on n, λ,
∥∥aij∥∥

W 1,∞ ,
∥∥bi∥∥

L∞ , ‖c‖L∞ and ∂Ω.

The proof of the global estimation of the H2-norm is based on the technique that the boundary of
∂Ω can be stretched to be plane.

Proof First assume g = 0. Let x0 ∈ ∂Ω and ψ : V 7→ B1 maps V ∩ Ω to B+
1 , as shows below.

By choosing the test function ϕ ∈ C∞
0 (Ω), the weak formulation is given by∫
Ω

aijDiuDjϕ =

∫
Ω

qϕdx (4.47)
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where q = f − cu ∈ L2(Ω). If we choose ϕ ∈ C∞
0 (V ∩ Ω), then∫

V ∩Ω

(
aijDiuDjϕ+ cuϕ

)
dx =

∫
V ∩Ω

fϕdx (4.48)

Using the transformation y = ψ(x), we reformulate the expression in the coordinates of y.

Diu =
∂u

∂xi
=

∂u

∂yk

∂yk
∂xi

=
∂yk
∂xi

D̃ku

Similarly
Djϕ =

∂yl
∂xj

D̃lϕ

Hence ∫
V ∩Ω

aijDiuDjϕdx =

∫
B+

1

ãkjD̃kuD̃lϕdy (4.49)

where we define the new coefficent
ãkl = Jaij

∂yk
∂xi

∂yl
∂xj

Similarly,
s (4.50)

5 Schauder estimate: [GT]
In this part we discuss of the regularity of the solution for the Poisson equation

∆u = f (5.1)

When f(x) is Hölder continuous, we hope to prove that the solution is also continous. Some
notations:

• (boundness of Dku) [u]k,0;Ω = |Dku|0;Ω = sup
|β|=k

sup
Ω

|Dβu|

• (continuity of Dku) [u]k,α;Ω = [Dku]α;Ω = sup
|β|=k

[Dβu]α;Ω

The seminorms indicate the corresponding norms

• (boundness of Dku) ‖u‖Ck(Ω) = |u|k;Ω = |u|k,0;Ω =

k∑
j=0

[u]j,0;Ω =

k∑
j=0

|Dju|0;Ω

• (continuity of Dku) ‖u‖Ck,α(Ω) = |u|k,α;Ω = |u|k;Ω + [u]k,α;Ω = |u|k;Ω + [Dku]α;Ω

Compared to the norm in Ck(Ω), the norm in Ck,α includes the α-Hölder continuity of Dku. The
scaled norms of u are also useful in applications. (The prime notation denotes the scaling)

• (scaled boundness of Dku) ‖u‖′Ck(Ω) = |u|′k;Ω =

k∑
j=0

dj [u]j,0;Ω =

k∑
j=0

dj |Dju|0;Ω

15



• (scaled continuity of Dku) ‖u‖′Ck,α = |u|′k,α;Ω = |u|′k;Ω+dk+α[u]k,α;Ω = |u|′k;Ω+dk+α[Dku]α;Ω

It is notable that the definition of ‖u‖′Ck(Ω) and ‖u‖′Ck,α(Ω) both has scaling variance, when the
underlying region is scaled.

5.1 Classical theory of the Newtonian potential
This part is based on the Chapters 2,4 of [GT]1. Recall that the fundamental solution to the Laplace
equation is

Γ(x) =


1

n(2− n)ωn
|x|2−n, n > 2

1

2π
log |x|, n = 2

(5.2)

which satisfies the equation
∆Γ(x) = δ(x) (5.3)

The definition of Γ(x) is slightly different from others where Γ(x) is set to satisfy ∆Γ(x) = −δ(x).
By direct calculation, the derivatives of Γ(x) are given by

Theorem 5.1 (Derivatives of the fundamental solution) The first and second order deriva-
tives of Γ(x) are given by

