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1 习题解答

3. (1) 是. 若 f(x) + g(x)在 x = 0处不是间断点, 则其左右极限

lim
x→0+

f(x) + g(x), lim
x→0−

f(x) + g(x)

都存在且有限. 而 f(x)在 x = 0处的左右极限存在, 故

lim
x→0+

g(x), lim
x→0−

g(x)

存在且有限. 这与 g(x)在 x = 0处是第二类间断点矛盾.

(2) 否. 取

f(x) =

1, x = 0,

0, x ̸= 0,
g(x) =

0, x = 0,

sin 1

x
, x ̸= 0,

则 f(x)在 x = 0处为第一类间断, g(x)在 x = 0处为第二类间断, 但 f(x)g(x) ≡ 0.

4. 我们只证明M(x) ∈ C[a, b]. 由于 f(x)在 [a, b]上一致连续, 故对任意 ε > 0, 存在 δ > 0使得

|x− y| ⩽ δ =⇒ |f(x)− f(y)| ⩽ ε.

于是, 当 x ⩾ y且 |x− y| ⩽ δ时, M(x) ⩾ M(y), 且一定有

M(x)−M(y) ⩽ max
t∈[y,x]

f(t)− f(y) ⩽ ε.

这里第一个不等号成立是因为 f(t)在 [a, x]上的最大值一定在 [a, y]或 [y, x]上取到. 故M(x)

在 [a, b]上连续.

5. (1) 容易看出 {xn}∞n=1单调递减且非负, 故极限存在.
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(2) 在 an+1 = f(an)两端令 n → ∞, 由 f的连续性可得到 f(l) = l.

(3) f(l) = l即得到 l = 0.

6. 容易看出, Q(x)的显式表达式为

Q(x) =


1, f(x) = max

t∈[0,x]
f(t),

0, f(x) < max
t∈[0,x]

f(t).

• 若 f(x)单调递增, 则Q(x) ≡ 1, 从而Q(x)连续.

• 若Q(x)连续, 往证 f(x)是单调递增的. 否则, 设存在 0 ⩽ a < b ⩽ 1使得 f(a) > f(b). 由

f(b) < f(a) ⩽ max
t∈[0,b]

f(t)

可得 Q(b) = 0. 但Q(0) = 1, 故由介值定理知存在 x ∈ (0, 1)使得Q(x) = 1
2
, 矛盾!

故命题得证.

7. 由于 f(x) = f(x2) = f(−x), 可知 f(x)是偶函数.

• 对任意 x > 0, 有 f(x) = f(x
1
2n )对任何 n ∈ N成立. 由于 f(x)在 x = 1处连续, 故

f(x) = lim
n→∞

f(x
1
2n ) = f(1).

于是当 x > 0时, 恒有 f(x) ≡ f(1).

• 由于 f(x)在 x = 0处连续, 故

f(0) = lim
x→0+

f(x) = f(1).

综上, f(x)为常值函数.

8. 反证法. 若 f(x)在 x → ∞时不发散到∞, 则存在序列 {xk}∞k=1满足:

• lim
k→∞

xk = ∞,

• |f(xk)| ⩽ M , ∀k ∈ N对某个常数M成立.

由于 f(x)在 [−M,M ]上连续, 故存在常数A使得

|f(x)| ⩽ A, ∀x ∈ [−M,M ].
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因此有

|f(f(xk))| ⩽ A, ∀k ∈ N.

这与 lim
x→∞

f(f(x)) = ∞矛盾! 命题得证.
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1. 令 a = min{x1, · · · , xn}, b = max{x1, · · · , xn}. 在 [a, b]上使用介值定理即可.

2. 使用介值定理.

3. 先证明: 对任何 [a, b]中的实数 x1 < x2 < x3, 不可能有

f(x2) > max{f(x1), f(x3)}, 或 f(x2) < min{f(x1), f(x3)}

否则, 取M ∈ (max{f(x1), f(x3)}, f(x2)), 则区间 (x1, x2)和区间 (x2, x3)中分别有 f(x) = M

的两个解, 矛盾!

不妨设 f(a) < f(b). 下面证明: 当 a ⩽ x1 < x2 ⩽ b时, f(x1) < f(x2). 否则, f(x1) > f(x2). 对
a ⩽ x1 < x2使用引理, 有 f(a) ⩾ f(x1). 对 x1 < x2 ⩽ b使用引理, 有 f(b) ⩽ f(x2). 但此时

f(a) ⩾ f(x1) > f(x2) ⩾ f(b)

与 f(a) < f(b)的假设矛盾!

