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Schrödinger 方程简介

Schrödinger方程

Schrödinger方程是量子力学中最基本的动力学方程, 它描述了波函数
ψ(x, t)随时间演化的方式:

∂ψ

∂t = −iHψ

其中 i为虚数单位, H是哈密顿算子, 它的表达式为

H = − 1

2m∆+ V

其中m > 0是粒子的质量, ∆是坐标空间Rd上的拉普拉斯算子, V(x)是
Rd上的势能函数.
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Schrödinger 方程简介

Schrödinger方程

哈密顿算子H是波函数空间上的一个线性算子, 其定义为

Hψ(x) = − 1

2m∆ψ(x) + V(x)ψ(x)

在量子力学中, 波函数ψ(x)被解释为粒子出现位置的概率幅. 具体
地说, |ψ(x)|2是粒子出现在 x ∈ Rd附近的概率密度, 因此ψ(x)应满
足归一化条件 ∫

Rd
|ψ(x)|2dx = 1
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Schrödinger 方程简介

Schrödinger方程

哈密顿算子有许多有趣的数学性质. 物理学家们宣称, 哈密顿算子
是一个自伴算子, 是因为

(Hψ, ϕ)L2 = (ψ,Hϕ)L2 , ∀ψ, ϕ ∈ C∞
c (Rd)

这里 (·, ·)L2是指L2(Rd)中的内积, 即

(ψ, ϕ)L2 =

∫
Rd
ψ(x)ϕ(x)dx

实际上, 量子力学中假设所有可观测的物理量 (坐标, 动量, 角动量,
自旋, 哈密顿量等)都必须是自伴算子.
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Schrödinger 方程简介

Schrödinger方程

由于哈密顿算子H是自伴算子, 归一性条件能始终被满足:

d
dt

∫
Rd

|ψ(x, t)|2dx ≡ 1, t ⩾ 0

实际上, 容易验证

d
dt

∫
Rd

|ψ(x, t)|2dx =
d
dt(ψ,ψ)L2(Ω)

=
(∂ψ
∂t , ψ

)
L2(Ω)

+
(
ψ,
∂ψ

∂t

)
L2(Ω)

= (−iHψ,ψ)L2(Ω) + (ψ,−iHψ)L2(Ω)

= 0
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Schrödinger 方程简介

Schrödinger方程

物理学家们把 Schrödinger方程的解形式地表示为

ψ(x, t) = e−iHtψ0(x)

在特殊的情况下, 可以直接计算出H的全部特征值和特征向量 (一维无
限深势阱, 一维谐振子), 从而显式表达出 Schrödinger方程的解.
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Schrödinger 方程简介

Schrödinger方程

在量子力学中, 波函数ψ(x)的空间是Hilbert空间H = L2(Rd), 算
子的自伴性也在此空间下讨论.

我们将要讨论的哈密顿算子

H = − 1

2m∆+ V

包含−∆的部分, 因此其性质和研究方式和椭圆算子较为类似.

不过, 哈密顿算子与一般的椭圆算子有显著的不同之处:
1 哈密顿算子作用于Rd上的复值函数, 而椭圆算子主要考虑有界开区
域Ω上的实值函数.

2 哈密顿的定义域主要由势能函数V(x)决定.
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Schrödinger 方程简介

Schrödinger方程

物理学家有好的科学直觉, 但他们的数学理论是不可靠的. 他们感
兴趣的几乎所有可观测量算子, 包括哈密顿算子, 都是无界的, 因此
为它们建立严格的数学理论非常必要.

为了给 Schrödinger方程建立严格的解表示, 报告将包含如下内容:
1 无界线性算子的自伴性理论;
2 哈密顿算子和其它量子力学观测量算子的自伴性;
3 利用单参数算子群表示 Schrödinger方程的解.