DiΓ(x) =
1

nωn
xi|x|−n

DijΓ(x) =
1

nωn

(
|x|2δij − nxixj

)
|x|−n−2

The theorem implies the derivatives are bounded by

|DiΓ(x)| ⩽
1

nωn
|x|1−n

|DijΓ(x)| ⩽
1

ωn
|x|−n

This result implies that ∫
BR

|DΓ(x)|dx < +∞,

∫
BR

|D2Γ(x)|dx = +∞

That is, DΓ is integrable but D2Γ is not. Now we consider the Poisson equation ∆u = f in a
regular region Ω ⊂ Rn. Let’s first define the Newtonian potential corresponding to f by

w(x) =

∫
Ω

Γ(x− y)f(y)dy, x ∈ Rn (5.4)

Some basic notations on w(x):

• Although f(x) is defined in Ω, the Newtonian potential w(x) is defined in Rb.
1[GT] denotes the classical textbook Elliptic Partial Differential Equations of Second Order by Gilbarg and

Trudinger.
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• The boundary conditions are not included in w(x), thus w(x) is only one possible solution.
• If w(x) is well-defined, then it vanishes as x→ ∞.
• In a physical view, w(x) is the Coulomb potential generated by the charge distributed as f(x).

Some simple assumptions on f(x) may produce that the Newtonian potential w(x) is well-defined.

Theorem 5.2 (Regularity of Newtonian potential) The Newtonian potential w(x) satisfies

• If f is bounded and integrable in Ω, then w ∈ C1(Rn) and

Diw(x) =

∫
Ω

DiΓ(x− y)f(y)dy (5.5)

• If f is bounded and locally Hölder continuous (with exponent α ⩽ 1), then w ∈ C2(Rn) and
∆w = f in Ω, and

Dijw(x) =

∫
Ω0

DijΓ(x− y)(f(y)− f(x))dy − f(x)

∫
∂Ω0

DiΓ(x− y)nj(y)dSy (5.6)

The RHS of (5.6) is calculated from

Diw(x) =

∫
Ω0

DijΓ(x− y)f(y)dy

=

∫
Ω0

DijΓ(x− y)(f(y)− f(x))dy + f(x)

∫
Ω0

DijΓ(x− y)dy

=

∫
Ω0

DijΓ(x− y)(f(y)− f(x))dy − f(x)

∫
∂Ω0

DiΓ(x− y)nj(y)dSy

The integral in (5.6) is well-defined because the integral∫
Ω0

|DijΓ(x− y)||x− y|αdy (5.7)

is well-defined for α > 0. The theorem implies that we can derive the regularity of w from very
weak assumptions on f .

Remark It is crucial to observe that although w(x) is well-defined in Rn, w(x) is C2 only in the
region Ω. In fact, for x ∈ ∂Ω, D2w may not be defined.
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Finally, we note that bounds of the derivatives w(x) can be written. Suppose Ω is contained in the
ball BR(x0), where R is the radius. Then (5.5) implies

|Diw(x)| ⩽
∫
Ω

|DiΓ(x− y)||f(y)|dy

⩽ |f |0;Ω
∫
Ω

|DiΓ(x− y)|dy

⩽ |f |0;Ω
∫
B2R

|DiΓ(x)|dx

⩽ |f |0;Ω
nωn

∫
B2R

|x|1−ndx

=
|f |0;Ω
nωn

· ωn

∫ 2R

0

dr

=
2R

n
|f |0;Ω

and (5.6) implies

|Dijw(x)| ⩽
|f(x)|
nωn

R1−n

∫
B2R

dSy +
[f ]α;Ω
ωn

∫
B2

|x− y|α−ndy

⩽ 2n−1|f(x)|+ n

α
(3R)α[f ]α;Ω

Theorem 5.3 (Estimation of Newtonian derivatives) Let w(x) be the Newtonian potential
corresponding to f(x), where f(x) defined in Ω is bounded and local Hölder continuous with exponent
α. Then the derivatives are approximated as

|Diw(x)| ⩽
2R

n
|f |0;Ω

|Dijw(x)| ⩽ 2n−1|f(x)|+ n

α
(3R)α[f ]α;Ω

x ∈ Ω (5.8)

Note that these inequalities are both scaling invariant. From the results above we obtain the
following theorem.

