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@ Random Batch Interacting Particle System



1 Problem Setting

>

>

Simulation of large-size interacting particle systems is an important
task in computational physics.

A simple model of common interest is the following first-order
Langevin dynamics of the N particles {Xi}V, in RY:

X = b(X3) + mZK(XIt—XJt)‘FUWn (IPS)
J#i
where b: RY — RY is the drift force in RY, K: RY — R is the

interaction force in RY, o > 0 is the fixed diffusion constant, and
{Wi}N | are independent Wiener processes in R?.

Our goal is to design efficient numerical methods to sample the
invariant distribution m € P(R) of the (IPS).

When b= -V V and K= —V W are gradients for some potential
functions V and W, then 7 o< e~ Y with the potential function

N

) =3 ) + ﬁ S W - )

=1 1<i<j<N



1 Classical Results

The analytical results of the (IPS) are fruitful.

> As the number of the particles N — oo, the (IPS) converges to the
following McKean—Vlasov process of the single particle X; in R%:

X = b(X;) + / ) K(X: — 2)v(dz) + o W, (MVP)

where v, = Law(X,) is the distribution law of the random variable X,
and W; is the Wiener process. This is classical in the theory of the
propagation of chaos [Chaintron22].

» When the interaction force K is moderately small, the (IPS) has
uniform-in-N ergodicity!, which can be proved by either reflection
coupling [Eberlel6] or functional inequalities [Guillin22]. In this case
the (MVP) has a unique invariant distribution 7 € P(RY).

Given the results above, our goal comprises sampling m € P(R) using
the (IPS) and sampling 7 using the (MVP).

IThe convergence rate towards the equilibrium is uniform in the number of particles N



1 Random Batch Method

» The Random Batch Method [Jin20] is a novel simulation tool for the
interacting particle systems. In the (IPS), it requires O(N?) cost to
compute the interaction forces, which is a burden when N is large.

» To resolve this, pick a small integer p > 2, randomly divide the N
particles into g = N/p batches, denoted by D = {Cy,--- ,Cq}. Then
approximate the interaction forces within the batches, i.e., construct
the random batch interacting particle system {Yi}¥ by

sﬂ;:b(vH— > KYi-Y)+ oW, (RB-IPS)
J#lJEC
where for each i € {1,--- , N}, C € D is the unique batch that

contains the index I.

» The most important feature of the IPS is that the random division D
is renewed for each time step. Fix the time step 7 > 0, then for each
n € N, the (RB-IPS) in the time interval [n7, (n+ 1)7) is evolved with
an independent choice of D.



1 Random Batch Method

> Using the Euler—-Maruyama discretization, we obtain the numerical
scheme of {Y’} in RN, which is given by

Yi=b(Y) 7+7 > K(Yy—Y)r+0v/7E), (discrete RB-IPS)
J#uJEC

where {¢/}N | are independent normal random variables, and Y is
expected to be an approximation of Y/

> The (discrete RB-IPS) reduces the computational cost from O(N?) to
O(pN), which largely accelerates the simulation. In this way, the
(discrete RB-IPS) is an efficient numerical method for the (IPS).

> Given the parameters 7 (time step) and p (batch size), how accurately
does the (discrete RB-IPS) sample the distribution 7 € P(RV)?
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2 Main Results

We state our main results on the long-time behavior of the (RB-IPS) and
the (discrete RB-IPS), which requires the following assumptions:

Assumption 1 (global Lipschitz condition)

For the drift force b, there exists a constant Ly such that
|b(x)| < Lo(|x| +1), Vxe RC.
For the interaction force K, there exists a constant L; such that

max{|K(J], VKL, VKO < Li, vxe RV,



2 Main Results

Assumption 2 (drift condition)
There exists the function x(r) in r € (0, +00) satisfying

_ 2 (=) (B =B e
n(r)<{ o2 x—yP2 ey ERL e }

and the following conditions:
1 k(r) is continuous for r € (0, +00);
2 k(r) has a lower bound for r € (0, +0);

3 lim &(r) > 0.

r— o0



2 Main Results

[JinLiYeZhou23] Ergodicity and long-time behavior of the Random Batch
Method for interacting particle systems.

Theorem 1 (ergodicity of the RB-IPS)

Under Assumptions 1 and 2, there exist constants L., C, B independent
of N, T, p such that if the constant L; < L.y, then

Wl (/’(‘an7 Z/an) < Ceiﬁm—Wl (/’(‘a V)7 Vt 2 07

where ji, v are probability distributions in RV, and g, is the transition
semigroup of the (RB-IPS).