叶胥达 (北京大学) 无界自伴算子与 Schrödinger 方程的求解 2020 年 12 月 21 日 9 / 42



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

无界线性算子的自伴性理论 闭算子和伴随算子

闭算子和伴随算子

设H是一个Hilbert空间, 称A是H上的无界算子, 如果A是从H的一
个子集D(A)到H的线性映射.

定义 (闭算子, closed operator)
H上的无界算子A称为闭的, 如果A在H×H中的图像

{(ψ,Aψ) : ψ ∈ D(A)}

是闭集.

当A是闭算子时, 只要D(A)中的序列 {ψn}n⩾1和H中的元素ψ, ϕ满足

lim
n→∞

ψn = ψ, lim
n→∞

Aψn = ϕ

就有ψ ∈ D(A)且Aψ = ϕ.
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无界线性算子的自伴性理论 闭算子和伴随算子

闭算子和伴随算子

在大部分情况下, 我们感兴趣的无界算子都在H的一个稠密集上有
定义, 即D(A)是H的稠密集. 这样的算子称为稠定算子. 下面的讨
论均假设A为稠定算子.

当A是一个无界算子时, 对任意 ϕ ∈ H,

ψ 7→ 〈ϕ,Aψ〉, ψ ∈ D(A)

是D(A)上的一个线性泛函. 如果这个线性泛函是有界的, 则根据
D(A)的稠密性, 它可以连续地延拓到H上. 由Riesz表示定理, 存在
唯一的χ ∈ H使得

〈ϕ,Aψ〉 = 〈χ, ψ〉, ψ ∈ D(A)
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无界线性算子的自伴性理论 闭算子和伴随算子

闭算子和伴随算子

于是, 无界算子的伴随算子可定义如下:

定义 (伴随算子, adjoint operator)
设A : D(A) ⊂ H 7→ H是一个稠定算子. 令D(A∗)是H的一个子空间,
它包含所有的 ϕ ∈ H使得

ψ 7→ 〈ϕ,Aψ〉, ψ ∈ D(A)

是一个有界线性泛函. 对 ϕ ∈ D(A∗), A∗ϕ ∈ H是使得

〈ϕ,Aψ〉 = 〈A∗ϕ, ψ〉, ψ ∈ D(A)

成立的唯一元素. A∗ : D(A∗) 7→ H称为A的伴随算子.
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无界线性算子的自伴性理论 闭算子和伴随算子

闭算子和伴随算子

稠定算子的伴随不一定稠定, 但它一定是闭算子.

定理 (伴随算子是闭算子)
设A : D(A) ⊂ H 7→ H是一个稠定算子, 则A∗是闭算子.

证明 设 ϕn ∈ D(A∗), ψn = A∗ϕn ∈ H满足 ϕn → ϕ, ψn → ψ. 下面希望证
明: ϕ ∈ D(A∗)且ψ = A∗ϕ. 为此, 考察线性泛函T : D(A) 7→ R:

Tu = 〈ϕ,Au〉, u ∈ D(A)

则T满足
Tu = 〈ϕ− ϕn,Au〉+ 〈ψn, u〉 u ∈ D(A)

令 n → ∞, 得到Tu = 〈ψ, u〉, 故T有界, ϕ ∈ D(A∗), 且ψ = A∗ϕ.
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无界线性算子的自伴性理论 闭算子和伴随算子

闭算子和伴随算子

定义 (算子的自伴性, self-adjoint)
H上的无界算子A称为自伴的, 如果

D(A) = D(A∗)

且对所有的 ϕ ∈ D(A), 有A∗ϕ = Aϕ.

自伴算子一定是闭算子. 此定义虽然简洁, 但应用并不方便, 因为D(A∗)
难以求出.
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无界线性算子的自伴性理论 闭算子和伴随算子

闭算子和伴随算子

定义 (算子的对称性, symmetry)
一个H上的无界算子A是对称的, 如果

〈ϕ,Aψ〉 = 〈Aϕ, ψ〉

对所有 ϕ, ψ ∈ D(A)成立.