Theorem 5.4 (Unique solution of the Poisson equation) Let Ω be an bounded domain and
suppose that each point of ∂Ω is regular. If f is bounded and Hölder continuous in Ω, then the
classical Dirichlet problem ∆u = f is uniquely solvable with continuous boundary conditions.

5.2 Hölder estimates of second-order derivatives
In the first part we have defined the Newtonian potential w(x) corresponding to f(x), i.e.,

w(x) =

∫
Ω

Γ(x− y)f(y)dy (5.9)

We have shown that, if f is bounded and local Hölder continuous, then w ∈ C2(Ω) and satisfies the
classical equation ∆w = f . In this part we consider more accurate bounds for the α-continuity of
the solution.
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Theorem 5.5 (continuity of Newtonian potential) Let B1 = BR(x0) and B2 = B2R(x0) be
concentric balls in Rn. Suppose f ∈ Cα(B̄2), 0 < α < 1, and let w be the Newtonian potential of f
in B2, then w ∈ C2,α(B̄1) and

|D2w|′0,α;B1
⩽ C|f |′0,α;B2

(5.10)

or equivalently,
|D2w|0;B1

+Rα[D2w]α;B1
⩽ C(|f |0;B2

+Rα[f ]α;B2
) (5.11)

where C = C(n, α).

The inequality is scaling invariant, since C only depends on n and α. Although it has been shown
that w ∈ C2(B2), the boundness of its derivatives can only be done in B̄1. This is why it is called
an interior estimate. The proof of this theorem is done by directly estimating the difference
D2w(x1) − D2w(x2) using the expression of the second-order derivatives (5.6). The result above
directly implies

Theorem 5.6 (solution regularity: compact support) Let u ∈ C2
0 (Rn) and f ∈ Cα

0 (Rn) sat-
isfy the Poisson’s equation ∆u = f in Rn. Then u ∈ C2,α

0 (Rn) and if B = BR(x0) is any ball
containing the support of u, we have

|D2u|′0,α;B ⩽ C|f |′0,α;B , C = C(n, α)

|u|′1;B ⩽ CR2|f |0;B , C = C(n)

The first inequality is about the regularity of D2w, and the second inequality is about the derivatives
of lower orders. The proof is based on the fact that u(x) is exactly the Newtonian potential

u(x) =

∫
Rn

Γ(x− y)f(y)dy (5.12)

While Diu can be directly bounded by (5.8), the bound of u itself is obtained from the integration
from the boundary.

The above estimation of the Newtonian potential gives the following Schauder estimate.

Theorem 5.7 (Schauder interior estimate) Let Ω be a domain in Rn and let u ∈ C2(Ω) and
f ∈ Cα(Ω), satisfy the Poinsson’s equation ∆u = f . Then u ∈ C2,α(Ω) for any two concentric balls
B1 = BR(x0) and B2 = B2R(x0) ⊂⊂ Ω, we have

|u|′2,α;B1
⩽ C(|u|0;B2 +R2|f |′0,α;B2

) (5.13)

Some important notations:

• The inequality is scaling invariant. The constant C does not depend on u or R or Ω.

• u is α-Hölder continuous in the whole region Ω, but its derivatives are only approximated in
a smaller ball BR.

• The theorem also holds true if the condition is weakened as u ∈ C2(B̄2) and f ∈ Cα(B̄2).
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Proof The proof is based on the fact that any solution to the Poisson equation can be written as
the sum of the Newtonian potential and a harmonic function. That is,

u(x) = v(x) + w(x), x ∈ B2 (5.14)

where v(x) is harmonic in B2 and w is the Newtonian potential corresponding to f , that is,

w(x) =

∫
B2

Γ(x− y)f(y)dy, x ∈ B2 (5.15)

(To apply the continuity theorem of the Newtonian potential, we must restrict our domain to B2,
a ball rather than the whole region Ω!) For w(x), by applying the continuity theorem we have

R|Dw|0;B1 +R2|D2w|′0,α;B1
⩽ CR2|f |′0,α;B2

(5.16)

where the estimation of Dw is deduced from |Dw|0;B1 ⩽ CR|f |0;B2 . For the harmonic v(x), its
derivatives are bounded by the function value itself, thus

