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1 Non-convex Learning via Replica Exchange Stochastic Gra-
dient MCMC

The Stochastic Gradient Langevin Dyanmics (SGLD) is a popular technique in large-scale
optimization and sampling, while Replica Exchange is a classical melocular dynamics tool
to explore the nonconvex and multimodal potential. However, the combination of these two
approaches are not trivial, because it is of difficult to keep the reversibility (guaranteed by
detailed balance) in the stochastic gradient setting. In the paper [1], the authors propose
a viable strategy to blend these two techniques by adaptively estimating the variance of
the random potential at each iteration.

Replica exchange dynamics

The Langevin dynamics to sample the Boltzmann distribution is defined by
ag") = —vu () + varaw,,

where U(-) is the potential function, 71 > 0 is the temperature, and Wt(l) is the Brownian
motion. When the target distribution is multimodal, the Langevin dynamics can trap
at the local minima. To resolve this issue, consider a higher temperature and define the
coupled Langevin dynamics

g = —vU(B") + varaw,",
g = —vU(B?) + Varaw?,

where Wt(z) is an independent Brownia motion. The invariant distribution is clearly
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whose marginal in 3(1) is exactly the target distribution.



The principle of Replica Exchange is switching the states f(1), 82) to accelarate the
convergence in BN, To maintain the invariant distribution, the swapping rate can be

chosen as
SO(/B(I) 5(2)) = e(%ié)(U(ﬂ(l))fU(ﬁ(Q))).

In this way, Replica Exchange dynamics is a Markov jump process.

Naive stochastic gradient setting

For the potential U(/3), suppose (7(6) is the mini-batch approxmation of U(3). On the
one hand, the time-average effect ensures the Langevin dynamics captures the full gradient
VU (). On the other hand, one has to accurately estimate the swapping rate So(8(1), 52)).
Since we only have the mini-batch approximation U(8™M) and U(5?), a natural choice of
the swapping rate is
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So(B, B2 = (Fr = OE-0(5®))

However this choice causes large bias since U(/3) has its own variance.

Variance reduced stochastic gradient setting

We make the following assumption on the mini-batch approximation potential:
U(B) ~ N(U(B). 0%,

where o2 is the variance of the approximation. Next, for independent mini-batch samples
at the states 8 and 8, we have

U@") - 0(8%) =U(s") - U(8®) + vaog,
where £ ~ N(0,1) is the standard normal random variable. Then we construct the swap-
ping rate
58, ) = (F % (@E)-0(@))—(L-L)0?)

_ JE (WD) -UE@) (L L)+ vaoe)
By taking the expectation with respect to &, we conclude that S (5(1), B(Q)) is an unbiased
approximation to So(ﬁ(l),ﬁ(z)).

Algorithm design

In practical computation, one can estimate the variance by the variance of the minibatch
approximation, and adaptively update the variance in the simulation, because the variance

o? can depends on the state 3. Then we can use
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where F' > 1 is a constant to reduce the variance.

2 Constrained exploration via Reflected Replica Exchange
Stochastic Gradient Langevin Dynamics

The paper [2] considers the large-scale constrained sampling in a bounded region Q C R,

The original Replica Exchange Stochastic Gradient Langevin Dynamics is then added a

reflection part to address the sampling problem. The exponential convergence and the
error analysis of this approach are obtained.

Motivation

The need for constrained sampling here is not from molecular dynamics, but from the
over-exploration effect in machine learning. To force the sampling explores the reasonable
region, the constrained sampling can be emlpoyed. The paper says the following:

Specifically, over-exploration can result in either exploding or oscillating losses
in deep learning training. This phenomenon can deteriorate the model’s stabil-
ity and optimization performance, and lead to poor predictions. ... To address
this, constrained sampling techniques in MCMC play a pivotal role for differ-
ent purposes in various forms, such as sampling on explicitly defined manifolds,
implicitly defined manifolds, and sampling with moment constraints.

Reflected Replica Exchange Langevin dynamics

In the following, let © C R? be a compact region and 9 be its boundary. Let the
temperature 71 < 72, and the target distribution is

1 _U(=1)_ Ulzg)
m(x1,29) = —e T 2 dridzs,
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where Z is the normalization constant given by
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To sample 7(x1,z2), the Replica Exchange dynamics is defined as
3 = —vu(B)dt + veraw ) + v(8) LD (1),
3 = —vU (Bt + vInaw® + v(s?)L? (ap),

where (), 83 represent the states corresponding the temperatures 71, 7o, Wt(l), Wt(Q) are
independent Brownian motions. The function v(f) is defined in the boundary 9f2, and



represents the inner unit normal vector on 9Q. L) and L® denote local times with
reference to 0f2.
The infinitesimal generator of the dynamics is given by

‘Cf = —<Vx1f($1, 1‘2), VU(1‘1)> + TlAmf(leﬂ :L‘?)
— (Vay f(21,22), VU (22)) + T2z, f (21, T2) + 7S (21, 22) - (f(22, 1) — f(1, 22)),

and the time evolution of f(z1,z2) obeys the Neumann boundary condition
Vo f(x1,22) - v(z1) =0, Vg, f(z1,22) - v(22) = 0.

The Dirichlet forms of the dynamics is defined as
&) = [ (Ao I + 7 Vo )dn(ar, )
Es(f) = (1) + 5 [ Slarvma) - (floan) = f(or,00)) dn(an za),
and it can be seen that
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Algorithm design in the stochastic gradient setting

As indicated in the previous paper, there is a variance correction term in the swapping rate.
Let U(B) be the mini-batch approximation to U(f3), then the swapping rate is computed
as
~ ~ 2
580, g2y = (- OOV -TEO)-(E-1)%)
where o2 is the estimated variance of the approximation U(B) Finally, r2SGLD is defined
as in Algorithm 1.

Convergence analysis

We focus on the exponential convergence of the Reflected Replica Exchange Langevin
Dynamics without stochastic gradient. Let u; be distribution law of the dynamics, then

Wi (e, ) < /2CLsD(po| ) exp ( — ¢(1 + 05)Crg ).

where D(-||-) is the KL divergence, Crg is the log-Sobolev constant corresponding to the
Dirichlet form £(f), and
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is the accelaration effect. The explicit expression of dg seems unknown.

Proof. The proof is a direct application of the functional inequalities. We have
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On the other hand, the log-Sobolev inequality implies

dpu 1 dp
<
D(pe]|m) < C'Lsg(\/ d7r> < Crs(l+6g)” 55( dn)’

hence we obtain the exponential convergence decay of the KL divergence:

d

g Pellm) < —2075 (1 + 65)D(pe ),

and
D(pel|m) < D(pol|m) exp{—2C;g-1(1 + dg)t}, Vt > 0.

This error analysis framework is similar to Birth-Death Dynamics [3] by Yulong Lu and
Jianfeng Lu. It is interesting that Birth-Death Dynamics also aims to sample to non-convex

potentials efficiently.
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