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1. 假设 {[an, bn]}∞n=1是一个闭区间列, 满足 [an+1, bn+1] ⊂ [an, bn]对所有 n ∈ N成立, 且

lim
n→∞

(bn − an) = 0.

下面希望证明集合
∞⋂

n=1

[an, bn]

中包含唯一的元素. 若上述结果不对, 则对每个 x ∈ [a1, b1], 存在 n ∈ N使得 x ̸∈ [an, bn], 即

x ∈ In := (−∞, an) ∪ (bn,+∞).

特别的, 我们有 {In}∞n=1是闭区间 [a1, b1]的一个开覆盖. 根据有限覆盖定理, 存在N ∈ N使得

[a1, b1] ⊂
N⋃

n=1

In =⇒
N⋂

n=1

Icn ⊂ (−∞, a1) ∪ (b1,+∞).

注意到

Icn = [an, bn] =⇒
N⋂

n=1

Icn = [a1, b1],

我们得到

[aN , bN ] ⊂ (−∞, a1) ∪ (b1,∞),

此为矛盾的结果.
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2. 证明非空有上界的实数集 S的上确界存在. 设 a1比 S中的某个元素小, b1为 S的一个上界,
从而 a1不是 S的上界. 对每个正整数 n, 假设 an不是 S的上界, 而 bn是 S的上界, 并考察实数

cn =
an + bn

2
.

显然, cn或是 S的上界, 或不是 S的上界.

• 若 cn是 S的上界, 令 an+1 = an, bn+1 = cn;

• 若 cn不是 S的上界, 令 an+1 = cn, bn+1 = bn.

如此一来, 我们得到闭区间套 {[an, bn]}∞n=1, 且

(bn+1 − an+1) =
1

2
(bn − an).

根据闭区间套定理, 存在 a∗ ∈ R使得

{a∗} =
∞⋂

n=1

[an, bn].

下面证明 a∗是集合 S的上确界.

1. 由于 bn是 S的上界, 因此对任意 x ∈ S, 有

x ⩽ bn =⇒ x ⩽ lim
n→∞

bn = a∗.

因此 a∗也是 S的上界.

2. 对任意的 y < a∗, 存在 n ∈ N使得 an > y. 由于 an不是 S的上界, 故 y也不是 S的上界.
于是, 任何比 a∗小的数都不是 S的上界.

综合以上结果, 可以得到 a∗是 S的上确界.

3. 令M = supE. 由于maxE不存在, 故对任意 x ∈ E, x < M . 任取 x1 ∈ E. 我们使用归纳
的方式来构造数列 {xn}∞n=1 ⊂ E: 当 xn ∈ E给定时, 可以取 xn+1 ∈ (xn,M). 按照这种方式构
造出的 {xn}∞n=1两两互异且收敛到M .

4. 设数列 {an}∞n=1收敛到 a∗ ∈ R. 如果 {an}∞n=1恒等于 a∗, 则结论显然成立. 下面不妨设
aM > a∗对某个M ∈ N成立, 我们来证明 {an}∞n=1的上确界是可以取到的. 事实上, 设正整数
N > M使得 an < a∗+a1

2
对 n > N恒成立. 于是, {an}∞n=1的上确界一定在有限集合 {an}Nn=1中

取到.
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1. (证明一) 根据Weierstrass定理, 由 {an}∞n=1有界可以得到其子列 {ank
}∞k=1收敛, 并令

a∗ = lim
k→∞

ank
.

把 {an}∞n=1去掉子列 {ank
}∞k=1之后的数列记为 {bn}∞n=1. 则 {bm}∞m=1不会收敛到 a∗,否则 {an}∞n=1

将收敛到 a∗. 因此, 存在 ε > 0和存在无穷多个m ∈ N, 满足

|bm − a∗| ⩾ ε.

我们将满足上述条件的m ∈ N排为一列, 即 {mk}∞k=1. 于是,

{bmk
}∞k=1 ⊂ D := [a, b]

∖
(a∗ − ε, a∗ + ε),

其中D是至多两个闭区间的并. 因此根据Weierstrass定理, {bmk
}∞k=1有一子列收敛到 b∗ ∈ D,

则 b∗也是 {an}∞n=1的子列极限, 且 b∗ ̸= a∗. 命题得证.

(证明二) {an}∞n=1有两个子列分别收敛到 lim
n→∞

an和 lim
n→∞

an, 且由于 {an}∞n=1极限不存在, 故

lim
n→∞

an ̸= lim
n→∞

an

2. 对任何正整数 n > m, 我们有

|xn − xm| =
∣∣∣∣ n∑
k=m+1

sin kx

k(k + sin kx)

∣∣∣∣ ⩽ n∑
k=m+1

1

k(k − 1)
=

1

n
− 1

m
.

根据Cauchy收敛原理, 可以得到 lim
n→∞

xn极限存在.

3. 是. 根据条件, 对任何 ε > 0, 存在N ∈ N, 使得当 n > N时,

|an − aN | < ε

2
.

从而当 n,m > N时,
|an − am| ⩽ |an − aN |+ |am − aN | < ε.

