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2023年 9月 25日

1 习题解答

20230918

1. 观察 n = 1, · · · , 6时 f (n)(x)的图像:
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定义限制函数

R(x) =


− 2, x ⩽ −2

x, −2 ⩽ x < 2

2, x > 2

即R(x)的作用是将 f(x) = x的值域限制在区间 [−2, 2]上. 下面用数学归纳法证明 (写成分段
函数也可以):

f (n)(x) = R(2nx), n ∈ N.

当 n = 1时, f(x) = R(2x)成立. 下面只需证明:

R(2R(2nx)) = R(2n+1x), x ∈ R
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由于左右均为奇函数, 只需考虑 x ⩾ 0的情形.

• 若 x ⩽ 1
2n

, 则 2nx ⩽ 1, 故

R(2nx) = 2nx =⇒ 2R(2nx) = 2n+1x ⩽ 2

故R(2R(2nx)) = 2n+1x = R(2n+1x).

• 若 x > 1
2n

, 则 2n+1x > 2 =⇒ R(2n+1x) = 2. 而

2nx > 1 =⇒ R(2nx) > 1 =⇒ R(2R(2nx)) ⩾ R(2) = 2

但R(·) ⩽ 2, 故R(2R(2nx)) = 2.

2. 令 t = x+
1

x
∈ (−∞,−2] ∪ [2,+∞). 故

f(t) = t2 − 2, t ∈ (−∞,−2] ∪ [2,+∞).

3. 注意等号成立的条件: a = 0, b = − 1
2
. 由于 f(0) = b, f(1) = 1 + a+ b, f(−1) = 1− a+ b,

2|f(0)|+ |f(1)|+ |f(1)| ⩾ (1 + a+ b) + (1− a+ b)− (2b) = 2.

20230920

1. 2. 略.

3. (证明一) 必要性显然. 为证充分性, 使用反证法. 若 f(x)在E上不是单调的, 则存在
x1 < x2使得 f(x1) < f(x2), 及 y1, y2使得 f(y1) > f(y2). 作图并分类讨论:

• 若 y1 > x1, 则 f(y1) > f(x1). 于是 f(x1) < f(y1) > f(y2)不符要求.
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• 若 x1 = y1, 则 f(x2) > f(x1) = f(y1) > f(y2)不符要求.

• 若 y2 < x2, 则 f(y2) < f(x2). 于是 f(y1) > f(y2) < f(x2)不符要求.

• 若 y2 = x2, 则 f(y1) > f(y2) = f(x2) > f(x1)不符要求.
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• 若 y1 < x1且 y2 > x2, 则 f(x1) ⩽ f(y1)和 f(y2) ⩽ f(x2)中至少有一个成立, 仍不符要求.

(证明二) 任取E中两数 a < b, 不妨设 f(a) < f(b). 容易看出,

• 当 x < a时, 有 f(x) < f(a);

• 当 a < x < b时, 有 f(a) < f(x) < f(b);

• 当 x > b时, 有 f(x) > f(b).

因此, a, b两数将E分为三个集合:

E− = (−∞, a] ∩ E, E0 = (a, b) ∩ E, E+ = [b,+∞) ∩ E,

且 f(x)在E−, E0, E+上的函数值依次增大.

下面我们来证明 f(x)在E上是严格单调递增的, 也即对满足 x < y的两数, 总有 f(x) < f(y).
反之, 若有 f(x) ⩾ f(y), 则 x, y必同属于E−, E0, E+之一. 因此可进行如下分类讨论:

• 若 x, y ∈ E−, 则对 (x, y, a)三数应用条件可知 f(x) < f(y) < f(a), 矛盾.

• 若 x, y ∈ E0, 则对 (a, x, y)三数应用条件可知 f(a) < f(x) < f(y), 矛盾.

• 若 x, y ∈ E+, 则对 (b, x, y)三数应用条件可知 f(b) < f(x) < f(y), 矛盾.

(证明三, 张卓然) 根据条件, 对任何E中的三不同的数 x1, x2, x3, 有

(x1 − x2)(f(x1)− f(x2)) · (x2 − x3)(f(x2)− f(x3)) > 0.