R|Dv|0;B1 +R2|D2v|0,α;B1 ⩽ C|v|0;B2 (5.17)

Again use v = u− w. When n > 2, the function value of w can be approxiamted by

|w(x)| ⩽ |f |0;B2

∫
B2

|Γ(x− y)|dy ⩽ CR2|f |0;B2
(5.18)

and thus
|v|0;B2 ⩽ C(|u|0;B2 +R2|f |0;B2) (5.19)

When n = 2, the proof is derived from u(x1, x2) = u(x1, x2, x3). Finally we obtain the result
desired.

The result above implies the solutions of the Poisson equation are equicontinuous. By the Ascoli
lemma,

Theorem 5.8 Any bounded sequence of the Poisson equation ∆u = f with in Ω with f ∈ Cα(Ω)
contains a subsequence uniformly on compact subdomains of Ω.

The Schauder interior estimate can be stated in alternative ways. Given the region Ω and x, y ∈ Ω,
define

dx = dist(x, ∂Ω), dx,y = min(dx, dy)

and the weighted norms

[u]∗k,0;Ω = [u]∗k,Ω = sup
x∈Ω,|β|=k

dkx|Dβu(x)|

|u|∗k,0;Ω = |u|∗k,0;Ω =

k∑
j=0

[u]∗j;Ω

[u]∗k,α;Ω = sup
x,y∈Ω,|β|=k

dk+α
x,y

|Dβu(x)−Dβu(y)|
|x− y|α

|u|∗k,α;Ω = |u|∗k,0;Ω + [u]∗k,α;Ω
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We also introduce the quantity

|f |(k)0,α;Ω = sup
x∈Ω

dkx|f(x)|+ sup
x,y∈Ω

dk+α
x,y

|f(x)− f(y)|
|x− y|α

(5.20)

The Schauder interior estimate can now be stated as

Theorem 5.9 (Schauder interior estimate) Let u ∈ C2(Ω) and f ∈ Cα(Ω) satisfies ∆u = f
in an open set Ω of Rn, then

|u|∗2,α;Ω ⩽ C(|u|0;Ω + |f |(2)0,α;Ω) (5.21)

where C = C(n, α).

The proof is based on the interior estimate with the radius R = 1
3dx at given x ∈ Ω.

It is important to note that the theorem contains the result of Theorem 5.7, a raw version of the
Schauder interior estimate. By choosing the region Ω directly equal to the ball B2 = B2R(x0), we
obtain

C(|u|0;B2 + |f |(2)0,α;B2
) ⩽ C(|u|0;B2 +R2|f |′0,α;B2

) (5.22)

and

|u|′2,α;B1
= |u|0;B1

+R|Du|0;B1
+R2|D2u|0;B1

+R2+α[D2u]α;B1

= sup
x∈B1

|u(x)|+R sup
x∈B1

|Du(x)|+R2 sup
x∈B1

|D2u(x)|+R2+α sup
x,y∈B1

|D2u(x)−D2u(y)|
|x− y|α

⩽ sup
x∈B1

|u(x)|+ sup
x∈B1

dx|Du(x)|+ sup
x∈B1

d2x|D2u(x)|+ sup
x,y∈B1

d2+α
x,y

|D2u(x)−D2u(y)|
|x− y|α

⩽ sup
x∈B2

|u(x)|+ sup
x∈B2

dx|Du(x)|+ sup
x∈B2

d2x|D2u(x)|+ sup
x,y∈B2

d2+α
x,y

|D2u(x)−D2u(y)|
|x− y|α

= |u|∗2,α;B2

(note that dx is the distance between x ∈ B1 and ∂B2, and we must have dx ⩾ R and dx,y ⩾ R.)
Therefore we obtain the Schauder estimate for two concentric balls.

5.3 Estimations on the boundary
In order to establish the global estimate, we need to derive the Schauder estimate on the boundary.
Let R+

n be the upper half space {xn > 0}, and T be the hyperplane {xn = 0}. B1 = BR(x0) and
B2 = B2R(x0) as before. Let B+

i = Bi ∩ Rn
+.

