

Statistical Error of Numerical Integrators for Underdamped Langevin Dynamics with Deterministic And Stochastic Gradients

Xuda Ye

joint work with Zhennan Zhou
arXiv:2405.06871

Peking University

August 8, 2024

Sampling in Statistical Mechanics

- Consider the classical Hamiltonian system

$$H(x, v) = \frac{|v|^2}{2} + U(x), \quad x, v \in \mathbb{R}^d,$$

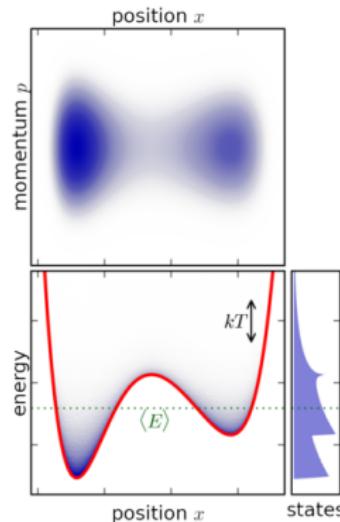
where $U(x)$ is the potential function in \mathbb{R}^d .

- The **thermal equilibrium** at the temperature $T = 1$ is described by the **Boltzmann distribution**

$$\pi(x, v) = \frac{1}{Z} e^{-\frac{|v|^2}{2} - U(x)}, \quad Z = \int e^{-\frac{|v|^2}{2} - U(x)} dx dv,$$

where Z is the partition function.

Sampling in Statistical Mechanics



(Wikipedia: Canonical ensemble)

The figure shows the density of $\pi(x, v)$ for a double-well potential.

Sampling in Statistical Mechanics

- In computational physics, an important task is to compute the **statistical average** of a given test function $f(x, v)$:

$$\langle f \rangle := \int f(x, v) \pi(x, v) dx dv = \frac{1}{Z} \int f(x, v) e^{-\frac{|v|^2}{2} - U(x)} dx dv.$$

- Numerical methods for **sampling the Boltzmann distribution** $\pi(x, v)$ are the core strategy to compute $\langle f \rangle$.
- Suppose the numerical method produces the sample points $(X_n, V_n)_{n \geq 0}$, then $\langle f \rangle$ can be computed from

$$\langle f \rangle \approx \frac{1}{N} \sum_{n=0}^{N-1} f(X_n, V_n).$$

Underdamped Langevin Dynamics

- The underdamped Langevin dynamics for sampling $\pi(x, v)$ is

$$\begin{cases} \dot{x}_t = v_t, \\ \dot{v}_t = -\nabla U(x_t) - \gamma v_t + \sqrt{2\gamma} \dot{B}_t, \end{cases}$$

where x_t and v_t are **position** and **velocity** coordinates in \mathbb{R}^d , $\gamma > 0$ is the damping rate, and $(B_t)_{t \geq 0}$ is the Brownian motion in \mathbb{R}^d .

- The corresponding Fokker–Planck equation is

$$\frac{\partial \rho}{\partial t} + v \cdot \nabla_x \rho - \nabla U \cdot \nabla_v \rho = \gamma \nabla_v \cdot (v \rho + \nabla_v \rho).$$

- The ergodic theory indicates

$$\langle f \rangle = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^T f(x_t, v_t) dt, \quad \text{a.s.},$$

which means the calculation of $\langle f \rangle$ is exact as long as $T \rightarrow \infty$.

Statistical Average & Time Average

- The dynamics needs to be discretized by a **numerical integrator** to produce the numerical solution $(X_n, V_n)_{n \geq 0}$.
- For a numerical integrator with time step h , $\langle f \rangle$ is approximated by the time average

