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In this note we study the convergence of a widely used sampling method: Metropolis
adjusted Langevin algorithm (MALA), and estimate the mixing time for sampling a general
convex distribution in R?. The content of this note is based of Chapter 5 of the thesis [1].

The sampling problem is formulated as below. Let V(z) : R — R be the potential
function, and 7(z) oc exp(—V (x)) be the target distribution. Assume V' (x) € C?(R%), and
for some constants 0 < a < 1 < f,

aly < V2V (x) < BI;, VxeR (1)

Assume also min V' = V(0) = 0, so that VV(0) = 0. The conditional number of V() is
k = f/a. A potential function V() satisfying (1) is called a-convex -smooth, and the
corresponding target distribution 7 () is called a-log concave S-smooth.

1 Metropolis adjusted Langevin algorithm

Given the time step h > 0 and the initial distribution g, the MALA produces the random
sequence (&,,),>0 in the following procedure: @y ~ pu, then for each integer n > 0,

1. Proposal step: sample y,+1 ~ Q(x,, ), where

1
Q(x,-) = mexp <

=+ RV ()|
4h '

Equivalently, y ~ Q(«, ) can be generated by unadjusted Langevin algorithm:
y=x—hVV(x)+ V2hE, &~ N(0,1,).
2. Accept-reject step: generate u, ~ U|0, 1], and set

x o Yn+1, if Un < A<xn7 yn+1)7
it T, if u, > A(@®n, Yn+1),



where the acceptance probability is given by

Alw,y) :=1Aa(z,y), a(xy):= (2)

The choice of A(x,y) ensures that the MALA sequence (x,)n>0 is a reversible Markov
chain with the invariant distribution 7(2). The transition kernel of (x,)n>0 is

T(z,y) = [1 - A()|dz(y) + Qz, y) Az, y), Alx) = o Qlz,y)A(z,y)dy.  (3)
The step size h in MALA is a crucial parameter affecting the convergence rate of the
Markov chain (2,)n>0. On the one hand, h can be viewed as the time step in discretizing

the Langevin diffusion
dX; = —-VV(X;) + V2dB;, (4)

hence choosing a large h allows to use fewer steps for the Langevin diffusion (4) to converge.
On the other hand, a large time step may cause the rejection rate to be close to 1, slowing
the convergence of the Markov chain. Therefore, the choice of the step size h is in fact a
trade-off between the fast evolution of (4) and the high rejection rate in (2).

2 Characterization of mixing time

Since MALA is an unbiased sampling method, namely, the sequence (x,)n>0 with the
transition kernel T'(x, y) exactly preserves 7(x) as the invariant distribution, we only need
to characterize the mixing time of (x,),>0 to estimate the sampling efficiency.

Given a measure of discrepancy d between probability measures, the mixing time with
the initial distribution pg is defined as

Tmix(f':’,u(]ad) = lnf{n €EN:xg~ MO?d(/ML)ﬂ—) < €}>

where i, is the distribution law of x,, for each n > 0. That is to say, Tmix(€, o,d) is
the minimum number of iterations to achieve ¢ error in d. Here, d does not need to be a
distance (symmetric in the two components), total variation (TV), Wasserstein-2 distance
(W3), KL divergence (KL) and y2-divergence are all feasible choices for d.
For the discrete-time Markov chain (&, ),>0, the generator is id—1T', so that the Dirichlet
form is given by
E(f,9) =Ex[f(id=T)g], f,g€ L),

where (T'g)(x) := [za 9(y)T (2, dy). The spectral gap of the generator is defined as

= in €1 2(1), Var
A= f{Var(f)'fEL( ), Vi (f)>0}, (5)



where the variance of the function f(x) in the target distribution m(x) is

2
Var(f) := y f2dr — (/Rd fdw) > 0.

Since both T and id — 1" are positive semidefinite operators in LQ(Rd), the spectral gap
satisfies 0 < A < 1. In fact, the transition kernel T' has a trivial eigenvalue 1 (the corre-
sponding eigenfunction is constant), and the spectral gap A measures the difference between
the second largest eigenvalue of T and 1.

