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Sampling in Statistical Mechanics

¢ Consider the classical Hamiltonian system

vP?

5 U(x), x,veR?

H(x,v) =

where U(x) is the potential function in R%.

¢ The thermal equilibrium at the temperature T = 1 is descried by
the Boltzmann distribution

w(x,v) = %e*#*Um, Z= /e*#*U(X)dxdv,

where Z is the partition function.
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Sampling in Statistical Mechanics

position

momentum p

energy

position x states

(Wikipedia: Canonical ensemble)

The figure shows the density of 7(x,v) for a double-well potential.
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Sampling in Statistical Mechanics

¢ In computational physics, an important task is to compute the
statistical average of a given test function f(x,v):

v|2

{f) = /f(x,v)w(x,v)dxdv = %/f(x,v)e_ 2~V dydy.

e Numerical methods for sampling the Boltzmann distribution
m(x,v) are the core strategy to compute (f).

e Suppose the numerical method produces the sample points
(Xn, Va)n>o, then (f) can be computed from

1 N1
(f) ~ N Zof(xna V).
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Underdamped Langevin Dynamics

® The underdamped Langevin dynamics for sampling 7 (x,v) is

Xt = Vg,
= —VU(x¢) — e + /2 Bt,

where x; and v; are position and velocity coordinates in R%, v > 0
is the damping rate, and (B¢)¢>0 is the Brownian motion in R,

¢ The corresponding Fokker—Planck equation is

op
It +v:Vip—=VU-Vyp =9V, (vp+ Vyp).

¢ The ergodic theory indicates

= lim 7/ fxt,vt a.s.,

T—oo T

which means the calculation of (f) is exact as long as T — oo.
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Statistical Average & Time Average

¢ The dynamics needs to discretized by a numerical integrator to
produce the numerical solution (X;, Vi)n>o0.

e For a numerical integrator with time step h, (f) is approximated
by the time average

1 N-—1
)~ Fvn =y > Fn Vi),
n=0

¢ The accuracy of the numerical solution is characterized by

enn = Fing — (),

which depends on (X;,, Vi)n>0 and is a random variable!
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Error Estimate: Statistical Error
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(-, Z. Zhou, J. Chem. Phys., 2021)

Time average of the numerical solution with different time steps. The
model problem is the path integral molecular dynamics for interacting
particle system.
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Error Estimate: Statistical Error

¢ The goal of the error estimate is to quantify the sample qualities
of the numerical solution (X, Vn)n>o-

¢ A common form of the long-time error estimate is
Wy (v, ) < Cre™ ™ 4+ Coh®, Wn > 0,

where 1, is the distribution law of (X;,,V;,) and Wj(,-) is the
Wasserstein distance with p = 1, 2.

¢ In terms of the time average, the result above implies

26,
(B[ — ()] < S5 + C2h*, YN >0,

which characterizes the bias of the time average estimator.
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Error Estimate: Statistical Error

® Compared to the bias E[(f)y» — (f)], the statistical error

SExn = E[({F)np — (F)?]
can capture the random fluctuation of the numerical solution.

e How to quantify the statistical error of a given numerical
integrator?
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Error Estimate: Statistical Error

Our main results on the estimate of the statistical error:

Theorem 1. (convex outside a ball)

Suppose the numerical integrator has strong order p. If U(x) is
strongly convex outside a ball, then there exists a ¢ > 0 such that
when v = 1,

1
— 2p_1 —_—
SEys = O (h + Nh) :

Theorem 2. (globally convex)

Suppose the numerical integrator has strong order p. If U(x) is
globally convex in RY, then there exists a 7o > 0 such that when
Y = 0>

1
SEy 4 O(h + N—h>.
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Stochastic Gradient Sampling in Data Science

¢ In data science, the potential U(x) is computed from a large data
set, and using the stochastic gradient reduces the sampling cost.

® Suppose the stochastic gradient is b(x, w) with
E“[b(x,w)] = VU(x).

