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▶ Simulation of large-size interacting particle systems is an important
task in computational physics.

▶ A simple model of common interest is the following first-order
Langevin dynamics of the N particles {Xi

t}N
i=1 in Rd:

Ẋi
t = b(Xi

t) + 1
N − 1

∑
j ̸=i

K(Xi
t − Xj

t) + σẆi
t, (IPS)

where b : Rd → Rd is the drift force in Rd, K : Rd → Rd is the
interaction force in Rd, σ > 0 is the fixed diffusion constant, and
{Wi

t}N
i=1 are independent Wiener processes in Rd.

▶ Our goal is to design efficient numerical methods to sample the
invariant distribution π ∈ P(RdN) of the (IPS).

▶ When b = −∇V and K = −∇W are gradients for some potential
functions V and W, then π ∝ e−U with the potential function

U(x) =
N∑

i=1
V(xi) + 1

N − 1
∑

1⩽i<j⩽N
W(xi − xj)
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The analytical results of the (IPS) are fruitful.
▶ As the number of the particles N → ∞, the (IPS) converges to the

following McKean–Vlasov process of the single particle X̄t in Rd:

˙̄Xt = b(X̄t) +
∫
Rd

K(X̄t − z)νt(dz) + σẆt, (MVP)

where νt = Law(X̄t) is the distribution law of the random variable X̄t,
and Wt is the Wiener process. This is classical in the theory of the
propagation of chaos [Chaintron22].

▶ When the interaction force K is moderately small, the (IPS) has
uniform-in-N ergodicity1, which can be proved by either reflection
coupling [Eberle16] or functional inequalities [Guillin22]. In this case
the (MVP) has a unique invariant distribution π̄ ∈ P(Rd).

Given the results above, our goal comprises sampling π ∈ P(RdN) using
the (IPS) and sampling π̄ using the (MVP).

1The convergence rate towards the equilibrium is uniform in the number of particles N
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▶ The Random Batch Method [Jin20] is a novel simulation tool for the
interacting particle systems. In the (IPS), it requires O(N2) cost to
compute the interaction forces, which is a burden when N is large.

▶ To resolve this, pick a small integer p ⩾ 2, randomly divide the N
particles into q = N/p batches, denoted by D = {C1, · · · , Cq}. Then
approximate the interaction forces within the batches, i.e., construct
the random batch interacting particle system {Yi

t}N
i=1 by

Ẏi
t = b(Yi

t) + 1
N − 1

∑
j ̸=i,j∈C

K(Yi
t − Yj

t) + σẆi
t, (RB-IPS)

where for each i ∈ {1, · · · , N}, C ∈ D is the unique batch that
contains the index i.

▶ The most important feature of the IPS is that the random division D
is renewed for each time step. Fix the time step τ > 0, then for each
n ∈ N, the (RB-IPS) in the time interval [nτ, (n + 1)τ) is evolved with
an independent choice of D.
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▶ Using the Euler–Maruyama discretization, we obtain the numerical
scheme of {Ỹi

n} in RdN, which is given by

Ỹi
n = b(Ỹi

n)τ + 1
N − 1

∑
j ̸=i,j∈C

K(Ỹi
n −Ỹj

n)τ +σ
√

τξi
n, (discrete RB-IPS)

where {ξi
n}N

i=1 are independent normal random variables, and Ỹi
n is

expected to be an approximation of Yi
nτ .

▶ The (discrete RB-IPS) reduces the computational cost from O(N2) to
O(pN), which largely accelerates the simulation. In this way, the
(discrete RB-IPS) is an efficient numerical method for the (IPS).

▶ Given the parameters τ (time step) and p (batch size), how accurately
does the (discrete RB-IPS) sample the distribution π ∈ P(RdN)?
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We state our main results on the long-time behavior of the (RB-IPS) and
the (discrete RB-IPS), which requires the following assumptions:

Assumption 1 (global Lipschitz condition)
For the drift force b, there exists a constant L0 such that

|b(x)| ⩽ L0(|x| + 1), ∀x ∈ Rd.

For the interaction force K, there exists a constant L1 such that

max{|K(x)|, |∇K(x)|, |∇2K(x)|} ⩽ L1, ∀x ∈ RdN.
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Assumption 2 (drift condition)
There exists the function κ(r) in r ∈ (0, +∞) satisfying

κ(r) ⩽
{

− 2
σ2

(x − y) · (b(x) − b(y))
|x − y|2

: x, y ∈ Rd, |x − y| = r
}

.

and the following conditions:
1 κ(r) is continuous for r ∈ (0, +∞);
2 κ(r) has a lower bound for r ∈ (0, +∞);
3 lim

r→∞
κ(r) > 0.
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[JinLiYeZhou23] Ergodicity and long-time behavior of the Random Batch
Method for interacting particle systems.