Note that the definition of the spectral gap A\ implies

AVar(f) <E(f, f), Vfe L),

which is reminiscent of the Poincaré inequality in the continuous-time diffusion process.
Therefore, A can also be understood as the Poincaré constant of the generator id —7'. If the
spectral gap A > 0, then we can derive the exponential decay of x2-divergence (i, ||7).

Theorem 1 Suppose (x,,),>0 is a reversible Markov chain in R? with the invariant distri-
bution . Let u, be the distribution law of x,, in Rd, and A be the spectral gap of (x,,)n>0
as defined in (5). If the initial distribution pg satisfies x2(uo||m) < +oo, then

VX (pnl|m) < (1= A)"v/x*(pol[m),  Vn = 0. (6)
Proof. Let T be the transition kernel of the Markov chain. For any f € L?(r), we have
o) = E[f(@0)] =B[T"N(@o)] = [ @"Ndpo, (1) = [ (" fam,
Rd Rd

and thus we have the equality

[ 5 =am) = (= m)(5) = [ (o —dm). Vf € L)
which can be equivalently written as

(“" ‘”,f) _ (“O_W,T"f) . Wie L(m). (7)
L2(7) g L2(r)

™

Define the Hilbert space M C L?(r) by

M={feL’n):n(f)=0}, (f,9)m = (f,9)r2(n)

then the spectral gap A > 0 implies T'|5; has the largest eigenvalue 1 — A\ < 1. For any
f € L*(m) with 7(f) =0, (7) can now be written as

(M”_W,f> =<”0_7T,T”f> . Ve, ®)
M ™ M

™



Using Cauchy’s inequality, (8) implies for any f € M,

:un_ﬂ'f < Ho — T
T M\ T

and thus we obtain the inequality

Mo — T

1T fllay < (1= 2)" [RAlFYS
M M

Mo — T
™

)

H/’Ln_'fr
M

™

<@-A"
M

which is exactly equivalent to (6), yielding the exponential decay of the y?-divergence. W
As a consequence of Theorem 1, we have the follwing estimate of the mixing time:

Corollary 1 Under the same conditions of Theorem 1, the mixing time of (x,,),>0 satisfies
2
_ ol|m™
Tmix(enuo; d) 5 A ! IOg < X ((:L H ))7 (9)

where the discrepancy d can be chosen form
d e {TV, VKL, /X2, VaWs}.

As converse problem of Corollary 1, it can be proved that for any fixed ¢ > 0, there
exists an constant ¢ and an initial distribution pg with x?(uo||7) < 1 such that

_ 1
Tmix (€, 03 VX2) 2 A log <5> (10)
Further explanations on (10) can be found on Page 66 of [1].

In practice, however, the spectral gap A of a given transition kernel T is difficult to
estimate directly. A common alternative is to study the conductance (also known as Cheeger
constant), which is defined by

i Js sT(x,S%)m(dx)
= f{ ~(S)

U3cR{wwj<1}. (11)

2
The conductance C and the spectral gap A is connected by Cheeger’s inequality [2]:
c2<a<c (12)

Therefore, the conductance C can be used to control the bounds of the spectral gap A.



3 Upper bound estimate

The size of the mixing time highly depends on the quality of the initial distribution pug.
We introduce the notion of a warm start for the MALA sequence (xy,)n>0:

Definition 1 The initial distribution pg is a My-warm start with respect to = if for any
Borel set E C R%, it holds that
/J,()(E) < M()’/T(E)

Clearly, ug is a Mp-warm start implies

|po(x) — m()]

(@) <max{My—1,1}, VxeR?

and thus the y?-divergence is bounded by

Clollm) =B | (- 1)°] < 0o+ 17

In other words, a warm start controls the initial y2-divergence.
The main theorem on the upper bound of the mixing time of MALA is stated as follows.

Theorem 2 Suppose the target distribution 7(x) is a-log concave S-smooth in R?. There
exists a small absolute constant ¢ > 0, such that for any € > 0, MALA with a My-warm
start and the step size

(NI

cx

h=—F= (13)
B3d2 log(dkMy/e)
has an upper bound of the mixing time given by
4 1
3d2 M, M,
(e i) £ 5 o (220 )t (a2, (14)
o2 S I3

where the discrepancy d can be chosen form
de {TV, VKL, /X2, \/&Wg}.