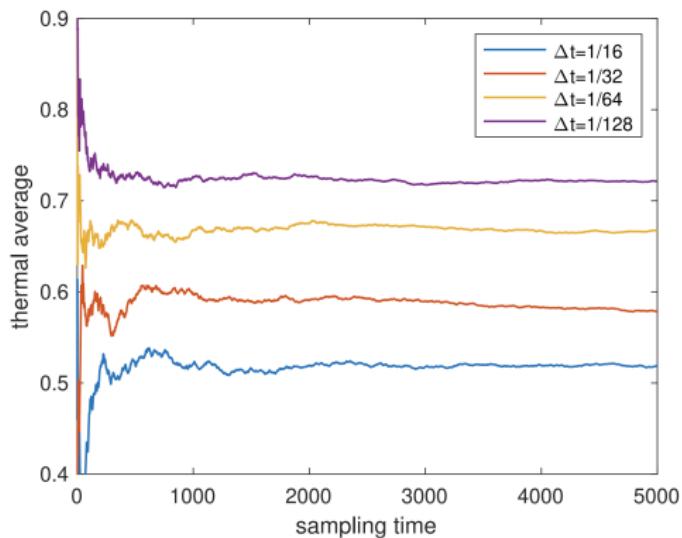
$$\langle f \rangle \approx \langle f \rangle_{N,h} := \frac{1}{N} \sum_{n=0}^{N-1} f(X_n, V_n),$$

- The accuracy of the numerical solution is characterized by

$$e_{N,h} := \langle f \rangle_{N,h} - \langle f \rangle,$$

which **depends on $(X_n, V_n)_{n \geq 0}$** and is a random variable!

Error Estimate: Statistical Error



(-, Z. Zhou, J. Chem. Phys., 2021)

Time average of the numerical solution with different time steps. The model problem is the path integral molecular dynamics for interacting particle system.

Error Estimate: Statistical Error

- The goal of the **error estimate** is to quantify the sample qualities of the numerical solution $(X_n, V_n)_{n \geq 0}$.
- A common form of the long-time error estimate is

$$\mathcal{W}_p(\nu_n, \pi) \leq C_1 e^{-\lambda nh} + C_2 h^\alpha, \quad \forall n \geq 0,$$

where ν_n is the distribution law of (X_n, V_n) and $\mathcal{W}_p(\cdot, \cdot)$ is the Wasserstein distance with $p = 1, 2$.

- In terms of the **time average**, the result above implies

$$|\mathbb{E}[\langle f \rangle_{N,h} - \langle f \rangle]| \leq \frac{2C_1}{\lambda Nh} + C_2 h^\alpha, \quad \forall N \geq 0,$$

which characterizes the **bias** of the time average estimator.

Error Estimate: Statistical Error

- Compared to the **bias** $\mathbb{E}[\langle f \rangle_{N,h} - \langle f \rangle]$, the **statistical error**

$$\text{SE}_{N,h} := \mathbb{E}[(\langle f \rangle_{N,h} - \langle f \rangle)^2]$$

can capture the **random fluctuation** of the numerical solution.

- How to quantify the statistical error of a given numerical integrator?

Error Estimate: Statistical Error

Our main results on the estimate of the statistical error:

Theorem 1. (convex outside a ball)

Suppose the **numerical integrator** has strong order p . If $U(x)$ is **strongly convex outside a ball**, then there exists a $\gamma_0 > 0$ such that when $\gamma \geq \gamma_0$,

$$\text{SE}_{N,h} = \mathcal{O}\left(h^{2p-1} + \frac{1}{Nh}\right).$$

Theorem 2. (globally convex)

Suppose the **numerical integrator** has strong order p . If $U(x)$ is **globally convex in \mathbb{R}^d** , then there exists a $\gamma_0 > 0$ such that when $\gamma \geq \gamma_0$,

$$\text{SE}_{N,h} = \mathcal{O}\left(h^{2p} + \frac{1}{Nh}\right).$$

Stochastic Gradient Sampling in Data Science

- In data science, the potential $U(x)$ is computed from a **large data set**, and using the **stochastic gradient** reduces the sampling cost.
- Suppose the stochastic gradient is $b(x, \omega)$ with

$$\mathbb{E}^\omega[b(x, \omega)] = \nabla U(x).$$

A numerical integrator with an i.i.d. sequence $(\omega_n)_{n \geq 0}$ produces the numerical solution $(X_n, V_n)_{n \geq 0}$.

Stochastic Gradient Sampling in Data Science

We introduce two specific examples of the stochastic gradients.