因此, 对任何E的两数 x < y,
(x− y)(f(x)− f(y))

均同号. 因此 f(x)一定在E上单调.
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4. 此题有多个证明方法. 令 f(x) = sin(x2 + x).

(证明一) f ′(x) = (2x+ 1) cos(x2 + x)无界, 因此 f(x)不是周期函数.

(证明二) 设 f(x)的周期为 T > 0, 则 f(T ) = sin(T 2 + T ) = 0且 f(2T ) = sin(4T 2 + 2T ) = 0.
于是存在正整数 k1, k2使得

T 2 + T = k1π, 4T 2 + 2T = k2π =⇒ 2T + 1

T + 1
=

k2
k1

∈ Q,

故 T 是有理数. 但 T 2 + T = k1π是无理数 (此处未证明), 矛盾.

(证明三) 如果 f(x)以 T > 0为周期, 则

sin
(
x2 + x

)
= sin

(
(x+ T )2 + x+ T

)
, ∀x ∈ R.

根据和差化积公式, 对任意 x ∈ R, 有

sin
(
(x+ T )2 + x+ T

)
− sin

(
x2 + x

)
= 2 sin

(
T 2

2
+ Tx+

T

2

)
cos

(
x2 + Tx+

T 2

2
+ x+

T

2

)
= 0.

注意到, 在上式中

sin
(
T 2

2
+ Tx+

T

2

)
= 0 ⇐⇒ T 2

2
+ Tx+

T

2
= kπ 对某个 k ∈ Z成立,

因此可定义上述方程的零点集合

E :=

{
kπ

T
− T + 1

2
: k ∈ Z

}
.

于是当 x ̸∈ E时, 总有

g(x) := cos
(
x2 + Tx+

T 2

2
+ x+

T

2

)
= 0.

但由于 g(x)在R上是连续函数, 因此一定有 g(x) ≡ 0. 然而由于函数

x2 + Tx+
T 2

2
+ x+

T

2

没有上界, 故 g(x)在R上的上下确界分别为±1, 导出矛盾.
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5. 对任意 ε > 0, 取正整数N ⩾ 1/
√
ε. 则当正整数 n > N时, 总有

0 <
n

n3 + 1
⩽ n

n3
<

1

N2
< ε,

因此

lim
n→∞

n

n3 + 1
= 0.

6. 对任意 ε > 0, 取正整数N ⩾ max{4, 32
3ε
}. 则当 n > N时, 由

n

n− 3
⩽ 4,

n

n− 2
⩽ 2,

n

n− 1
⩽ 4

3

可以得到

0 <
n3

n!
⩽ n3

(n− 3)(n− 2)(n− 1)n
⩽ 4 · 2 · 4

3
· 1
n
<

32

3N
⩽ ε.

因此

lim
n→∞

n3

n!
= 0.

2 补充习题

定义 1 x ∈ R , n a0, a1, · · · , an−1 ∈ Q

a0 + a1x+ · · ·+ an−1x
n−1 + xn = 0.

: .

证明: 代数数是可数集. (利用 n次多项式在R上至多有 n个不同零点)

注意如下结果: 若An是至多可数集, 则∪∞
n=1An是至多可数集.

(证明) 定义集合

An = {x ∈ R : x是某 n次有理系数多项式的根}, n ∈ N

则代数数集为全体An的并集. 要证代数数集是可数集, 只需证明每个An是至多可数集.

对给定的 a0, a1, · · · , an−1 ∈ Q, 定义集合

Bn(a0, a1, · · · , an−1) = {x ∈ R : a0 + a1x+ · · ·+ an−1x
n−1 + xn},
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则

An =
∪

(a0,a1,··· ,an−1)∈Qn

Bn(a0, a1, · · · , an−1),

由于Qn是可数集, Bn(a0, a1, · · · , an−1)的元素个数不超过 n (代数基本定理/一元多项式), 故
An为至多可数集, 结论得证.

定义 2 A E , x ∈ E ε > 0, y ∈ A |x− y| < ε.

根据定义, 若函数 f(x)在E上连续, 且在A上恒等于 0, 则在E上恒等于 0.

证明: (1) 若B在A中稠密, A在E中稠密, 则B在E中稠密.