Theorem 5.10 (continuity of Newtononian potential) Let u ∈ Cα(B̄+
2 ) and let w be the

Newtonian potential of f in B+
2 . Then w ∈ C2,α(B̄+

1 ) and

|D2w|′
0,α;B+

1
⩽ C(n, α)|f |′

0,α;B+
2

(5.23)

where C = C(n, α).
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This result is scaling invariant. The constant C does not depend on the radius R, and even how
much B̄+

2 interacts with its boundary. The proof is based on the fact that when either i or j is not
n, the second-order derivative of the Newtonian potential w(x) can be written as

Dijw(x) =

∫
B+

2

DijΓ(x− y)(f(y)− f(x))dy − f(x)

∫
∂B+

2

DiΓ(x− y)nj(y)dSy (5.24)

and the integral on the boundary ∂B2 vanishes on T . Thus we can derive the continuity of Dijw(x)
except Dnn, and

|Dijw|′0,α;B+
1
⩽ Cij(n, α)|f |′0,α;B+

2
(5.25)

Finally, the estimation of Dnnw is derived from ∆w = f , which implies

Dnnw(x) = f(x)−
n−1∑
i=1

Diiw(x) (5.26)

Now we can derive the Schauder estimate on the boundary.

Theorem 5.11 (Schauder estimate: boundary) Let u ∈ C2(B+
2 ) ∩ C(B̄+

2 ) and f ∈ Cα(B̄+
2 )

satisfy ∆u = f in B+
2 and u = 0 on T . Then u ∈ C2,α(B̄+

1 ) and

|u|′
2,α;B+

1
⩽ C(|u|0;B+

2
+R2|f |′

0,α;B+
2
) (5.27)

where C = C(n, α).

Proof Let x∗ = (x′,−xn) be the reflecting point of x ∈ Rn. The crucial step in this theorem is to
construct a Newtonian-like potential function

w(x) =

∫
B+

2

[Γ(x− y)− Γ(x∗ − y)]f(y)dy (5.28)

which satisfies

• w(x) = 0 for xn = 0;

• ∆w(x) = f(x) in the upper half ball B+
2 .

Since w(x) can be written as

w(x) = 2

∫
B+

2

Γ(x− y)f(y)dy −
∫
D

Γ(x− y)f∗(y)dy (5.29)

By applying the continuity theorem on B+
2 and D, we conclude that w ∈ Cα(B̄+

2 ). Thus the
difference v = u− w satisifies

• v(x) = 0 in T ;

• v(x) is harmonic in B+
2 .

Since the derivatives of v(x) can be approximated, the result holds for a general solution u. Similarly
we obtain
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Theorem 5.12 (Schauder interior estimate: boundary) Let Ω be an open subset of in Rn
+

with a boundary portion T on xn = 0. Let u ∈ C2(Ω) ∩C(Ω ∪ T ) be the solution to ∆u = f , where
f ∈ Cα(Ω), and u = 0 on T , then

|u|∗2,α;Ω∪T ⩽ C(‖|u|0;Ω‖+ ‖f‖(2)0,α;Ω) (5.30)

where C = C(n, α).

6 Schauder estimate: [CW]
6.1 Existence of the solution
Theorem 6.1 (maximum principle) Consider the elliptic operator L given by

Lu = −aijDiju+ biDiu+ cu (6.1)

satisfying

• λ|ξ|2 ⩽ aij(x)ξiξj ⩽ Λ|ξ|2, x ∈ Ω, ξ ∈ Rn;
• |b(x)| ⩽M , x ∈ Ω;
• c(x) ⩾ 0, x ∈ Ω

If u ∈ C2(Ω) ∩ C(Ω̄) satisfies Lu ⩽ f in Ω, then

sup
Ω
u ⩽ sup

∂Ω
u+ + C|f |0;Ω (6.2)

for some constant C.

This theorem is exactly the maximum principle for the second-order elliptic equation.