自伴算子一定是对称算子.
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无界线性算子的自伴性理论 闭算子和伴随算子

闭算子和伴随算子

称H上的无界算子A是无界算子B的延拓, 如果D(A) ⊃ D(B), 且在
D(B)上有A = B.

定理 (对称算子的伴随)
H上的无界算子A是对称的当且仅当A∗是A的延拓.

如果A是对称算子, 则对 ϕ ∈ D(A), Cauchy-Schwarz不等式给出

|〈ϕ,Aψ〉| ⩽ ‖Aϕ‖‖ψ‖

因此线性泛函 〈ϕ,A·〉是有界的, ϕ ∈ D(A∗). 由A的对称性可知
〈ϕ,Aψ〉 = 〈Aϕ, ψ〉, ∀ψ ∈ D(A), 因此A∗在D(A)上的作用与A相同.
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无界线性算子的自伴性理论 自伴算子的判定准则

自伴算子的判定准则

为了给出自伴算子的判定准则, 我们首先证明一些对称算子的性质.

定理 (对称算子的性质)
对H上的对称算子A, 有如下结论成立:

1 ‖(A ± iI)ψ‖2 = ‖Aψ‖2 + ‖ψ‖2, ∀ψ ∈ D(A);
2 ker(A ± iI) = {0};
3 ker(A∗ ∓ iI) = R(A ± iI)⊥;
4 若A还是闭算子, 则值域R(A ± iI)是闭集.
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无界线性算子的自伴性理论 自伴算子的判定准则

自伴算子的判定准则

证明 当A是对称算子时,

‖(A + iI)ψ‖2 = ‖Aψ‖2 + ‖ψ‖2 + 〈Aψ, iψ〉+ 〈iψ,Aψ〉
= ‖Aψ‖2 + ‖ψ‖2

同理 ‖(A − iI)ψ‖2 = ‖Aψ‖2 + ‖ψ‖2. 从上述等式可以看出, A + iI和
A − iI在D(A)上均为单射, 即 ker(A ± iI) = {0}.
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无界线性算子的自伴性理论 自伴算子的判定准则

自伴算子的判定准则

任取ψ ∈ ker(A∗ − iI), 则ψ ∈ D(A∗), 且

〈(A + iI)ϕ, ψ〉 = 〈ϕ, (A∗ − iI)ψ〉 = 0, ∀ϕ ∈ D(A)

因此ψ ∈ R(A + iI)⊥. 反过来, 任取ψ ∈ R(A + iI)⊥, 则

〈ϕ, (A∗ − iI)ψ〉 = 〈(A + iI)ϕ, ψ〉 = 0, ∀ϕ ∈ D(A)

由于D(A)在H中稠密, 故 (A∗ − iI)ψ = 0, 即ψ ∈ ker(A∗ − iI). 综上,

ker(A∗ − iI) = R(A + iI)⊥

同理有
ker(A∗ + iI) = R(A − iI)⊥
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无界线性算子的自伴性理论 自伴算子的判定准则

自伴算子的判定准则

当A是闭算子时, 来证明R(A + iI)是闭集. 设ψn ∈ R(A + iI)且
ψn → ψ ∈ H, 则存在 ϕn ∈ D(A)使得

ψn = (A + iI)ϕn, ∀n ⩾ 1

由于ψn在H中为Cauchy列, 故

‖ϕn − ϕm‖ ⩽ ‖(A + iI)(ϕn − ϕm)‖ = ‖ψn − ψm‖ → 0

因此 ϕn → ϕ ∈ H. 由于A是闭算子, 故 ϕ ∈ D(A)且

ψ = (A + iI)ϕ ∈ R(A + iI)

因此R(A + iI)是闭集. 同理R(A − iI)是闭集.
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无界线性算子的自伴性理论 自伴算子的判定准则

自伴算子的判定准则

定理 (自伴算子的判定准则)
设A是H上的对称算子, 则A自伴当且仅当R(A + iI) = R(A − iI) = H.