4. 设 a = f(0) ∈ R. 取常数M > 0使得对任意满足 |x| ⩾ M的实数 x, 都有

f(x) > a+ 1.

于是 f(x)的最小值一定在闭区间 [−M,M ]中的某一点取到.

5. 用二分法构造闭区间套即可.

6. 只需证明: 存在 y1 ∈ [a, b]使得 f(y1) ⩾ c, 及 y2 ∈ [a, b]使得 f(y2) ⩽ c.

• 先证明: lim
k→∞

f(xk) ⩾ c. 如果此结果不对, 则存在 ε > 0和K ∈ N, 使得

f(xk) < c− ε, ∀k ⩾ K.

此时

n∑
k=1

kf(xk) =
K∑

k=1

kf(xk) +
n∑

k=K+1

f(xk) ⩽ CK +

(
n(n+ 1)

2
− K(K + 1)

2

)
(c− ε),
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其中CK =
∑K

k=1 kf(xk). 于是对任意正整数 n ⩾ K, 有

2

n(n+ 1)

n∑
k=1

kf(xk) ⩽
2

n(n+ 1)
CK +

(
1− K(K + 1)

n(n+ 1)

)
c− ε.

于是令 n → ∞, 可得

lim
n→∞

2

n(n+ 1)

n∑
k=1

kf(xk) ⩽ c− ε < c,

矛盾! 因此有 lim
k→∞

f(xk) ⩾ c. 特别的, {xk}∞k=1有一子列 {xkj
}∞j=1使得 lim

j→∞
f(xkj

) ⩾ c.
设 y1是 {xkj

}∞j=1的一个聚点, 则 f(y1) ⩾ c.

• 对任意 ε > 0, 存在 n ∈ N使得

2

n(n+ 1)

n∑
k=1

kf(xk) ⩽ c+ ε.

由于存在下标 k ∈ {1, · · · , n}, 使得

f(xk) = min{f(x1), · · · , f(xn)},

故有

f(xk) ⩽
2

n(n+ 1)

n∑
k=1

kf(xk) ⩽ c+ ε.

特别的, 对任何 p ∈ N, 存在 zp ∈ [a, b]使得

f(zp) ⩽ c+
1

p
.

设 y2是 {f(zp)}∞p=1的一个聚点, 则 f(y2) ⩽ c.

另证: 设 f(x)在闭区间 [a, b]上的最大值和最小值为m,M . 则由于

m ⩽ f(xk) ⩽ M

对所有 k ∈ N成立, 因此对任意 n ∈ N, 都有

m ⩽ 2

n(n+ 1)

n∑
k=1

kf(xk) ⩽ M.

令 n → ∞并取上极限, 可以得到

m ⩽ lim
n→∞

2

n(n+ 1)

n∑
k=1

kf(xk) = c ⩽ M.

即m ⩽ c ⩽ M . 根据介值定理, 存在 ξ ∈ [a, b]使得 f(ξ) = c.
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2 补充习题

1. 设 f(x) ∈ C[0,+∞), 且对任何 h > 0, 有 lim
n→∞

f(nh) = 0, 证明 lim
x→∞

f(x) = 0.

引理 设正数列 {xk}∞k=1, {δk}∞k=1满足 lim
k→∞

xk = +∞. 则对任何m ∈ N和正数区间 [a, b], 存在
子区间 [a′, b′] ⊂ [a, b], 使得存在 n, k ∈ N满足 k ⩾ m, 且

[na′, nb′] ⊂ [xk − δk, xk + δk]

引理的证明 不妨设 δk < b−a
3
对所有 k ∈ N均成立. 注意到, 存在M ⩾ 0, 使得

∞⋃
n=1

[
n(2a+ b)

3
,
n(a+ 2b)

3

]
⊃ [M,+∞)

任取一个指标 k使得 xk ⩾ M且 k ⩾ m, 可知存在 n ∈ N使得

xk ∈
[
n(2a+ b)

3
,
n(a+ 2b)

3

]
于是存在 c ∈ [ 2a+b

3
, a+2b

3
]使得 xk = nc. 因此取

a′ = c− δk
n
, b′ = c+

δk
n

则由 δk < b−a
3
知 [a′, b′] ⊂ [a, b], 且

[na′, nb′] = [xk − δk, xk + δk]

回到原题. 若 lim
x→∞

f(x)不为 0, 则存在一列 {xk}∞k=1发散到+∞, 使得 |f(xk)| ⩾ 2ε0恒成立. 由
f的连续性知存在 δk ∈ (0, 1)使得

|f(x)| ⩾ ε0, ∀x ∈ [xk − δk, xk + δk]

下面使用数学归纳法构造一列正数闭区间 {[am, bm]}∞m=1, 满足:

• 对每个m ⩾ 2, [am, bm] ⊂ [am−1, bm−1];

• 对每个m ⩾ 1, 存在 n, k ∈ N使得 [nam, nbm] ⊂ [xk − δk, xk + δk]且 k ⩾ m.