A- numerical integrator with an i.i.d. sequence (wp)n>0 produces
the numerical solution (X, Vn)n>o-
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Stochastic Gradient Sampling in Data Science

We introduce two specific examples of the stochastic gradients.
e Large data set. If the potential U(x) is formed as

j=1
then b(x,w) can be chosen as
1
b(wi) - Z VUvJ(X)a
Picew)
where C(w) C {1,---,J} is the subset of indices.
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Stochastic Gradient Sampling in Data Science

We introduce two specific examples of the stochastic gradients.
e Large particle number. If the potential U(x) is formed as

Ulx) = ZVo(xi) + M—1 Z Vid =),  x1,---,xy € RY,
i=1 1<i<j<M

then b(x,w) = (bi(x, w)){‘il can be chosen as

bi(x,w) = VV,(x ZVVx—xJ i=1,--- M.
JGCB(I)

® Here, the index set {1,--- ,M} is randomly divided into small
batches {Ci, - - - ,Cq} with the batch size p = M/q. For each
i=1,---,M, B(i) is the index of batch which contains i.

e The method above is referred to as the Random Batch Method?.

1S. Jin, L. Li, and J. Liu. Journal of Computational Physics 400 (2020): 108877.

Statistical Error of Numerical Integrators 13 /25

Xuda Ye



Error Estimate: Statistical Error

Our error estimates also apply to the stochastic gradient case.

Theorem 3. (globally convex + stochastic gradient)

Suppose the stochastic gradient numerical integrator has strong order
p- If U(x) is globally convex, then there exists a 7o > 0 such that when
Y 2 Y,

; 1
_ min{2p,2}
SEys = O (h + N—h>.
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Comparison with Related Works: Global Contractivity

¢ The global contractivity of the numerical integrator means that

d(ftnt1, Vnt1) < ei/\hd(,unv Vn)

for any distributions y,, v, in R? x RY, where d(-, -) is a distance
for distributions in R? x RY.

¢ The global contractivity is proved by a specially coupling scheme,
and requires strong restriction on the time step h. Our results
merely rely on the uniform-in-time moments.

Xuda Ye Statistical Error of Numerical Integrators 15/ 25



Comparison with Related Works: Global Contractivity

The statistical error for full gradient numerical integrators.

integrator order statistical error global convexity explicit

gHMC?3 2 O(h* + &) Not required Yes

UBU* 2 O(h* + &) Not required Yes
general p O(h?~! + &) Not required No
general p O(h* + ) Required No

Table 1: Comparison of our results for the full gradient integrators and those
proved by the global contractivity.

2N. Bou-Rabee and K. Schuh. Electronic Journal of Probability 28 (2023): 1-40.
3X. Cheng, et al. arXiv:1805.01648 (2018).
4K. Schuh, and P. Whalley. arXiv:2405.09992 (2024).
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Comparison with Related Works: Global Contractivity

The statistical error for stochastic gradient numerical integrators.

integrator  order statistical error global convexity explicit

SG-gHM(C>® 2 Not required Yes
SG-general p hmm{zP ZT + 5 Required No

Table 2: Comparison of our results for the stochastic gradient integrators and
those proved by the global contractivity.

Our results showcase better order in the time step h.

5N. Gouraud, et al. arXiv preprint arXiv:2202.00977 (2022).
6M. Chak, and P. Monmarché. arXiv preprint arXiv:2310.18774 (2023).

