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1 习题解答

20230925

1. 注意到对任何正整数 n,
n∑

k=1

1

(2k − 1)(2k + 1)
=

1

2

n∑
k=1

(
1

2k − 1
− 1

2k + 1

)
=

1

2

(
1− 1

2n+ 1

)
,

因此

lim
n→∞

n∑
k=1

1

(2k − 1)(2k + 1)
= lim

n→∞

1

2

(
1− 1

2n+ 1

)
= 0.

2. 记 Sn =
n∑

k=1

2k − 1

2k
, 则

Sn = 2Sn − Sn =
n∑

k=1

2k − 1

2k−1
−

n∑
k=1

2k − 1

2k

=

(
1 +

n−1∑
k=1

2k + 1

2k

)
−
( n−1∑

k=1

2k − 1

2k
+

2n− 1

2n

)

= 1 + 2
n−1∑
k=1

1

2k
− 2n− 1

2n

= 1 + 2

(
1− 1

2n−1

)
− 2n− 1

2n

= 3− 2n+ 3

2n
.
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因此可以得到

lim
n→∞

n∑
k=1

2k − 1

2k
= 3.

3. 令 an = 1− 1

1 + 2 + · · ·+ n
, 则

an = 1− 2

n(n+ 1)
=

(n+ 2)(n− 1)

n(n+ 1)
=

n− 1

n
× n+ 2

n+ 1
.

于是

a2 · · · an =
n∏

k=2

k − 1

k
×

n∏
k=2

k + 2

k + 1
=

1

n
× n+ 2

3
,

从而

lim
n→∞

a2 · · · an =
1

3
.

4. 与第 2题的证明方法类似, 故略去. 当 |a| < 1时该求和收敛.

5. 对任何正整数 n, 有 0 ⩽ a− xn ⩽ yn − xn. 由于 yn − xn收敛到 0, 因此由夹逼准则有

lim
n→∞

a− xn = 0.

类似的, 从
0 ⩽ yn − a ⩽ yn − xn

可以得到

lim
n→∞

yn − a = 0.

6. 容易计算 ∣∣∣∣ 3
√
n2 sinn2

n+ 1

∣∣∣∣ ⩽ n
2
3

n
=

1

n
1
3

,

由于 1/n
1
3 在 n → ∞时收敛到 0, 因此

3
√
n2 sinn2

n+ 1
= 0.
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7. 先证明: 对任意 x, y, a, b ∈ R, 有∣∣max{x, y} − max{a, b}
∣∣ ⩽ max

{
|x− a|, |y − b|

}
. (1)

事实上, 由于
x− max{a, b} ⩽ x− a ⩽ |x− a|

和

y − min{a, b} ⩽ y − b ⩽ |y − b|

即可得到

max{x, y} − max{a, b} ⩽ max
{
|x− a|, |y − b|

}
. (2)

由对称性, 也可以得到

max{a, b} − max{x, y} ⩽ max
{
|x− a|, |y − b|

}
. (3)

结合 (2)(3)即可得到 (1)成立. 如果在 (1)中用 (−x,−y,−a,−b)来代替 (x, y, a, b), 则可以得到∣∣min{x, y} − min{a, b}
∣∣ ⩽ max

{
|x− a|, |y − b|

}
. (4)

回到原题. 对每个正整数 n, 由于∣∣max{xn, yn} − max{a, b}
∣∣ ⩽ max

{
|xn − a|, |yn − b|

}
, (5)

且 (5)的右端在 n → ∞时收敛到 0, 因此

lim
n→∞

max{xn, yn} = max{a, b}.

类似地, 从 (4)出发可以得到

lim
n→∞

min{xn, yn} = min{a, b}.

注: 与 (1)的对应的min的版本并不是∣∣min{x, y} − min{a, b}
∣∣ ⩽ min

{
|x− a|, |y − b|

}
. (4′)

8. 容易计算得到
√
n2 + n− n ⩽

√
n2 + n+

1

4
− n =

1

2

且
√
n2 + n− n =

n√
n2 + n+ n

⩾ n√
n2 + n+ 1

4
+ n

=
n

2n+ 1
⩾ 1

3
,
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因此我们有

3
1
n ⩽

(√
n2 + n− n

) 1
n ⩽ 2

1
n ,

从而

lim
n→∞

(√
n2 + n− n

) 1
n = 1.

9. 容易看出, 本题需要比较 1, x, x2

2
三个数的大小.