(1) First assume there is a constant c0 such that c(x) ⩾ c0. Translate the function u(x) by

v(x) = u(x)− sup
∂Ω

u+, x ∈ Ω̄ (6.3)

then v satisfies
Lv = f − c sup

∂Ω
u+ ⩽ f, x ∈ Ω

v ⩽ 0, x ∈ ∂Ω
(6.4)

Suppose v attains maximum at x0 ∈ Ω, then

D2v(x0) ⩽ 0, Dv(x0) = 0 (6.5)

From Lv(x0) ⩽ f(x0) we obtain

c(x0)v(x0) ⩽ f(x0) ⩽ |f |0;Ω (6.6)

which implies v(x0) ⩽ 1
c0
|f |0;Ω. Recall that v(x0) is the maximum attained by v, we have

sup
x∈Ω

v(x) ⩽ |f |0;Ω
c0

(6.7)
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which ends the proof.

(2) For the general case, we set v(x) = z(x)w(x), where z(x) is a given function. Then w(x) satisfies
the second-order equation

−aijDijw +

(
bi − 2

z
aij

∂z

∂xi

)
Diw +

[
c+

1

z
(biDiz − aijDijz)

]
w ⩽ f

z
(6.8)

When Ω is contained in the region 0 < x1 < d, z(x) can be chosen as

z(x) = e2αd − eαx1 (6.9)

where α > 0 is a given constant.

7 Schauder estimate: Paper
Let’s consider the Poisson equation

∆u = f, x ∈ B1(0) (7.1)

Suppose f is Dini continuous, namely∫ 1

0

w(r)

r
dr < +∞, w(r) := sup

|x−y|<r

|f(x)− f(y)| (7.2)

then we have the following estimation of D2u, if u is a C2 solution to the equation (7.1).

Theorem 7.1 (Schauder estimate) Let u ∈ C2(B1) be a classical solution to the Laplace equa-
tion (7.1). Then for x, y ∈ B 1

2
(0),

|D2u(x)−D2u(y)| ⩽ Cn

[
d sup

B1

|u|+
∫ d

0

w(r)

r
dr + d

∫ 1

d

w(r)

r2

]
(7.3)

where d = |x− y|, Cn only depends on n.

Remark w(r) is an increasing function of r. When f is α-Hölder continuous, it can be shown that∫ d

0

w(r)

r
dr + d

∫ 1

d

w(r)

r2
= O(dα) (7.4)

which implies |D2u(x)−D2u(y)| ⩽ Cdα, and D2u is thus Hölder continuous.

Proof
1. Definition of the function sequence uk shrinking to x0

Let ρ = 1
2 be a constant. Fix some point x0 ∈ B 1

2
(0) and define the family of balls centered at x0,

defined by
B

(0)
k = {x ∈ Rn : |x− x0| ⩽ ρk}, k ⩾ 1 (7.5)
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and B
(0)
0 = B1(0). It’s easy to see B(0)

k ⊂ B1(0) for any k ⩾ 0, and B
(0)
k shrinks to 0 as k → ∞.

Now let uk be the classical solution to the Poisson equation with Dirichlet boundary conditions:{
∆uk = f(x0), x ∈ B

(0)
k

uk = u, x ∈ ∂B
(0)
k

(7.6)

then uk ∈ C2(B
(0)
k ) and satisfies

∆(uk − u) = f(x0)− f, x ∈ B
(0)
k (7.7)

For x ∈ B
(0)
k , we always have |f(x0)− f(x)| ⩽ ρk. Note that uk − u also vanishes at the boundary

∂B
(0)
k , hence from the maximum principle,

‖uk − u‖
L∞(B

(0)
k )

⩽ Cρ2kω(ρk), k ⩾ 0 (7.8)

Differencing (7.8) at k and k + 1, we obtain

‖uk − uk+1‖L∞(B
(0)
k+1)

⩽ Cρ2kw(ρk), k ⩾ 0 (7.9)

Since uk − uk+1 is harmonic in B
(0)
k+2 (whose radius is O(ρk)), the derivatives of uk − uk+1 in the

ball B(0)
k+2 can be approximated as

‖D(uk − uk+1)‖L∞(B
(0)
k+2)