证明 若A是自伴算子, 则A是对称算子且A∗ = A, 从而有

R(A + iI)⊥ = ker(A∗ − iI) = ker(A − iI) = {0}

这意味着R(A + iI)在H中稠密. 由于R(A + iI)是闭集, 故
R(A + iI) = H. 同理R(A − iI) = H.
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无界线性算子的自伴性理论 自伴算子的判定准则

自伴算子的判定准则

另一方面, 假设R(A + iI) = R(A − iI) = H, 则

ker(A∗ − iI) = R(A + iI)⊥ = {0}

由于A是对称的, 要证明A自伴, 仅需证明D(A∗) ⊂ D(A). 设
y ∈ D(A∗), 则由R(A − iI) = H可知, 存在 z ∈ D(A)使得

(A∗ − iI)y = (A − iI)z =⇒ (A∗ − iI)(y − z) = 0

由于A∗ − iI在D(A∗)上为单射, 故 y = z ∈ D(A).
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无界线性算子的自伴性理论 自伴算子的判定准则

自伴算子的判定准则

最后, 我们对自伴算子的性质做一总结.

闭算子

σ(A) ⊂ R

}
⇐=自伴算子(A = A∗) ⇐⇒

{
对称算子

R(A ± iI) = H

使用R(A ± iI) = H判定自伴算子的好处是不需要显式计算D(A∗).
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量子力学中的算子自伴性 简单观测量: 坐标, 动量, 动能

简单观测量: 坐标, 动量, 动能

在量子力学中, 波函数所在的空间是Hilbert空间H = L2(Rd), 而所有的
物理观测量都是H上的线性算子. 物理学家们感兴趣的观测量包括:

坐标算子: (xψ)(x) = xψ(x), x ∈ R

动量算子: (pψ)(x) = −i∂ψ∂x , x ∈ R

动能算子: (H0ψ)(x) = − 1
2m∆ψ(x), x ∈ Rd

哈密顿算子: (Hψ)(x) = − 1
2m∆ψ(x) + V(x)ψ(x), x ∈ Rd

我们下面的任务是, 在合适的定义域上, 验证这些算子都是自伴的.
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量子力学中的算子自伴性 简单观测量: 坐标, 动量, 动能

简单观测量: 坐标, 动量, 动能

定理 (坐标算子的自伴性)
令D = {ψ ∈ L2(R) : xψ(x) ∈ L2(R)}, 则坐标算子 x : D 7→ L2(R)自伴.

证明 容易验证 x是对称算子: 对任何 ϕ, ψ ∈ D, 有

(ϕ, xψ)L2 = (xϕ, ψ)L2 =

∫
R

xϕ(x)ψ(x)dx

为了证明 x是自伴算子, 只需证明: 对任何 f ∈ L2(Rd), 方程

(x ± i)ψ(x) = f(x)

在D中有解.
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量子力学中的算子自伴性 简单观测量: 坐标, 动量, 动能

简单观测量: 坐标, 动量, 动能

对方程 (x + i)ψ(x) = f(x), 它的解是

ψ(x) = f(x)
x + i

故 |xψ(x)| ⩽ |f(x)|. 由于 f ∈ L2(R), 有 xψ(x) ∈ L2(R), 从而ψ ∈ D.

类似地可以证明 (x − i)ψ(x) = f(x)在D中有解.
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量子力学中的算子自伴性 简单观测量: 坐标, 动量, 动能

简单观测量: 坐标, 动量, 动能

定理 (动量算子的自伴性)
动量算子 p : H1(R) 7→ L2(R)自伴.

