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1. 设fpxq在ra, bs上Df3pxq, 且fpaq “ f 1paq “ fpbq “ f 1pbq “ 0.

证明: Dξ P pa, bq s.t. f3pξq “ 0.

2. 设fpxq ě 0; f3pxqD, x P pa, bq, 且Dx1, x2 P pa, bq s.t. fpx1q “ fpx2q “ 0.
证明: Dξ P pa, bq, s.t. f3pξq “ 0.

3. 设 fpxq, f 1pxq P Dra, bs, fpaq “ fpbq “ 0, 且Dc P pa, bq s.t. fpcq ą 0.
证明: Dξ P pa, bq, s.t. f2pξq ă 0.

4. 设 fpxq ą 0, x P ra, bs, f 2pxqD, 且f 1paq “ f 1pbq “ 0.
证明: Dξ P pa, bq s.t. fpξqf2pξq ´ 2rf 1pξqs2 “ 0.

5. 设fpxq P Dr1, 2s. 证明: Dξ P p1, 2q s.t. fp2q ´ fp1q “ ξ2

2 f 1pξq.

6. 证明: 对任意的两个实数x1, x2, 有| arctan x1 ´ arctan x2| ď |x1 ´ x2|.

7. 设函数fpxq在区间ra, bs p0 ă a ă bq上连续,在pa, bq内可导. 求证:存在ξ1, ξ2, ξ3 P pa, bq,
使得f 1pξ1q “ pb ` aqf 1pξ2q

2ξ2
“ pb2 ` ab ` a2qf 1pξ3q

3ξ2
3

.

8. 证明:设x ě 0, 则
(1)

?
x ` 1 ´ ?

x “ 1
2
a

x ` θpxq , 其中1
4 ď θpxq ď 1

2;

(2) lim
xÑ0`

θpxq “ 1
4 , lim

xÑ`8θpxq “ 1
2 .

9. 课本习题七，第17题.
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1. 设fpxq P Dp0, `8q且fp0`q “ fp`8q “ 0, 证明: Dξ P p0, `8q s.t. f 1pξq “ 0.

2. 求证:Chebyshëv-Laguerre Lnpxq “ ex dn

dxn
pxne´xq 有n 个不同的零点.

3. 设函数fpxq在pa, `8q上有直到n阶导数,
且有 lim

xÑ`8fpxq “ A, lim
xÑ`8f pnqpxq “ B. 求证B “ 0.

4. 求极限: lim
xÑ1

ln cospx ´ 1q
1 ´ sin πx

2
.

5. 求极限: lim
xÑ1

´ 1
ln x

´ 1
x ´ 1

¯
.

6. 求极限: lim
xÑ0

p1 ` xq 1
x ´ e

x
.

7. 求极限: lim
xÑ`8

´π

2 ´ arctan x
¯ 1

ln x .

8. 由拉格朗日中值定理, 有arcsin x “ x?
1 ´ θ2x2 p0 ă θ ă 1q.

求证lim
xÑ0

θ “ 1?
3

.

9. 设fpxq在pa, `8q上可导, 且 lim
xÑ`8rfpxq ` f 1pxqs “ k (k 有限或˘8.

求证: lim
xÑ`8fpxq “ k.

10. 设fpxq在p´8, `8q连续可微,且e´x2
f 1pxq在p´8, `8q有界. 证明: xe´x2

fpxq在p´8, `8q有
界.
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1. 设 f(x)在 R有连续的 n阶导函数. 若 f(x), f (n)(x)在 R上有界,证明: f (1)(x), · · · , f (n−1)(x)

在 R 上有界 (提示: 将 f(1), · · · , f(n− 1) 在 x = 0 处 Taylor 展开).

证明 我们来证明下面的引理:

引理 若 |f(x)|, |f (n)(x)| ⩽ M 时, 则存在常数 C 使得

|f (k)(0)| ⩽ C, k = 1, · · · , n− 1

注意到, 当 x0 ̸= 0 时, 可以用 g(x) = f(x− x0) 代替 f(x0) 进行讨论, 因此从引理可得到

推论 若 |f(x)|, |f (n)(x)| ⩽ M 时, 则存在常数 C 使得

|f (k)(x)| ⩽ C, k = 1, · · · , n− 1, ∀x ∈ R

因此原命题成立. 下面只需证明引理成立.

定义 ak =
f (k)(0)

k!
, k = 0, 1, · · · , n− 1. 由 Taylor 展开公式, 当 x > 0 时, 存在 ξx ∈ (0, x) 使得

f(x) =
n−1∑
k=0

akx
k +

f (n)(ξx)

n!
xn (1)

特别的, 取 x = 1, · · · , n− 1, 有

f(j) =
n−1∑
k=0

akj
k +

f (n)(ξj)

n!
jn, ξj ∈ (0, j) (2)

令 J ∈ R(n−1)×(n−1),a ∈ Rn−1, b ∈ Rn−1 满足

Jjk = jk, j, k = 1, · · · , n− 1

ak = ak, k = 1, · · · , n− 1

1



bj = f(j)− f (n)(ξj)

n!
jn, j = 1, · · · , n− 1

则 (2) 可以改写为 (n− 1) 阶线性方程组

Ja = b (3)

注意 detJ 是范德蒙行列式, 因此 J 是可逆矩阵, 从而

a = (J)−1b

由于 b 中的每个元素有界, 故 a 作为 b 的线性组合是有界的. 因此 ak =
f (k)(0)

k!
是有界的.