因此 {an}∞n=1是Cauchy列.

4. 错误. 令 xn =
√
n, 则对任意 p ∈ N,

lim
n→∞

xn+p − xn =
√
n+ p−

√
n =

p√
n+ p+

√
n
= 0.
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5. 根据Cauchy收敛原理, 对任何 ε > 0, 存在N ∈ N, 使得当 n > m > N时,

|xn − xm| ⩽
n∑

k=m+1

|xk − xk−1| < ε.

因此一定有 {xn}∞n=1收敛. 例: (−1)n/n是无界变差数列.

6. 取一子列 {xnk
}收敛到 ξ即可.

2 补充习题

1. 设E ⊂ R是一个实数集.

(1) 若 {ak}∞k=1为E的聚点, 且 lim
k→∞

ak = a, 证明 a是E的聚点.

(2) 构造一个数集E, 使得E的聚点集恰好为 {1/k : k ∈ N} ∪ {0}.

(1) 不妨设每个 ak ̸= a. 对每个正整数 k, 存在 xk ∈ E且

|xk − ak| < |a− ak|

则且 xk ̸= a, 且

|xk − a| ⩽ |xk − ak|+ |ak − a| ⩽ 2|ak − a| =⇒ lim
k→∞

xk = a

故 a是聚点.

(2) 作集合

E =

{
1

k
+

1

m
: k,m ∈ N,m ⩾ k2

}
来证E符合条件. 定义

Ek =

{
1

k
+

1

m
: m ∈ N,m ⩾ k2

}
, k ∈ N

则有

• E = ∪∞
k=1Ek;

• {Ek}k⩾1两两不交;

• Ek的聚点为 1/k;
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• Ek ⊂ [1/k, 1/(k − 1)), ∀k ∈ N.

若 a是E的聚点, 则必有 a ⩾ 0. 若 a ̸= 0, 1/k, 则存在某个 k0 ∈ N使得

a ∈
[
1

k0
,

1

k0 − 1

)
.

由于 a的倒数不能是整数, 因此 a位于开区间

a ∈
(

1

k0
,

1

k0 − 1

)
.

由于 a是E的聚点, 故存在 {xn} ⊂ E\{a}使得

lim
n→∞

xn = a

因此当 n充分大时, 有不等式

|xn − a| < min
{

1

k0 − 1
− a, a− 1

k0

}
此时即有 xn ∈ Ek0

. 于是, 我们得到 a是Ek0
的聚点, 但Ek0

的聚点只有 1/k0, 矛盾! 综上, E的
聚点只能是 {1/k : k ∈ N} ∪ {0}.

2. 证明: lim
n→∞

1

n

n∑
k=2

k
√
n = 1.

记原来的求和为 Sn. 给定N ∈ N, 记

S(1)
n =

1

n

N∑
k=2

k
√
n, S(2)

n =
1

n

n∑
k=N+1

k
√
n

则 Sn = S
(1)
n + S

(2)
n . 下面分别对 S

(1)
n 和 S

(2)
n 做估计.

S(1)
n ⩽ 1

n
·
√
n ·N =

N√
n

由Bernoulli不等式, 当 k ⩾ N + 1时,

n
1
2k ⩽ (1 +

√
n)

1
k ⩽ 1 +

√
n

k

因此取平方后有

k
√
n ⩽

(
1 +

√
n

k

)2

= 1 +
2
√
n

k
+

n

k2
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因此

S(2)
n =

1

n

n∑
k=N+1

k
√
n

⩽ 1

n

n∑
k=N+1

(
1 +

2
√
n

k
+

n

k2

)

⩽ 1

n

(
n+ 2

√
n

n∑
k=N+1

1

k
+ n

n∑
k=N+1

1

k2

)

⩽ 1 +
2√
n

n∑
k=1

1

k
+

n∑
k=N+1

1

k(k − 1)

⩽ 1 +
2√
n
(lnn+ 1) +

1

N

因此我们得到:

Sn ⩽ S(1)
n + S(2)

n ⩽ 1 +
2√
n
(lnn+ 1) +

1

N
+

N√
n
, ∀n > N

取正整数N = [ 4
√
n], 则

Sn ⩽ 1 +
2√
n
(lnn+ 1) +

2
4
√
n− 1

, ∀n > 1

令 n充分大, 即得到 lim
n→∞

Sn = 1.

3. 设数列 {xn}∞n=1满足 x1 > 0, 且
xn+1 = 3 +

4

xn

证明 lim
n→∞

xn极限存在.

容易知道

xn+1 − xn =
4

xnxn−1

(xn−1 − xn) =⇒ |xn+1 − xn| ⩽
4

9
|xn−1 − xn|

故
∞∑

n=1

|xn+1 − xn| < +∞ =⇒ {xn}∞n=1是Cauchy列

设 x∗ = lim
n→∞

xn, 则 x∗ = 3 + 4/x∗ =⇒ x∗ = 4.

注: 在该问题中, {xn}∞n=1并不具有单调性, 因此不好直接利用单调收敛定理求解.
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