Theorem 1 (ergodicity of the RB-IPS)
Under Assumptions 1 and 2, there exist constants Lmax, C, β independent
of N, τ, p such that if the constant L1 < Lmax, then

W1(µqnτ , νqnτ ) ⩽ Ce−βnτ W1(µ, ν), ∀t ⩾ 0,

where µ, ν are probability distributions in RdN, and qnτ is the transition
semigroup of the (RB-IPS).

Here, W1(µ, ν) is the normalized Wasserstein distance

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
RdN×RdN

(
1
N

N∑
i=1

|xi − yi|
)

γ(dxdy).

As a consequence, the RB-IPS has a unique invariant distribution in RdN.
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[JinLiYeZhou23] Ergodicity and long-time behavior of the Random Batch
Method for interacting particle systems.

Corollary 1 (long-time behavior of the RB-IPS)
Under Assumptions 1 and 2, there exist constants Lmax, C, β independent
of N, τ, p such that if the constant L1 < Lmax, then

W1(Law(Ynτ ), π) ⩽ C
√

τ 2 + τ

p − 1 + Ce−βnτ , ∀n ⩾ 0.

Here, the first part corresponds to the strong error of the (RB-IPS) in a
finite time period, and the second part corresponds to the uniform
ergodicity of the (RB-IPS).
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[YeZhou23] Error analysis of time-discrete Random Batch Method for
interacting particle systems and associated mean-field limits.

Theorem 2 (long-time behavior of the discrete RB-IPS)
Under Assumptions 1 and 2, there exist constants Lmax, τmax, C, λ
independent of N, τ, p such that if the constants L1 < Lmax, τ < τmax, then

W1(Law(Ỹn), π) ⩽ C
√

τ + Ce−λnτ , ∀n ⩾ 0.

Here, Ỹn ∈ RdN is the state of The convergence rate λ here can be smaller
than β in Theorem 1, but it can be guaranteed that λ is also independent
of N, τ, p. Theorem 2 characterizes the long-time sampling error of the
(discrete RB-IPS), which comprises the discretization error in terms of the
time step τ and the exponential convergence term.



2 Main Results | 12

[YeZhou23] Error analysis of time-discrete Random Batch Method for
interacting particle systems and associated mean-field limits.

Corollary 2 (long-time behavior of the discrete RB-IPS)
Under Assumptions 1 and 2, there exist constants Lmax, τmax, C, λ
independent of N, τ, p such that if the constants L1 < Lmax, τ < τmax, then

W1(µRB
nτ , π̄) ⩽ C

√
τ + Ce−λnτ + C√

N
, ∀n ⩾ 0,

where µRB
nτ is the empirical distribution of the particles {Ỹi

n}N
i=1,

µRB
nτ = 1

N

N∑
i=1

δ(x − Ỹi
n) ∈ P(Rd).

This characterizes the sampling accuracy of the invariant distribution π̄ for
the (MVP).
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The main mathematical tool to prove the uniform-in-N ergodicity of the
(RB-IPS) is the reflection coupling technique introduced in [Eberle16].

Xi
t Yi

t

Zi
t = Xi

t − Yi
t

ei
t = Zi

t/|Zi
t|

rc(Zi
t)dWi

t
rc(Zi

t)(I − 2ei
t(ei

t)T)dWi
t

sc(Zi
t)dW̃i

t
sc(Zi

t)dW̃i
t

dWX,i
t dWY,i

t

Figure 1: A schematic show of the reflection coupling method.

With the reflection coupling of the Wiener processes of two duplicates of
RB-IPS, one can prove the uniform ergodicity in the W1-distance.
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[JinLiYeZhou23] The coupled dynamics for the (RB-IPS).
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The study of the long-time behavior of the (discrete RB-IPS) employs the
triangle inequality framework described below.

Lemma (triangle inequality)
Let {Xt}t⩾0, {X̃t}t⩾0 be stochastic processes in Rd with transition probabilities
(pt)t⩾0, (p̃t)t⩾0. Given the metric d(·, ·) on P(Rd), assume (pt)t⩾0 has an
invariant distribution π ∈ P(Rd) and there exist constants C, β > 0 such that

d(νpt, π) ⩽ Ce−βtd(ν, π), ∀ν ∈ P(Rd);

and for any T > 0, there exists a constant ε(T) such that

sup
0⩽t⩽T

d(νp̃t, νpt) ⩽ ε(T), ∀ν ∈ P(Rd).

Then there exist constants T0, λ > 0 such that

d(νp̃t, π) ⩽ 2ε(T0) + 2M0e−λt, ∀t ⩾ 0,

where M0 := sups∈[0,T0] d(νp̃s, π).
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[YeZhou21] Preconditioned Langevin dynamics: sampling thermal
equilibrium of high dimensional quantum systems.

Figure 3: Error of the (RB-IPS) converges to 0 as the time step decreases.
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