Xuda Ye Statistical Error of Numerical Integrators 17/ 25



Comparison with Related Works: Poisson equation

® The Poisson equation for the test function f(x, v) is
—(Le)(xv) = Flxv) — (), xveRY,
where L is the generator of the Langevin dynamics:
L=v-Vy— (VUX)+v) -V, +7A,.
¢ The It0’s calculus implies
do(x,ve) = (L&) (xe, ve)dt + V2V, 6(x,v) - dB;,

hence
T
%/0 Flavde — 7 (f)

T
_ B(x0,v0) — P(xr,VT) + %/ \/§Vv¢>(xta"t) -dB:.
0

T

mean-zero
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Comparison with Related Works: Poisson equation

¢ The Poisson equation approach relies on the regularity of ¢(x,v),
because of the need for the high-order approximation of

¢Xny1, Vny1) — 0(Xn, V).

e However, the proof of regularity can be extremely difficult for the
underdamped Langevin dynamics because L is hypoelliptic.
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Proof Strategy: Discrete Poisson Equation

® We employ the discrete Poisson equation to study the statistical
errors. For given test function f(x,v), define the function

ux,v,t) = (e“f)(x,v) = (f) = E*'[f(xe, vo)] = {f),

where E* indicates that the solution (x;,v;) starts with (x,v).

¢ The Poisson solution ¢(x,v) can be interpreted as
o(x,v) = / u(x, v, t)dt.
0
® Given the time step h > 0, define the function
o)
¢h(xa V) =h Z U.(X,V7 nh)a
n=0
then ¢, (x,v) satisfies the discrete Poisson equation:

1_eh£

Tth(xﬂv) :f(xvv) - <f>
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Proof Strategy: Discrete Poisson Equation

e The discrete Poisson solution ¢y (x,v) provides a natural
expression of the time average.

o Let Z, = (Xp, Vy). Write the difference term ¢(Z,+1) — ¢(Z,) as
On(Zni1) — On(Zn(h)) + ¢n(Zn(h)) — Pn(Zn),
where Z,,(h) is the exact solution in time h with initial state Z,,.

¢ Define the random variables S,, and T;, by

_ ¢h(Zn+1) — ¢h(Zn(h))
h )
(Zsh(Zn(h))h* (bh(zn) Jrf(Zn) _ <f>, (mean-zero)

Sn

(local error)

T, =

® The time average (f)y  can be expressed as

P — (py = DB ) LN )
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Proof Strategy: Discrete Poisson Equation

e The random variable T, is mean-zero because

h _
E[Tn‘zn] _ E[(e £¢h)(Zf;l> ¢h(Zn):| +f(Zn) _ <f>

Furthermore, {T,}}_; are mutually independent:
E[TaTm] =0for0<n<m<N-—1.

* The statistical error SEy , = E[({f)n.n — (f))?] has the estimate

(£e)]

core task

N-1

+ 1y SB[

n=0

SEyy < E[(¢n(Zo) — ¢n(Zn))?]

S i +—E
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Proof Strategy: Discrete Poisson Equation

e If U(x) is strongly convex outside a ball, then

N—-1 2
[Vén(x,v)| S1=E [( > Sn) ] S N?h#E(|Zo| + 1)
n=0

And we obtain Theorem 1: | SEy, < h%~! + L

e If U(x) is globally convex outside a ball, then

|v¢h(X,V)|, |v2¢h(xav)| 5 1=

(ZS”” (Nh R (20| + 1)

And we obtain Theorem 2: | SEy, < h% + =
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Numerical Verification

We plot the statistical error of Euler-Maruyama (EM) and UBU
integrators and their stochastic gradient versions.

——EM s
291 |— — SG-EM s
——UBU v

91| |— — SG-UBU -

statistical error

2 6 2 5 2 1 2 3 2 2 2 1
time step h

The statistical error of UBU is O(h* + g ), while the others are
O(h* + ).
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Summary

Advantages of our results:
e Applicable to a broad class of numerical integrators.

® Require no explicit restriction on the time step h except for the
uniform-in-time moments condition.

Drawbacks of our results:

¢ The constants are not explicit in the dimension d or the batch size
p (stochastic gradient case).

® Requires the potential function U(x) to be globally convex
(essentially difficult!)

Future works:
® Make the constants explicit on d and p.

e Statistical error of Stochastic Variance Reduced Gradient (SVRG)
type integrators.
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