• 当 x ⩾ 0时, 容易得到

lim
n→∞

n

√
1 + xn +

x2n

2n
= max

{
1, x,

x2

2

}
.

• 当−1 < x < 0时, 对 n充分大时总有 |x|n < 1
2
, 因此

n

√
1

2
⩽ n

√
1− |x|n ⩽ n

√
1 + xn +

x2n

2n
⩽ n

√
1 + |x|n +

1

2
⩽ n

√
2,

因此令 n → ∞时有

lim
n→∞

n

√
1 + xn +

x2n

2n
= 1.

• 当 x = −1时, 有

n

√
1 + xn +

x2n

2n
=


n

√
2 +

1

2n
, n为偶数,

1

2
, n为奇数.

因此当 n → ∞时有两个子序列极限 1和 1
2
. 此时极限不存在.

• 当−2 < x < −1时, 对充分大的奇数 n有

1 + xn +
x2n

2n
< 0,

因此

lim
n→∞
n为奇数

n

√
1 + xn +

x2n

2n
⩽ 0.

而对偶数 n总有

1 + xn +
x2n

2n
⩾ 1,

因此

lim
n→∞
n为偶数

n

√
1 + xn +

x2n

2n
⩾ 1.

因此两个子序列拥有不同的下极限, 故极限不存在.
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• 当 x = −2时, 有

n

√
1 + xn +

x2n

2n
=


n
√
1 + 2 · 2n, n为偶数,

1, n为奇数.

因此两个子序列极限分别为 2和 1, 极限不存在.

• 当 x < −2时, 当 n充分大时总有

1 <
1

3
· x

2n

2n
, |x|n <

1

3
· x

2n

2n
,

因此

n

√
1

3

x2

2
⩽ n

√
1 + xn +

x2n

2n
⩽ n

√
5

3

x2

2
,

当 n → ∞时则有

lim
n→∞

n

√
1 + xn +

x2n

2n
=

x2

2
.

综上, 我们有

lim
n→∞

n

√
1 + xn +

x2n

2n
=


max

{
1, x,

x2

2

}
, x > −1或 x < −2,

不存在, − 2 ⩽ x ⩽ −1.

10. 由条件可得 an+2−an+1 = (an+an+2)−(an+an+1)收敛,即 an+1−an收敛. 再由 an+1+an

收敛即得 an收敛.

20230927

1. 由 Stolz定理可得

lim
n→∞

1 + 1√
2
+ · · ·+ 1√

n√
n

= lim
n→∞

1√
n√

n−
√
n− 1

= lim
n→∞

√
n+

√
n− 1√
n

=
1

2
.

2. 由 Stolz定理可得

lim
n→∞

12 + 32 + · · ·+ (2n− 1)2

n3
= lim

n→∞

(2n− 1)2

n3 − (n− 1)3
=

4

3
.
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3. (本题可以直接使用 Stolz定理) 不妨设 a = 0. 设常数M满足

|an| ⩽ M, ∀n ∈ N.

对任意 ε > 0, 存在N0 ∈ N使得
|an| ⩽ ε, ∀n ⩾ N0.

于是当 n ⩾ N0时, 有 ∣∣∣∣ 1n2

n∑
k=1

kak

∣∣∣∣ ⩽ 1

n2

N0∑
k=1

k|ak|+
1

n2

n∑
k=N0+1

k|ak|

⩽ 1

n2

N0∑
k=1

kM +
1

n2

n∑
k=N0+1

kε

⩽ N0(N0 + 1)M

2n2
+

n+ 1

2n
ε.

再取N1 ∈ N使得
N0(N0 + 1)M

2N2
1

⩽ ε

则当 n > max{N0, N1}时有 ∣∣∣∣ 1n2

n∑
k=1

kak

∣∣∣∣ ⩽ 2ε.

由于 ε可以任意小, 故

lim
n→∞

1

n2

n∑
k=1

kak = 0.

4. 先证一个引理: 若正数列 {an}∞n=1满足

lim
n→∞

an+1

an
= a > 0,

则

lim
n→∞

n
√
an = a.

令 xn = ln an, 则上述命题可等价写为: 若实数列 {xn}∞n=1满足

lim
n→∞

xn+1 − xn = ln a,

则

lim
n→∞

xn

n
= ln a.

6



上述命题由 Stolz定理可立即得到.