⩽ Cρkw(ρk) (7.10)∥∥D2(uk − uk+1)
∥∥
L∞(B

(0)
k+2)

⩽ Cw(ρk) (7.11)

2. uk characterizes the local differentiability of u at x0
Since u ∈ C2(B1), let q(x) be the quadratic part of u localized at x0, i.e.,

q(x) = u(x0) +Du · (x− x0) +
1

2
(x− x0)

TD2u(x0)(x− x0), x ∈ B1 (7.12)

then q(x) has the same local properties with u(x) at x0, i.e.,

Dq(x0) = Du(x0), D2q(x0) = D2u(x0) (7.13)

and uk − q is thus harmonic in B
(0)
k . Also note that from the Taylor expansion,

u(x)− q(x) = o(|x− x0|2), x→ x0 (7.14)

hence there exists a sequence εk → 0 such that

‖u− q‖
L∞(B

(0)
k )

⩽ εkρ
2k, k ⩾ 0 (7.15)

Using (7.8)(7.15) we obtain there exists a sequence εk → 0 such that

‖uk − q‖
L∞(B

(0)
k )

⩽ εkρ
2k, ∀k ⩾ 0 (7.16)
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Using the fact that uk − q is harmonic, we obatin the derivative estimate

|Duk(x0)−Du(x0)| ⩽ Cεkρ
k (7.17)

|D2uk(x0)−D2u(x0)| ⩽ Cεk (7.18)
Let k → ∞, we finally obtain

lim
k→∞

Duk(x0) = Du(x0), lim
k→∞

D2uk(x0) = D2u(x0) (7.19)

3. Estimate D2u(z)−D2u(x0) near x0
Now let’s estimate D2u(z)−D2u(x0) when the space variable z is near x0. Write

|D2u(z)−D2u(x0)| ⩽ I1 + I2 + I3 (7.20)

where I1, I2, I3 are given by

I1 = |D2uk(z)−D2uk(x0)|
I2 = |D2uk(x0)−D2u(x0)|
I3 = |D2uk(z)−D2u(z)|

Suppose there exists k ⩾ 1 such that ρk+4 ⩽ |z−x0| ⩽ ρk+3. Now we estimate I1, I2, I3 respectively.

• I1 is about the local continuity of D2uk(x) at x0. For j = 1, · · · , k − 1, define

hj(x) = uj+1(x)− uj(x), x ∈ B
(0)
k (7.21)

then (7.11) implies that∥∥D2hj
∥∥
L∞(B

(0)
k+2)

⩽ Cw(ρk), j = 1, · · · , k − 1 (7.22)

Note that z ∈ B
(0)
k+2 and |z − x0| = O(ρk), thus (7.22) implies

|D2hj(z)−D2hj(x0)| ⩽ Cρ−jw(ρj)|z − x0| (7.23)

Now use

D2u(z)−D2u(x0) = (D2u0(z)−D2u0(x0)) +

k−1∑
j=0

(D2hj(z)−D2hj(0)) (7.24)

We have

|D2uk(z)−D2uk(x0)| ⩽ |D2u0(z)−D2u0(x0)|+
k−1∑
j=0

|D2hj(z)−D2hj(0)|

⩽ |D2u0(z)−D2u0(x0)|+ C|z − x0|
k−1∑
j=0

ρ−jw(ρj)

⩽ |D2u0(z)−D2u0(x0)|+ C|z − x0|
∫ 1

|z−x0|

w(r)

r2
dr
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Therefore, our problem reduces to the approximation of |D2u0(z)−D2u0(x0)|. Again define
the quadratic part of u0(x) as

q0(x) = u0(x0) +Du0 · (x− x0) +
1

2
(x− x0)

TD2u0(x− x0), x ∈ B1(0) (7.25)

then D2q0(x0) = D2u0(x0), u0 − q0 is harmonic. Note that u0 is a classical solution to the
Poisson equation, we have

u0(x)− q0(x) = O(|x− x0|3), x ∈ B1(0) (7.26)

hence there exists a constant C such that

|D2u0(z)−D2u0(x0)| ⩽ C|z − x0|‖u0‖L∞ , x ∈ B1(0) (7.27)