证明 要证明 p是对称算子, 只需证: 对任何 ϕ, ψ ∈ H1(R),(
ϕ,
∂ψ

∂x

)
L2(R)

= −
(
∂ϕ

∂x , ψ
)

L2(R)

在 Sobolev空间H1(R)中取紧支光滑函数ψn → ψ, ϕn → ϕ, 则(
ϕn,

∂ψn
∂x

)
L2(R)

= −
(
∂ϕn
∂x , ψn

)
L2(R)

令 n → ∞即可得证.
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量子力学中的算子自伴性 简单观测量: 坐标, 动量, 动能

简单观测量: 坐标, 动量, 动能

下面证明: 对任何 f ∈ L2(R), 方程(
− i ∂

∂x + i
)
ψ(x) = f(x)

在H1(R)中有解. 利用L2(Ω)上的Fourier变换, 上式等价于

(k + i)ψ̂(k) = f̂(k)

对其取模长后, 得到 (k2 + 1)
1
2 |ψ̂(k)| = |̂f(k)|, 因此∫

R
(k2 + 1)|ψ̂(k)|2dk =

∫
R
|̂f(k)|2dk =

∫
R
|f(x)|2dx < +∞

即ψ ∈ H1(R).
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量子力学中的算子自伴性 简单观测量: 坐标, 动量, 动能

简单观测量: 坐标, 动量, 动能

定理 (动量算子的自伴性)
动能算子H0 : H2(R) 7→ L2(R)自伴.

证明 要证明对称性, 只需证对ψ, ϕ ∈ H2(Rd),

(ϕ,∆ψ)L2(Rd) = (∆ϕ, ψ)L2(Rd)

上述结果可以类似地利用紧支光滑函数在H2(Rd)中的逼近进行证明.
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量子力学中的算子自伴性 简单观测量: 坐标, 动量, 动能

简单观测量: 坐标, 动量, 动能

下面证明: 对任何 f ∈ L2(Rd), 方程(
− 1

2m∆+ i
)
ψ(x) = f(x)

在H2(Rd)中有解. 利用Fourier变换, 上式等价于(
1

2m |k|2 + i
)
ψ̂(k) = f̂(k)

利用 ∫
Rd

(
1

4m2
|k|4 + 1

)
|ψ̂(k)|2dk < +∞

可以得到ψ ∈ H2(Rd).
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量子力学中的算子自伴性 哈密顿算子的自伴性

哈密顿算子的自伴性

对哈密顿算子

H = − 1

2m∆+ V

的讨论会更加复杂, 因为H的性质直接依赖于势能函数V(x)的选择. 对
于一些简单的情况, 例如V(x)有界时, 容易得到H自伴的结果.

定理 (哈密顿算子自伴)
设势能函数V(x)为实值函数且有界, 则H = − 1

2m∆+ V作为定义在
H2(Rd)上的算子是自伴的.
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量子力学中的算子自伴性 哈密顿算子的自伴性

哈密顿算子的自伴性

证明

V作为L2(Rd)上的一个势能算子

(Vψ)(x) = V(x)ψ(x), ψ ∈ L2(Rd)

是有界的, 且 ‖V‖不超过 |V(x)|的本性上界.

取定 λ > ‖V‖, 只需证明: 对任何 f ∈ L2(Rd),

(H + iλ)ψ(x) = f(x)

在H2(Rd)中有解.
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量子力学中的算子自伴性 哈密顿算子的自伴性

哈密顿算子的自伴性

由于H0是自伴算子, 故 (H0 + iλ)−1 : L2(Rd) 7→ H2(Rd)是有界线性
算子. 关于ψ的方程可改写为

ψ + K(λ)ψ = g

其中K(λ) = (H0 + iλ)−1V, g = (H0 + iλ)−1f ∈ H2(Rd).

由于 ‖K(λ)‖ ⩽ 1
λ‖V‖ < 1, 故 I + K(λ)可逆, 且

ψ = (I + K(λ))−1g
= (I + K(λ))−1(H0 + iλ)−1f

最后我们来验证上式给出的ψ位于H2(Rd)中.
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量子力学中的算子自伴性 哈密顿算子的自伴性

哈密顿算子的自伴性

定义算子K(λ)T := V(H0 + iλ)−1, 则可以验证

(H0 + iλ)(I + K(λ)) = (I + K(λ)T)(H0 + iλ)

因此
ψ = (H0 + iλ)−1(1 + K(λ)T)−1f ∈ H2(Rd)

综上, (H ± iλ)ψ(x) = f(x)在H2(Rd)中有解, H为自伴算子.
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量子力学中的算子自伴性 哈密顿算子的自伴性

哈密顿算子的自伴性

对于某些无界的势能函数, 可用类似的方法证明哈密顿算子H的自伴性.