2. 设 f(x) 在 R 上有界, 且 f ′(x) 在 R 上一致连续. 证明: f ′(x) 在 R 上有界.

证明 由一致连续, 知存在 δ > 0 使得

|x− y| ⩽ δ =⇒ |f ′(x)− f ′(y)| ⩽ 1

若 f ′(x) 无界, 不妨设序列 {xn}∞n=1 使得

|f ′(xn)| > n, lim
n→∞

An = +∞

故 x ∈ [xn, xn + δ] 时, |f ′(xn)| ⩾ n− 1, 由 Lagrange 中值定理, 存在 ξn ∈ (xn, xn + δ) 使得

|f(xn + δ)− f(xn)| = |f ′(ξn)| ⩾ n− 1

但 |f(x)| ⩽ M 有界, 故 n− 1 ⩽ 2M , 令 n → ∞ 即矛盾.

3. 设 f(x) 在 R 有连续的 n 阶导函数. 证明: 对任意 x ∈ R 和 h > 0, 存在 ξ ∈ (x, x+ nh) 使得

n∑
k=0

(−1)k
(
n

k

)
f(x+ (n− k)h) = hnf (n)(ξ)

证明 对 n 使用数学归纳法证明上述命题. 当 n = 1 时, 上式即为 Lagrange 中值定理. 设命题
对 n 成立, 考虑 n+ 1 的情形. 定义

Fn(x) =
n∑

k=0

(−1)k
(
n

k

)
f(x+ (n− k)h)

则我们证明:
Fn+1(x) = Fn(x+ h)− Fn(x)

2



这是因为, 若补充定义
(

n
n+1

)
= 0 和

(
n
−1

)
= 0, 则

Fn(x+ h)− Fn(x)

=
n∑

k=0

(−1)k
(
n

k

)
f(x+ (n− k + 1)h)−

n∑
k=0

(−1)k
(
n

k

)
f(x+ (n− k)h)

=
n∑

k=0

(−1)k
(
n

k

)
f(x+ (n− k + 1)h) +

n+1∑
k=1

(−1)k
(

n

k − 1

)
f(x+ (n− k + 1)h)

=
n+1∑
k=0

(−1)k
(
n

k

)
f(x+ (n− k + 1)h) +

n+1∑
k=0

(−1)k
(

n

k − 1

)
f(x+ (n− k + 1)h)

=
n+1∑
k=0

(−1)k
((

n

k

)
+

(
n

k − 1

))
f(x+ (n− k + 1)h)

=
n+1∑
k=0

(−1)k
(
n+ 1

k

)
f(x+ (n− k + 1)h) = Fn+1(x)

因此, 由 Lagrange 中值定理, 存在 η ∈ (x, x+ h), 使得

Fn+1(x) = hF ′
n(η) = h

n∑
k=0

(−1)k
(
n

k

)
f ′(η + (n− k)h)

对 f ′(x) 使用归纳假设, 存在 ξ ∈ (η, η + nh) ⊂ (x, x+ (n+ 1)h), 使得
n∑

k=0

(−1)k
(
n

k

)
f ′(η + (n− k)h) = hnf (n+1)(ξ)

故

Fn+1(x) = hn+1f (n+1)(ξ)

即命题在 n+ 1 时成立.

4. 设 f(x), g(x) 在 x = 0 附近有直到 n 阶的 Taylor 展式

f(x) =
n∑

k=0

akx
k + o(xk), g(x) =

n∑
k=0

bkx
k + o(xk)

且 b0 ̸= 0. 证明: h(x) = f(x)/g(x) 在 x = 0 处有 n 阶 Taylor 展式

h(x) =

n∑
k=0

ckx
k + o(xk)

且

ck =
1

b0

(
ak −

k−1∑
j=0

cjbk−j

)
, k = 0, 1, · · · , n

3



由此计算 tanx 的 8 阶 Taylor 展式.

证明 容易验证, 由上述表达式给出的 {ck}nk=0 满足( n∑
k=0

ckx
k + o(xn)

)( n∑
k=0

bkx
k + o(xn)

)
=

n∑
k=0

akx
k + o(xn)

定义多项式

c(x) =
n∑

k=0

ckx
k

则上述表达式给出 c(x)g(x) = f(x) + o(xn), 从而

c(x) = h(x) + o
( xn

g(x)

)
注意 lim

x→0
g(x) = b0 ̸= 0, 故

h(x) = c(x) + o(xn)

命题得证.
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