(2) Q在R中稠密;

(3) 若单调递增数列 {Sn}∞n=1满足

lim
n→∞

Sn = +∞, lim
n→∞

(Sn+1 − Sn) = 0,

则对任何 T > 0, Sn mod T 在 [0, T ]中稠密.

(证明) 由于开区间 (0, T )在 [0, T ]中稠密, 故只需证明: 对任何 x ∈ (0, T ), 存在M ∈ N使得

|SM mod T − x| < ε. (∗)

为证明 (∗)成立, 首先取N ∈ N使得: 对任意 n ⩾ N , 都有

|Sn+1 − Sn| < min{x, ε}. (∗∗)

且假设 kT ⩽ SN < (k + 1)T 对某个 k ∈ Z成立. 下面考察两种情形:

• 若 SN mod T < x即 SN < kT + x, 则可取整数

M = min{n > N : Sn ⩾ kT + x},

则此时

|SM mod T − x| ⩽ SM − SM−1 < ε,

因此M即为使得 (∗)成立的正整数.

• 若 SN mod T ⩾ x即 SN ⩾ kT + x, 则可取整数

N1 = min
{
n > N : Sn ⩾ (k + 1)T

}
.

容易看出此时

SN1
mod T ⩽ SN1

− SN1−1 < x,

并且对任意 n ⩾ N1都有不等式 (∗∗)成立. 此时可用整数N1代替N并回到第一种情形.
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综上, Sn mod T 在 [0, T ]中稠密.

例 若R上的连续函数 f(x)有最小正周期 1, 则 f(x2)不为周期函数.

(证明) 否则, 设 g(x) = f(x2)是以 T 为周期的函数, 则对任何正整数 n,

f(0) = f(n) =⇒ g(0) = g
(√

n mod T
)
.

由于
√
n mod T 在 [0, T ]上稠密, 我们有

g(0) = g(x), ∀x ∈ [0, T ].

再由于 g(x)以 T 为周期函数可得 g(x) = f(x2)为常数函数. 于是我们得到

f(x) = f(0), ∀x ⩾ 0.

然而, f(x)以 1为周期意味着 f(x)恒为常数, 这与 f(x)有最小正周期矛盾.

推广 若R上的连续函数 f(x)有最小正周期 1, R上的可微函数 g(x)满足

lim
x→∞

g′(x) = +∞,

则 f(g(x))不为周期函数.

(证明) 由条件可知 g(x)单调递增至+∞, 因此对充分大的 n ∈ N, 可以定义

Sn = max{x ∈ R : g(x) = n}.

下面来证明:

• Sn ⩽ Sn+1.

由于 g(Sn) = n < n+ 1, 因此在 (Sn,+∞)上有 g(x) = n+ 1的根, 从而 Sn+1 ⩾ Sn.

• lim
n→∞

Sn = +∞.

对每个N ∈ N, Sg(N) ⩾ N . 由于 g(N)随着N增大发散到+∞, 可知 Sn有一子列随着 n

增大发散到+∞. 但是 Sn单调递增, 故 Sn本身发散到+∞.

• lim
n→∞

(Sn+1 − Sn) = 0.

若此结论不对, 则存在正整数列 {nk}∞k=1使得

Snk+1 − Snk
⩾ ε, ∀k ∈ N.
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由 Lagrange中值定理, 存在 ak ∈ (Snk
, Snk+1

)使得

g′(ak) =
g(Snk+1

)− g(Snk
)

Snk+1
− Snk

=
(nk + 1)− nk

Snk+1
− Snk

⩽ 1

ε
.

但由于 ak随着 k增大发散到+∞, 因此

lim
k→∞

g′(ak) = lim
x→∞

g′(x) = +∞,

产生矛盾.

后面的证明与前例相同.

注 上述结果可直接导出 sin(x2 + x)不是周期函数.

(4) 对任何 r ̸∈ Q, {(a+ br) mod 1 : a, b ∈ Z}在 [0, 1]中稠密;

(证明) 一般的, 可以证明 {a+ br : a, b ∈ Z}在R中稠密. 该结果的证明请直接参见1.

1https://math.stackexchange.com/questions/1348086
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