Sketch of proof. First we introduce the s-conductance by

Cs:= inf{fs T7(T3(%S‘)5’C)7;(dm) :SCcRYs < 7w(S) < ;}

The total variation between p,, and 7 can be estimated using the following result [3].



Lemma 1 For any n € Nand 0 < s < %, the distribution law pu, at the n-th step of the
Markov chain (x,,),>0 satisfies

C2n
ln =l < Mos + Moo (= 5.

where M) is the warm start parameter of 19. As a consequence, if the s = ¢/(2Mj), then

2 2M,
@ log c

S

nz= = [[ptn = 7[py < e (15)

Therefore, we need to estimate the s-conductance Cs.
Next we aim to estimate the difference || T — Qg ||y, Which characterizes rejection rate
of & with a distributional viewpoint.

Lemma 2 Let Q be a proposal kernel, and T be its Metropolis adjustment. Let Q be a
kernel which is reversible with respect to 7. Then for any = € R¢,

et 20l DIy

In particular, by choosing Q to be generated by the precise solution of the Langevin
diffusion (4) in the step size h, we can bound the RHS of (16) in a probabilistic level.

Lemma 3 Assume h < 1/(303 %) and let  ~ 7. For any 6 > 0, with probability at least
1 — 6 we have

@0~ Quly £ iy EELE

«

Lemma 4 Let k£ > 1 be any integer. There exists an absolute constant ¢ > 0 such that if

e
Bsdsk
then 1
(y)Q. ) |Qy.z) _|[|1"
{Em /R Erml e B ” < ot BnVE(VA+ VE).

Note that @ and @ correspond to the continuous Langevin diffusion (4) and its Euler—

Maruyama discretization, respectively, Qz — @z can be understood as the local discretiza-

tion error. Lemmas 3 and 4 show that the discretization error is approximately O(\/gh).
Using Lemmas 2, 3 and 4, we can arrive at the following result.



Lemma 5 Fix ¢ > 0 and 0 < s < % There exists a constant c¢; depending only on ¢
such that when « ~ 7 and the step size

1
C1(x2

h=—— )
B3d2 log(dr/s)

then the following holds with probability at least 1 — cosv/h:

=

[Tz = Qallpy <

Lemrr%a 5 successfully bounds the rejection rate at & when the step size h is chosen as
O(d™2). Then Lemma 5 produces the following estimate of the s-conductance Cg:

Lemma 6 There exists a absolute constant ¢ such that when the step size

1
C1(xv2

B%d% log(dk/s) ’

the s-conductance of the MALA chain satisfies
Cs = Vah.

Finally, combining Lemmas 1 and 6 we obtain the desired result. |

Roughly speaking, Theorem 2 shows that when the step size h is chosen as ON(d_%),
the mixing time of MALA is bounded by

:d) =0 d:
Tle(€7,u07 )— w .

Although the dependence of Ty on the error tolerance e is not optimal, the dependence
on the dimension d is quite satisfactory. It shows that every O(d%) iterations of MALA
must provide an uncorrelated sample of the target distribution 7. Now, a natural question
is, does the choice O(d_%) of the step size h has an exponent? That is to say, if we choose
h to be O(d_%M) for a small constant § > 0, will the mixing time be smaller or larger?
This question will be answered in the analysis of the lower bound complexity.

4 Lower bound estimate

The lower bound estimate of MALA’s mxing time Tyix (e, po; d) requires different settings
from the upper bound estimate. Since the mixing time of a Markov chain is governed by the
inverse of the spectral gap A (see Corollary 1), and A itself is bounded by the conductance



C, we can identify the lower bound of the complexity of MALA by estimating the upper
bound of either the spectral gap A or the conductance C. Here, we recall that A (or C)
only depends on potential function V' (x) and the step size h. Therefore, the problem of
the upper bound of A (or C) can be proposed as follows:

Given the dimension d and the parameters 0 < a < 1 < 8. We aim to find
a positive constant ¢ = ¢(d, «, 3), such that there exists a a-convex S-smooth
potential function V(z) in RY, and the corresponding MALA transtion kernel

T(x,y) = [1 - A(®)]0z(y) + Q(z, y) Az, y)

defined in (3) has the spectral gap A (or the conductance C)
A<elda ), (or € < eld,a,B).