当m = 1时, 取 [a1, b1] = [x1, y1]即可. 假设 [am−1, bm−1]以及构造完毕, 则依引理存在 [am, bm]

满足上述条件. 由闭区间套定理, 取

h ∈
∞⋂

m=1

[am, bm]
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则 h > 0. 于是对每个m ∈ N, 存在 k ⩾ m使得对某个 n ∈ N有

nh ∈ [am, bm] ⊂ [xk − δk, xk + δk]

从而 |f(nh)| ⩾ ε0. 对给定的m ∈ N, 将满足上述条件的 n, k ∈ N记为 nm, km, 则 km ⩾ m, 且

nmh ⩾ xkm
− δkm

⩾ xkm
− 1

从而 lim
m→∞

nm = +∞. 但 |f(nmh)| ⩾ ε0, 故

lim
n→∞

f(nh) ⩾ ε0

这和 lim
n→∞

f(nh) = 0矛盾!

2. 设 f(x)在 [0,+∞)上一致连续, 且对任何 h > 0, lim
n→∞

f(nh)存在有限, 证明 lim
x→∞

f(x)存在.

证明 我们使用Cauchy判别准则证明 lim
x→∞

f(x)存在. 对任意 ε > 0, 假设 δ > 0满足

|x− y| ⩽ δ =⇒ |f(x)− f(y)| < ε

3
(1)

对任意 x, y ⩾ 0, 设 x0, y0 ∈ δN使得

|x− x0| ⩽ δ, |y − y0| ⩽ δ

且 x0 ⩾ x, y0 ⩾ y. 由于 lim
n→∞

f(nδ)存在且有限, 故存在A ⩾ 0使得

x0, y0 ⩾ A =⇒ |f(x0)− f(y0)| <
ε

3
(2)

于是当 x, y ⩾ A时, 必有 x0, y0 ⩾ A, 则由 (1)(2)

|f(x)− f(y)| ⩽ |f(x)− f(x0)|+ |f(y)− f(y0)|+ |f(x0)− f(y0)| < ε

故由Cauchy收敛准则知 lim
x→∞

f(x)存在.

3. 讨论函数的一致连续性:

(1) f(x) = cosxp, 其中常数 p > 0, x ∈ (0,+∞);

(2) f(x) =
x− 1

lnx
, x ∈ (1,+∞).

解 (1) 当 p ⩽ 1时, cosxp一致连续. 这是由于 xp和 cosx都是一致连续的.

当 p > 1时, f(x) = cosxp不是一致连续的. 取

xk = (2kπ)
1
p , yk = ((2k + 1)π)

1
p
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则 f(xk) = 1, f(yk) = −1, 而 lim
k→∞

(yk − xk) = 0. 这个极限成立是因为

yk − xk = ((2k + 1)π)
1
p − (2kπ)

1
p

= (2kπ)
1
p

((
1 +

1

2k

) 1
p

− 1

)
∼ (2kπ)

1
p

1

2kp
→ 0

(2) 令 f(x) =
x− 1

lnx
, 则 f(x)在 [1, e2]上连续. 下面证明 f(x)在 [e,+∞)上 Lipschitz连续.

当 x ⩾ y ⩾ e时, 注意到

|f(x)− f(y)| =
∣∣∣∣x− 1

lnx
− y − 1

ln y

∣∣∣∣
⩽

∣∣∣∣x− 1

lnx
− y − 1

lnx

∣∣∣∣+ ∣∣∣∣y − 1

lnx
− y − 1

ln y

∣∣∣∣
⩽ |x− y|+ |y − 1| ln x

y

⩽ |x− y|+ y ln
(
1 +

x− y

y

)
⩽ |x− y|+ y · x− y

y

= 2|x− y|

因此 Lipschitz常数为 2, 从而 f(x)在 [e,+∞)上一致连续.
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