在原题中, 令 an = n!
nn , 则

an+1

an
=

(
n

n+ 1

)n

=⇒ lim
n→∞

an+1

an
=

1

e
.

因此由引理得到

lim
n→∞

n
√
n!

n
= lim

n→∞
n
√
an =

1

e
.

5. 不妨设 l = 0且 x0 = 0. 由 Stolz公式可得到

lim
n→∞

1

n

n∑
k=1

k(xk − xk−1) = 0.

注意到
n∑

k=1

k(xk − xk−1) = nxn −
n−1∑
k=0

xk,

因此有

lim
n→∞

xn = lim
n→∞

1

n

n−1∑
k=0

xk = 0.

6. 首先, 用数学归纳法证明: 0 < xn < 1
A
恒成立. 事实上,

1

A
− xn+1 =

1

A
− 2xn +Ax2

n =
1

A
(Axn − 1)2,

因此有 0 < xn+1 <
1
A

.

其次, 用数学归纳法证明 xn < xn+1. 这是因为

xn+1 − xn = xn(1−Axn) > 0, ∀n ∈ N

因此有 xn < xn+1恒成立.

最后, 利用单调收敛定理可以得到 {xn}∞n=1的极限存在, 并设 lim
n→∞

xn = x. 于是有

lim
n→∞

xn+1 = lim
n→∞

xn(2−Axn) =⇒ x = x(2−Ax),

从而 x = 0或 x = 1
A

. 显然 x = 0不符合条件, 因此 lim
n→∞

xn =
1

A
.
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7. 该数列的递推公式是 a1 =
√
2, 且

an+1 =
√
2 + an, ∀n ∈ N.

首先, 用数学归纳法证明 0 < an < 2恒成立 (略).

其次, 用数学归纳法证明 an+1 > an恒成立 (略).

最后, 用单调收敛定理说明 lim
n→∞

an存在并且等于 2.

8. 取对数,
lim
n→∞

(2n+ 1) ln n− 2

n− 1
= lim

n→∞
(2n+ 1)×

(
− 1

n− 1

)
= −2,

则原极限为 e−2.

9. 取对数,
lim
n→∞

n2 ln
(
1 +

1

n

)
= lim

n→∞
n2 · 1

n
= +∞,

则原极限为+∞.

10. 由 Stolz定理,

lim
n→∞

an = lim
n→∞

nn

nn − (n− 1)n−1
= lim

n→∞

1

1− 1
n
(1− 1

n
)n−1

= 1.

11. 作数列

an =
1

nn

n∏
k=1

(n+ k),

则可以验证

an+1

an
=

nn

(n+ 1)n+1
· (2n+ 1)(2n+ 2)

n+ 1
=

(
n

n+ 1

)n+1

· 2(2n+ 1),

因此

lim
n→∞

an+1

an
=

4

e
.

于是

lim
n→∞

1

n
n

√√√√ n∏
k=1

(n+ 1) = lim
n→∞

n
√
an =

4

e
.
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12. 已知数列 an = (1 + 1
n
)n单调递增且收敛到 e. 由二项式定理,

an =
n∑

k=0

(
n

k

)
1

nk
=

n∑
k=0

n(n− 1) · · · (n− k + 1)

k!nk
,

因此有
n∑

k=0

1

k!

(
1− k

n

)k

⩽ an ⩽
n∑

k=0

1

k!
.

因此从右边的不等式可以得到

lim
n→∞

n∑
k=0

1

k!
⩾ e. (1)

另一方面, 给定正整数N,M ∈ N, 对任意正整数 n > max{M,N}, 有

e ⩾
N∑

k=0

1

k!

(
1− k

n

)k

⩾
N∑

k=0

1

k!

(
1− N

M

)N

.

因此若取M满足 (1− N
M
)N > 1− ε, 则有

e ⩾ (1− ε)
N∑

k=0

1

k!
.

由于上述不等式对任何 ε > 0和N ∈ N均成立, 因此

lim
n→∞

n∑
k=0

1

k!
⩽ e. (2)

由 (1)(2)即得所证结果.

注 (郭焕琨): (2)也可以由不等式 (
1 +

1

n2

)n2+n

⩾
n∑

k=0

1

k!

来得到.

2 补充习题

1. 使用Cauchy收敛原理说明,

xn =
n∑

k=1

1

k ln k
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是发散的.