In particular, the key point the problem above is find an instance of the potential
function V' (x), such that using MALA to obtain new samples of 7 is very difficult. In the
thesis [1], the instance is constructed as

el

Vip(x) = S 2(17277 Zcos (d"z;), (17)

where 7 € (0, %) is a parameter. The corresponding target distribution is
m(x) x exp(—Vy(z)), xcR% (18)

The potential function V; (x) is always %—COHVQX %—smooth, and can viewed as the sum of
a Gaussian part Vg(x) and the perturbation part Vp(x) given by

2 d

T 1

Ve(x) = HQH, Ve(x) = ~ o g cos(d"z;).
i=1

The following result show that the conductance C can be exponentially small with
respect to the dimension d if we choose the step size h > d~ 3435 for some § > 0.

Theorem 3 Fix § € (0, ) and n = § — 4. Let C denotes the conductance of MALA chain
with the target distribution 7, and the step size h. Then if h € [d™ 2+35, d~ ], we have

c< exp(—Q(d45)). (19)

Sketch of proof. An intuitive interpretation of this result is provided as follows:



1. It can be computed that the standard Gaussian distribution N(0, I;) satisfies
KL(N(0,1q)||my) = O(d"~*).

Therefore, to ensure that m, is far away from the standard Gaussian distribution

N(0,14) (so that m, is difficult to sample), we need to choose n € (0, 7).

2. The fluctuation length in the perterbation potential Vp () is d~", while the movement
of the Langevin proposal in a single coordinate is O(\/E) Therefore, the step size h
needs to satisfy the relation h < d=2" to sample the correct distribution, otherwise
MALA will directly ignore the high-frequency potential function Vp(x) and produce
samples from the standard Gaussian distribution N(0, I).

For simplicity, we omit the subscript 7 in the target distribution m,(x) and simply write
7(x). Also note that the distribution 7 () is separable, since we have

d
m(x) = Hm(mi), x € R%.
i=1

where 71 (x) < exp(—Vi(x)) is a probability density in R, and the potential function Vi (x)

2421

After these preparations, we are ready to provide the main part of the proof. First we
need the following property of the conductance C:

Vi(z) = cos(d"z), x€R.

Lemma 7 Let E C R be a Borel set such that 7(F) > . Then C is bounded by

1
3

C<2sup | Qz,y)A(z, y)dy.
xzcE JRI
According to the upper bound of the conductance C in Lemma 7, we only need to prove
that there exsits a Borel set £ C R? with 7(E) > § such that

swp | Q@ y)A(@,y)dy < exp(-0(d¥)). (20)
z€E JR4
The writer personally views (20) as the inverse form of the minorization condition in
Doeblin theorem (or Harris ergodic theorem), thus a proper name for the inequality (20)
could be the maximization condition, which demonstrates the property that the acceptance
probability must be exponentially small in a large Borel set (with probability at least %)
Note that Q(x,y)A(x,y) in the LHS of (20) is bounded by

1 v = V@I
[Low e g [ oo (Vier-viw i P Yay = @)




where the quantities I;(x) and I(x) are given by

_ 1 ek
Li(x) = 1 hQ)% exp<2(1 1) + Vp(:::)),

12(2) = By 050 (Vo) ~ Voly) + 5 (1~ 1)y — 2)'TVe(a) = VW0 ),

and the conditional distribution

1-nh 2h
= 1 |.
:uw N(l+h2$,1+h2 d>
Now we only need to prove that there is a Borel set £ C R? with 7(E) > % such that
1 1
Li(x) < exp<—8d1_4’7 + 0(d1_4’7)>, Iy(x) < ex1[><16d1_477 + 0(d1_4’7)>. (21)

To construct such a E ¢ R? and prove (21), we need the following two lemmas.