Using the approximation (7.8), we obtain

|D2u0(z)−D2u0(x0)| ⩽ C|z − x0|
(
‖u‖L∞ + Cw(ρ)

)
(7.28)

Finally, we obtain

I1 ⩽ C|z − x0|
(
‖u‖L∞ +

∫ 1

|x−x0|

w(r)

r2
dr

)
(7.29)

• I2 is about the difference between D2uk and D2u. Using (7.11) we have∥∥D2hj
∥∥
L∞(B

(0)
j+2)

⩽ Cw(ρj), ∀j ⩾ k (7.30)

which implies
|D2uj(x0)−D2uj+1(x0)| ⩽ Cw(ρj), ∀j ⩾ k (7.31)

Sum this result over j = k + 1, k + 2, · · · , we have

|D2uk(x0)−D2u(x0)| ⩽ C

∞∑
j=k

w(ρk) ⩽ C

∫ |x−x0|

0

w(r)

r
dr (7.32)

which implies

I2 ⩽ C

∫ |x−x0|

0

w(r)

r
dr (7.33)

• The estimation of I3 is similar with I2, by considering the balls

B
(1)
j := {x ∈ Rn : |x− z| ⩽ ρj}, j ⩾ k + 1 (7.34)

instead of B(0)
j . Correspondingly, let vj(x) (j ⩾ k + 1) be the solution to{

∆vj = f(z), x ∈ B
(1)
j

vj = u, x ∈ ∂B
(1)
j

(7.35)
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and vj(x) = uj(x), then similarly we have

|D2vj(z)−D2vj+1(z)| ⩽ Cw(ρj), ∀j ⩾ k (7.36)

which implies

I3 ⩽ C

∫ |x−x0|

0

w(r)

r
dr (7.37)

Finally obtain from the estimation of I1, I2, I3 that

|D2u(z)−D2u(x0)| ⩽ C

[
d sup

B1

|u|+
∫ d

0

w(r)

r
dr + d

∫ 1

d

w(r)

r2

]
(7.38)

with d = |z − x0| is the distance.

8 Lp estimate
Definition 8.1 (Distribution function) Suppose f ∈ L1(Ω) and define the set

A(t) := {x ∈ Ω : |f(x)| > t}

The function λ(t) := meas(A(t)) is called the distribution function f .

λ(t) characterizes how large is the region that |f(x)| > t in it. Now Lp-integral of f can be easily
expressed via the integral of λ(t).∫

Ω

|f(x)|pdx = p

∫ ∞

0

tp−1λ(t)dt

Now we define the Marcinkiewicz space.

Definition 8.2 (Marcinkiewicz space) For p ⩾ 1,

‖f‖Lp
w
:=

(
sup
t⩾0

{tpλ(t)}
) 1

p

For any t ⩾ 0, we have
tpλ(t) ⩽

∫
A(t)

|f(x)|pdx ⩽
∫
Ω

|f(x)|pdx

Taking the supremum of t we have

sup
t⩾0

{tpλ(t)} ⩽
∫
Ω

|f(x)|pdx

which implies
‖f‖Lp

w
⩽ ‖f‖Lp
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thus ‖·‖Lp
w

is weaker than the standard Lp norm. Now we prove that for any q < p, Lp
w(Ω) ⊂ Lq(Ω).

In fact, ∫
Ω

|f |qdx = q

∫ ∞

0

tq−1λ(t)dt

= q

∫ 1

0

tq−1λ(t)dt+

∫ ∞

1

qtq−1λ(t)dt

⩽ q|Ω|+ q · sup
t⩾0

{tpλ(t)}
∫ ∞

1

tq−p−1dt

<∞

thus for 1 ⩽ q < p we have
Lp(Ω) ⊂ Lp

w(Ω) ⊂ Lq(Ω)

Characterization of the Lp functions:

• Lp(Ω): p
∫
Ω

tp−1λ(t)dx < +∞ (stronger)

• Lp
w(Ω): sup

t⩾0
{tpλ(t)} < +∞ (weaker)
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