- **Large data set.** If the potential $U(x)$ is formed as

$$U(x) = \frac{1}{J} \sum_{j=1}^J U_j(x),$$

then $b(x, \omega)$ can be chosen as

$$b(x, \omega) = \frac{1}{p} \sum_{j \in \mathcal{C}(\omega)} \nabla U_j(x),$$

where $\mathcal{C}(\omega) \subset \{1, \dots, J\}$ is the subset of indices.

Stochastic Gradient Sampling in Data Science

We introduce two specific examples of the stochastic gradients.

- Large particle number. If the potential $U(x)$ is formed as

$$U(x) = \sum_{i=1}^M V_o(x^i) + \frac{1}{M-1} \sum_{1 \leq i < j \leq M} V_i(x^i - x^j), \quad x_1, \dots, x_M \in \mathbb{R}^d,$$

then $b(x, \omega) = (b^i(x, \omega))_{i=1}^M$ can be chosen as

$$b^i(x, \omega) = \nabla V_o(x^i) + \frac{1}{p-1} \sum_{j \in \mathcal{C}_{\mathcal{B}(i)}} \nabla V(x^i - x^j), \quad i = 1, \dots, M.$$

- Here, the index set $\{1, \dots, M\}$ is randomly divided into small batches $\{\mathcal{C}_1, \dots, \mathcal{C}_q\}$ with the batch size $p = M/q$. For each $i = 1, \dots, M$, $\mathcal{B}(i)$ is the index of batch which contains i .
- The method above is referred to as the **Random Batch Method**¹.

¹S. Jin, L. Li, and J. Liu. Journal of Computational Physics 400 (2020): 108877.

Error Estimate: Statistical Error

Our error estimates also apply to the stochastic gradient case.

Theorem 3. (globally convex + stochastic gradient)

Suppose the **stochastic gradient numerical integrator** has strong order p . If $U(x)$ is **globally convex**, then there exists a $\gamma_0 > 0$ such that when $\gamma \geq \gamma_0$,

$$\text{SE}_{N,h} = \mathcal{O}\left(h^{\min\{2p,2\}} + \frac{1}{Nh}\right).$$

Comparison with Related Works: Global Contractivity

- The **global contractivity** of the numerical integrator means that

$$d(\mu_{n+1}, \nu_{n+1}) \leq e^{-\lambda h} d(\mu_n, \nu_n)$$

for any distributions μ_n, ν_n in $\mathbb{R}^d \times \mathbb{R}^d$, where $d(\cdot, \cdot)$ is a distance for distributions in $\mathbb{R}^d \times \mathbb{R}^d$.

- The global contractivity is proved by a specially **coupling scheme**, and requires strong restriction on the time step h . Our results merely rely on the **uniform-in-time** moments.

Comparison with Related Works: Global Contractivity

The statistical error for full gradient numerical integrators.

integrator	order	statistical error	global convexity	explicit
gHMC ²³	2	$\mathcal{O}(h^4 + \frac{1}{Nh})$	Not required	Yes
UBU ⁴	2	$\mathcal{O}(h^4 + \frac{1}{Nh})$	Not required	Yes
general	p	$\mathcal{O}(h^{2p-1} + \frac{1}{Nh})$	Not required	No
general	p	$\mathcal{O}(h^{2p} + \frac{1}{Nh})$	Required	No

Table 1: Comparison of our results for the full gradient integrators and those proved by the global contractivity.

²N. Bou-Rabee and K. Schuh. Electronic Journal of Probability 28 (2023): 1-40.

³X. Cheng, et al. arXiv:1805.01648 (2018).

⁴K. Schuh, and P. Whalley. arXiv:2405.09992 (2024).

Comparison with Related Works: Global Contractivity

The statistical error for stochastic gradient numerical integrators.

integrator	order	statistical error	global convexity	explicit
SG-gHMC ⁵⁶	2	$\mathcal{O}(h + \frac{1}{Nh})$	Not required	Yes
SG-general	p	$\mathcal{O}(h^{\min\{2p,2\}} + \frac{1}{Nh})$	Required	No

Table 2: Comparison of our results for the stochastic gradient integrators and those proved by the global contractivity.