Lemma 8 Assume the step size h < d~5. Then there exists a Borel set E; C R? with
m(E1) > 2 such that for ¢ € Ey,

Il(.’B) = #exp M‘FVP(CIZ) <€Xp _1d1—477+0(d1—477) .
(1+h2)s \ 21+ 3

It is easy to see the second order moments of the target distribution 7 is d + O(d'~*7).
Using the concentration inequality, there exists a Borel set F} C R? with 7(E}) > %such
that for any « € EY,

Iz|? < d+ O(d ) + O(d?).

As a consequence, for € E] we obtain the inequality

2|12 1
(1 +1h2)§ exp (2?1 ”+ ’;’m) < exp(O(d 1) + O(d2h%)). 32

On the other hand, the separability of the potential function V' (x) implies that

d
1 1
Exnr[Vp(x)] = g Eypmr cos(d"z;) = —§d1_4” + O(d=8m).
=1

5 >
Then there exists a Borel set Ef C R? with w(EY) > £ such that for = € EY,

exp[Vp(z)] < exp (—;all_477 + 0(d1_477)>. (23)
Concluding (22) and (23) we obtain the result by choosing F1 = E} N EY.

10



Lemma 9 Assume the step size h € [d7%+35, dfé]. Then there exists a Borel set £} C R?
with m(E») > 2 such that for any = € E»,

(&) = By 0xp V(o) ~ Volo) + 5 (1~ Dy~ 2) 'TVoly) = {19V

1
< exp (16d14” + 0(d14’7)> :

We choose the Borel set Ey with m(E3) > % such that

2]l = max |aif < 4v/In(8d).

X

Since the potential function Vp () is separable, we only need to show

cos(dy;) (1 — h)y; — ;) sin(d™y;)  hsin?(d"y;) 1 4 _4
~ — < llp U ),
By, X < 2421 Adn 16427 exp{ ggd " +old ™)

( 1—-h 2h

TRz T, W) Take the first component as the

where p,, is the Gaussian distribution A
example. When y; ~ p,, we can write

1k oh
= 1+ h2

In this case, (24) can be equivalently written as

& E~N(0,1).

cos(dyy)  hsin(d"yy)  2hxisin(dhy) 2k sin(dyy) Loy g
Feexp ( 2 _16d® __ __ dd i sep| gt " reld).
Kl AV Ag Ay

(25)
where the constants h := h/(1 + h?) and h := (1 — h)?h/(1 + h?). Roughly speaking, the
main parts of the LHS of (25) are the first the second order parts, namely

(< 1st order) =14+EA; —EAy —EA3+EA;=1-— 39021 + O(d_Sn),
(<2 dode)—LJrLjLo(d*‘“?)
D T I 7Y 2 ’

Concluding these two inequalities, we can show that

1 —4
Egexp (Al — Ay —A3+A4) < exp <16d477 +0(d 77)>,

which completes the proof.

Finally, Lemmas 8 and 9 produce the inequality (21) with the choice £ = E; N Es. |

Our final result is that the spectral gap A has a trivial upper bound h.

11



Theorem 4 The spectral gap A of MALA chain with the target distribution , and the
step size 0 < h < 1 satisfies A\ < h.

The proof is short and can be found on Page 95 of the thesis [1].

5 Optimal choice of step size h

Collecting the complexity results in Theorems 2, 3 and 4, we are now ready to discuss the
optimal choice of the step size h for a general a-convex f-smooth potential function V(x).

First, Theorem 2 shows that h = O(hfé) is a reasonable choice, as the mixing time
Tmix (€, po; d) is bounded by O(d% (loge)™2). Furthermore, an effective sample of the
target distribution 7 can be obtained within O(v/d) steps. Next, Theorem 4 implies
O(h~'(loge)™1) is a lower bound of the mixing time, which motivates us to choose a
larger step size h to1 acquire better convergence rates. Finally, Theorem 3 shows that if
the step size h = d~273 for any sufficiently small § > 0, then the mixing time must grow
exponentially with the dimension d. Therefore, h = O(h_%) is an optimal choice for step
size h with a general convex function potential.
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