Here, Wi (p, v) is the normalized Wasserstein distance

[RLN
v)= i — X — xdy).
= ot [ (WA )t

YEN(k,v)

As a consequence, the RB-IPS has a unique invariant distribution in RV



2 Main Results

[JinLiYeZhou23] Ergodicity and long-time behavior of the Random Batch
Method for interacting particle systems.

Corollary 1 (long-time behavior of the RB-IPS)

Under Assumptions 1 and 2, there exist constants L., C, B independent
of N, T, p such that if the constant L; < L.y, then

Wi (Law(Yar), 7) < C, /72 + ﬁ +Ce P Yn>o.

Here, the first part corresponds to the strong error of the (RB-IPS) in a
finite time period, and the second part corresponds to the uniform
ergodicity of the (RB-IPS).



2 Main Results

[YeZhou23] Error analysis of time-discrete Random Batch Method for
interacting particle systems and associated mean-field limits.

Theorem 2 (long-time behavior of the discrete RB-IPS)

Under Assumptions 1 and 2, there exist constants Lmayx, Tmax, C, A
independent of N, 7, p such that if the constants L1 < L.y, T < Tmax, then

Wi(Law(Y,),7) < C/T + Ce ", V¥n > 0.

Here, Y, € RN is the state of The convergence rate A here can be smaller
than 8 in Theorem 1, but it can be guaranteed that A is also independent
of N, 7, p. Theorem 2 characterizes the long-time sampling error of the
(discrete RB-IPS), which comprises the discretization error in terms of the
time step 7 and the exponential convergence term.



2 Main Results

[YeZhou23] Error analysis of time-discrete Random Batch Method for
interacting particle systems and associated mean-field limits.

Corollary 2 (long-time behavior of the discrete RB-IPS)

Under Assumptions 1 and 2, there exist constants Lmayx, Tmax, C, A
independent of N, 7, p such that if the constants L1 < L.y, T < Tmax, then

C
Wi(pne, ) < CYT + Ce ' + 7N Vn >0,

where 1RB is the empirical distribution of the particles v W,

RB d
,unT_NZ(SX_ EP(R)

This characterizes the sampling accuracy of the invariant distribution 7 for
the (MVP).
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3 Reflection Coupling

The main mathematical tool to prove the uniform-in-N ergodicity of the
(RB-IPS) is the reflection coupling technique introduced in [Eberlel6].

dWS aw)

X e = Z/1Z] Yi
Figure 1: A schematic show of the reflection coupling method.

With the reflection coupling of the Wiener processes of two duplicates of
RB-IPS, one can prove the uniform ergodicity in the WW;-distance.



3 Reflection Coupling 15

For completeness, we explicitly write the coupling scheme for the IPS (1.1). The
coupled dynamics {(X;,Y;)} >0 in RV4 x RV is given by

i i 1 i j
dX} = b(XP)dt + — Z K(X! — X])dt
J#i
n a(rc(zg')dwg' + sc(Z;')dVT/g),
o . o (2.43)
A =V (V) + g B K (Y = YY)t
J#i
+ o (xe(Z)(I - 26i(el)D)AW; + sc(Z))dW5),

for i =1,---,N. Theorem 2.1 then immediately implies

[JinLiYeZhou23] The coupled dynamics for the (RB-IPS).



3 Triangle Inequality Framework

The study of the long-time behavior of the (discrete RB-IPS) employs the
triangle inequality framework described below.

Lemma (triangle inequality)

Let {X;}r>0, {X:} =0 be stochastic processes in R? with transition probabilities
(pt)>0, (Pt)es0. Given the metric d(-,-) on P(R?), assume (p:):>0 has an
invariant distribution m € P(RY) and there exist constants C, 8 > 0 such that

d(vp, ) < Ce P'd(v,7), v e PRY;
and for any T > 0, there exists a constant £(T) such that

sup d(vpr,vp:) <e(T), Vv e P(RY).

0<t<T
Then there exist constants Ty, A > 0 such that
d(vpe, ) < 2e(To) + 2Mpe™ ™, Vit >0,

where Mo := sup,¢o, 1,; d(vPs, ).
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4 Preconditioned Langevin dynamics 18

[YeZhou21] Preconditioned Langevin dynamics: sampling thermal
equilibrium of high dimensional quantum systems.
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Figure 3: Error of the (RB-IPS) converges to 0 as the time step decreases.
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