Our results showcase better order in the time step h .

⁵N. Gouraud, et al. arXiv preprint arXiv:2202.00977 (2022).

⁶M. Chak, and P. Monmarché. arXiv preprint arXiv:2310.18774 (2023).

Comparison with Related Works: Poisson equation

- The Poisson equation for the test function $f(x, v)$ is

$$-(\mathcal{L}\phi)(x, v) = f(x, v) - \langle f \rangle, \quad x, v \in \mathbb{R}^d,$$

where \mathcal{L} is the generator of the Langevin dynamics:

$$\mathcal{L} = v \cdot \nabla_x - (\nabla U(x) + \gamma v) \cdot \nabla_v + \gamma \Delta_v.$$

- The Itô's calculus implies

$$d\phi(x_t, v_t) = (\mathcal{L}\phi)(x_t, v_t)dt + \sqrt{2}\nabla_v\phi(x, v) \cdot dB_t,$$

hence

$$\begin{aligned} & \frac{1}{T} \int_0^T f(x_t, v_t)dt - \pi(f) \\ &= \frac{\phi(x_0, v_0) - \phi(x_T, v_T)}{T} + \underbrace{\frac{1}{T} \int_0^T \sqrt{2}\nabla_v\phi(x_t, v_t) \cdot dB_t}_{\text{mean-zero}}. \end{aligned}$$

Comparison with Related Works: Poisson equation

- The Poisson equation approach relies on the **regularity** of $\phi(x, v)$, because of the need for the high-order approximation of

$$\phi(X_{n+1}, V_{n+1}) - \phi(X_n, V_n).$$

- However, the proof of regularity can be extremely difficult for the underdamped Langevin dynamics because \mathcal{L} is **hypoelliptic**.

Proof Strategy: Discrete Poisson Equation

- We employ the **discrete Poisson equation** to study the statistical errors. For given test function $f(x, v)$, define the function

$$u(x, v, t) = (e^{t\mathcal{L}}f)(x, v) - \langle f \rangle = \mathbb{E}^{x, v}[f(x_t, v_t)] - \langle f \rangle,$$

where $\mathbb{E}^{x, v}$ indicates that the solution (x_t, v_t) starts with (x, v) .

- The Poisson solution $\phi(x, v)$ can be interpreted as

$$\phi(x, v) = \int_0^\infty u(x, v, t) dt.$$

- Given the time step $h > 0$, define the function

$$\phi_h(x, v) = h \sum_{n=0}^{\infty} u(x, v, nh),$$

then $\phi_h(x, v)$ satisfies the **discrete Poisson equation**:

$$\frac{1 - e^{h\mathcal{L}}}{h} \phi_h(x, v) = f(x, v) - \langle f \rangle.$$

Proof Strategy: Discrete Poisson Equation

- The **discrete Poisson solution** $\phi_h(x, v)$ provides a natural expression of the **time average**.
- Let $Z_n = (X_n, V_n)$. Write the difference term $\phi(Z_{n+1}) - \phi(Z_n)$ as

$$\phi_h(Z_{n+1}) - \phi_h(Z_n(h)) + \phi_h(Z_n(h)) - \phi_h(Z_n),$$

where $Z_n(h)$ is the exact solution in time h with initial state Z_n .

- Define the random variables S_n and T_n by

$$S_n = \frac{\phi_h(Z_{n+1}) - \phi_h(Z_n(h))}{h}, \quad (\text{local error})$$

$$T_n = \frac{\phi_h(Z_n(h)) - \phi_h(Z_n)}{h} + f(Z_n) - \langle f \rangle, \quad (\text{mean-zero})$$

- The time average $\langle f \rangle_{N,h}$ can be expressed as

$$\langle f \rangle_{N,h} - \langle f \rangle = \frac{\phi_h(Z_0) - \phi_h(Z_N)}{Nh} + \frac{1}{N} \sum_{n=0}^{N-1} (S_n + T_n).$$