定理 (哈密顿算子自伴)
设实值势能函数V满足

‖Vψ‖ ⩽ a‖H0ψ‖+ b‖ψ‖, ∀ψ ∈ H2(Rd)

对常数 a ∈ (0, 1)和 b > 0成立, 则哈密顿算子H在H2(Rd)上自伴.

可以验证, 库伦势V(x) = −α/|x|是满足上述不等式的函数.
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量子力学中的算子自伴性 哈密顿算子的自伴性

哈密顿算子的自伴性

定理 (哈密顿算子自伴)
设V(x)在R3上连续, V(x) ⩾ 0, lim

x→∞
V(x) = +∞. 则哈密顿算子H在其

定义域上自伴.

该定理的条件涵盖了许多重要的势能函数, 例如二次函数V(x) = 1
2ω

2x2.
但是该定理的证明较为复杂, 这里不再具体给出.
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Schrödinger 方程的解表示

Schrödinger方程的解表示

利用哈密顿算子H的自伴性, 可以证明物理学家们提出的传播子

U(t) := e−itH

是H = L2(Rd)一族有界线性算子, 从而可以将 Schrödinger方程

∂ψ

∂t = −iHψ

的解表示为
ψ(x, t) = U(t)ψ0(x)
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Schrödinger 方程的解表示

Schrödinger方程的解表示

定理 (Schrödinger方程的解表示)
设H是一个无界自伴算子, 则存在一族唯一的有界算子U(t) := e−iHt, 它
使得对任意 t, s ∈ R, 都有以下性质成立:

i∂U
∂t = HU(t) = U(t)H

U(0) = I, U(t)U(s) = U(t + s), ‖U(t)ψ‖ = ‖ψ‖

并且 Schrödinger方程的解可以唯一表示为

ψ(x, t) = U(t)ψ0(x)
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Schrödinger 方程的解表示

Schrödinger方程的解表示

证明的梗概 证明的关键是如何对于无界算子A定义

eiA

并且验证它是H上的有界线性算子. 由于A是自伴算子, 故对任何非零
实数 λ, (A + iλ)−1和 (A − iλ)−1是H上的有界线性算子. 定义

Aλ :=
1

2
λ2[(A + iλ)−1 + (A − iλ)−1]

则Aλ是H上的有界线性算子, 且

lim
λ→∞

Aλψ = Aψ, ∀ψ ∈ D(A)
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Schrödinger 方程的解表示

Schrödinger方程的解表示

由于Aλ是H上的有界线性算子, 故算子 eiAλ可以按照幂级数的方式定
义. 可以证明, {eiAλt, λ > 0}是Cauchy序列, 即

lim
λ,λ′→∞

‖(eiAλ − eiAλ′ )ψ‖ = 0, ∀ψ ∈ L2(Rd)

因此可以定义
eiAψ := lim

λ→∞
eiAλψ

由于 ‖eiAψ‖ ⩽ ‖ψ‖, 故 eiA在D(A)上是有界线性算子, 故 eiA可以对任
何无界自伴线性算子A定义.
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Schrödinger 方程的解表示

总结

为量子力学建立一套严格的数学理论是一项重要而艰巨的任务. 我们在
本节仅仅简单介绍了无界算子的自伴性理论, 其它重要的问题还包括:

1 Dirac符号系统的严格定义;
2 无界自伴算子的谱理论;
3 Feymann路径积分的数学表述;
4 ... [1], [2], [3], [4]
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Schrödinger 方程的解表示
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