我们将利用如下的不等式: 对所有正整数 n, 有

lnn ⩽ 1 +
1

2
+ · · ·+ 1

n
⩽ lnn+ 1

因此, 当 n > m ⩾ 1时,

xn − xm =
n∑

k=m+1

1

k ln k

⩾ 1

lnn

n∑
k=m+1

1

k

⩾ 1

lnn
(lnn− lnm− 1)

于是, 对任意给定的m ∈ N, 总存在一个充分大的 n ∈ N使得

xn − xm >
1

2

于是 {xn}n⩾1是发散的.

2. 证明: 任意实数列都可以找到单调递增或者递减的子列.

解: 设 {xn}n⩾1是给定的实数列.分情况讨论:

1. 若 {xn}n⩾1是无界的, 则存在子列 {xnk
}k⩾1使得

0 < |xn1
| < |xn2

| < · · · < |xnk
| < · · ·

于是, {xnk
}k⩾1的正数子列单调递增, 而负数子列单调递减.

2. 若 {xn}n⩾1是有界的, 则由Weierstrass定理知存在收敛子列, 故不妨设 lim
n→∞

xn = x∗. 如
果 {xn}n⩾1有无穷多项都等于 x∗, 则结论成立. 故可假设 xn ̸= x∗对 n ∈ N恒成立. 于是
对 ∀n ∈ N, xn > x∗或者 xn < x∗.

不妨设存在无穷多个 n ∈ N使得 xn > x∗成立, 否则考虑−xn即可. 进一步可以假设
xn > x∗恒成立. 下面我们来证明: 若数列 {xn}n⩾1满足 lim

n→∞
xn = x∗且 xn > x∗恒成立,

则 {xn}n⩾1有单调递减的子列.

事实上, 可以归纳构造一列严格递增的正整数列 {nk}k⩾1使得

x∗ < xnk+1
< xnk

, ∀k ⩾ 1

这样得到的子列 {xnk
}k⩾1则是单调递减的.
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综上, 原命题得证.

3. 证明

lim
n→∞

1

ln lnn

n∑
k=2

1

k ln k
= 1

由 Stoltz公式, 只需证明

lim
n→∞

n lnn
(

ln ln(n+ 1)− ln lnn
)
= 1

由于

ln ln(n+ 1)− ln lnn = ln ln(n+ 1)

lnn
∼ ln(n+ 1)

lnn
− 1 ∼ 1

n lnn
因此上述结果成立.

4. 设数列 {an}∞n=1满足 a1 > 0, an+1 = ln(1 + an), 试计算 lim
n→∞

nan.

容易验证 {an}∞n=1单调递减且收敛到 0, 因此由 Stolz定理可以得到

lim
n→∞

1

nan
= lim

n→∞

1

an+1

− 1

an
= lim

n→∞

1

ln(1 + an)
− 1

an
= lim

x→∞

1

x
− 1

ln(1 + x)
=

1

2
.

其中最后一项极限可以由洛必达法则或泰勒展开得到. 因此 lim
n→∞

nan = 2.

5. 给定实数 x1, · · · , xn, 令 x
(1)
i =

xi + xi+1

2
, i = 1, · · · , n, 其中 xn+i = xi. 归纳地定义

x
(k)
i =

x
(k−1)
i + x

(k−1)
i+1

2
, i = 1, · · · , n.

其中 x
(k−1)
n+i = x

(k−1)
i . 证明: 对于 i = 1, · · · , n均成立

lim
k→∞

x
(k)
i =

x1 + · · ·+ xn

n
.

对每个正整数 k, 定义

S(k) =
n∑

i=1

(
x
(k)
i

)2
,

我们来证明 S(k)是单调递减的. 事实上,

S(k+1) − S(k) =
n∑

i=1

(
x
(k+1)
i

)2 − n∑
i=1

(
x
(k)
i

)2
=

n∑
i=1

(
x
(k)
i + x

(k)
i+1

2

)2

−
n∑

i=1

(
x
(k)
i

)2
= −

n∑
i=1

(
x
(k)
i − x

(k)
i+1

2

)2

⩽ 0,
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因此 S(k)单调递减且有极限存在. 特别的, 我们有

lim
k→∞

S(k+1) − S(k) = 0,

因此

lim
k→∞

x
(k)
i − x

(k)
i+1 = 0, i = 1, · · · , n.

由于

n∑
i=1

x
(k)
i =

n∑
i=1

xi对所有 k成立, 因此

lim
k→∞

x
(k)
i =

x1 + · · ·+ xn

n
.

12