Proof Strategy: Discrete Poisson Equation

- The random variable T_n is mean-zero because

$$\mathbb{E}[T_n | Z_n] = \mathbb{E}\left[\frac{(e^{h\mathcal{L}}\phi_h)(Z_n) - \phi_h(Z_n)}{h}\right] + f(Z_n) - \langle f \rangle.$$

Furthermore, $\{T_n\}_{n=1}^N$ are mutually independent:

$$\mathbb{E}[T_n T_m] = 0 \text{ for } 0 \leq n < m \leq N - 1.$$

- The statistical error $\text{SE}_{N,h} = \mathbb{E}[(\langle f \rangle_{N,h} - \langle f \rangle)^2]$ has the estimate

$$\text{SE}_{N,h} \lesssim \frac{\mathbb{E}[(\phi_h(Z_0) - \phi_h(Z_n))^2]}{N^2 h^2} + \frac{1}{N^2} \underbrace{\mathbb{E}\left[\left(\sum_{n=0}^{N-1} S_n\right)^2\right]}_{\text{core task}} + \frac{1}{N^2} \sum_{n=0}^{N-1} \mathbb{E}[T_n^2]$$

Proof Strategy: Discrete Poisson Equation

- If $U(x)$ is strongly convex outside a ball, then

$$|\nabla \phi_h(x, v)| \lesssim 1 \implies \mathbb{E} \left[\left(\sum_{n=0}^{N-1} S_n \right)^2 \right] \lesssim N^2 h^{2p-1} \mathbb{E}(|Z_0| + 1)^{2q}.$$

And we obtain Theorem 1: $\boxed{\text{SE}_{N,h} \lesssim h^{2p-1} + \frac{1}{Nh}}.$

- If $U(x)$ is globally convex outside a ball, then

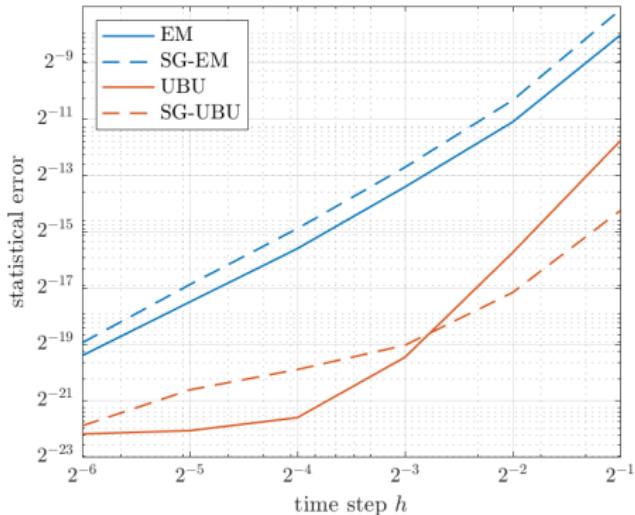
$$|\nabla \phi_h(x, v)|, |\nabla^2 \phi_h(x, v)| \lesssim 1 \implies$$

$$\mathbb{E} \left[\left(\sum_{n=0}^{N-1} S_n \right)^2 \right] \lesssim (N^2 h^{2p} + N h^{2p-1}) \mathbb{E}(|Z_0| + 1)^{4q}.$$

And we obtain Theorem 2: $\boxed{\text{SE}_{N,h} \lesssim h^{2p} + \frac{1}{Nh}}.$

Numerical Verification

We plot the statistical error of Euler–Maruyama (EM) and UBU integrators and their stochastic gradient versions.



The statistical error of UBU is $\mathcal{O}(h^4 + \frac{1}{Nh})$, while the others are $\mathcal{O}(h^2 + \frac{1}{Nh})$.

Summary

Advantages of our results:

- Applicable to a broad class of numerical integrators.
- Require no explicit restriction on the **time step h** except for the **uniform-in-time moments** condition.

Drawbacks of our results:

- The constants are not explicit in the **dimension d** or the **batch size p** (stochastic gradient case).
- Requires the potential function $U(x)$ to be **globally convex** (essentially difficult!)

Future works:

- Make the constants explicit on d and p .
- Statistical error of Stochastic Variance Reduced Gradient (SVRG) type integrators.