

Computational Cost of MALA: Upper And Lower Bounds

Xuda Ye

October 9, 2024

In this note we study the convergence of a widely used sampling method: Metropolis adjusted Langevin algorithm (MALA), and estimate the mixing time for sampling a general convex distribution in \mathbb{R}^d . The content of this note is based of Chapter 5 of the thesis [1].

The sampling problem is formulated as below. Let $V(\mathbf{x}) : \mathbb{R}^d \rightarrow \mathbb{R}$ be the potential function, and $\pi(\mathbf{x}) \propto \exp(-V(\mathbf{x}))$ be the target distribution. Assume $V(\mathbf{x}) \in C^2(\mathbb{R}^d)$, and for some constants $0 < \alpha \leq 1 \leq \beta$,

$$\alpha I_d \preceq \nabla^2 V(\mathbf{x}) \preceq \beta I_d, \quad \forall \mathbf{x} \in \mathbb{R}^d. \quad (1)$$

Assume also $\min V = V(\mathbf{0}) = 0$, so that $\nabla V(\mathbf{0}) = \mathbf{0}$. The conditional number of $V(\mathbf{x})$ is $\kappa = \beta/\alpha$. A potential function $V(\mathbf{x})$ satisfying (1) is called α -convex β -smooth, and the corresponding target distribution $\pi(\mathbf{x})$ is called α -log concave β -smooth.

1 Metropolis adjusted Langevin algorithm

Given the time step $h > 0$ and the initial distribution μ , the MALA produces the random sequence $(\mathbf{x}_n)_{n \geq 0}$ in the following procedure: $\mathbf{x}_0 \sim \mu$, then for each integer $n \geq 0$,

1. **Proposal step:** sample $\mathbf{y}_{n+1} \sim Q(\mathbf{x}_n, \cdot)$, where

$$Q(\mathbf{x}, \cdot) := \frac{1}{(4\pi h)^{\frac{d}{2}}} \exp\left(-\frac{\|\cdot - \mathbf{x} + h\nabla V(\mathbf{x})\|^2}{4h}\right).$$

Equivalently, $\mathbf{y} \sim Q(\mathbf{x}, \cdot)$ can be generated by unadjusted Langevin algorithm:

$$\mathbf{y} = \mathbf{x} - h\nabla V(\mathbf{x}) + \sqrt{2h}\boldsymbol{\xi}, \quad \boldsymbol{\xi} \sim \mathcal{N}(0, I_d).$$

2. **Accept-reject step:** generate $u_n \sim \mathcal{U}[0, 1]$, and set

$$\mathbf{x}_{n+1} = \begin{cases} \mathbf{y}_{n+1}, & \text{if } u_n \leq A(\mathbf{x}_n, \mathbf{y}_{n+1}), \\ \mathbf{x}_n, & \text{if } u_n > A(\mathbf{x}_n, \mathbf{y}_{n+1}), \end{cases}$$

where the acceptance probability is given by

$$A(\mathbf{x}, \mathbf{y}) := 1 \wedge a(\mathbf{x}, \mathbf{y}), \quad a(\mathbf{x}, \mathbf{y}) := \frac{\pi(\mathbf{y})Q(\mathbf{y}, \mathbf{x})}{\pi(\mathbf{x})Q(\mathbf{x}, \mathbf{y})}. \quad (2)$$

The choice of $A(\mathbf{x}, \mathbf{y})$ ensures that the MALA sequence $(\mathbf{x}_n)_{n \geq 0}$ is a reversible Markov chain with the invariant distribution $\pi(\mathbf{x})$. The transition kernel of $(\mathbf{x}_n)_{n \geq 0}$ is

$$T(\mathbf{x}, \mathbf{y}) = [1 - A(\mathbf{x})]\delta_{\mathbf{x}}(\mathbf{y}) + Q(\mathbf{x}, \mathbf{y})A(\mathbf{x}, \mathbf{y}), \quad A(\mathbf{x}) = \int_{\mathbb{R}^d} Q(\mathbf{x}, \mathbf{y})A(\mathbf{x}, \mathbf{y})d\mathbf{y}. \quad (3)$$

The step size h in MALA is a crucial parameter affecting the convergence rate of the Markov chain $(\mathbf{x}_n)_{n \geq 0}$. On the one hand, h can be viewed as the time step in discretizing the Langevin diffusion

$$d\mathbf{X}_t = -\nabla V(\mathbf{X}_t) + \sqrt{2}d\mathbf{B}_t, \quad (4)$$

hence choosing a large h allows to use fewer steps for the Langevin diffusion (4) to converge. On the other hand, a large time step may cause the rejection rate to be close to 1, slowing the convergence of the Markov chain. Therefore, the choice of the step size h is in fact a trade-off between the fast evolution of (4) and the high rejection rate in (2).

2 Characterization of mixing time

Since MALA is an unbiased sampling method, namely, the sequence $(\mathbf{x}_n)_{n \geq 0}$ with the transition kernel $T(\mathbf{x}, \mathbf{y})$ exactly preserves $\pi(\mathbf{x})$ as the invariant distribution, we only need to characterize the mixing time of $(\mathbf{x}_n)_{n \geq 0}$ to estimate the sampling efficiency.

Given a measure of discrepancy \mathbf{d} between probability measures, the mixing time with the initial distribution μ_0 is defined as

$$\tau_{\text{mix}}(\varepsilon, \mu_0, \mathbf{d}) := \inf\{n \in \mathbb{N} : \mathbf{x}_0 \sim \mu_0, \mathbf{d}(\mu_n, \pi) \leq \varepsilon\},$$

where μ_n is the distribution law of \mathbf{x}_n for each $n \geq 0$. That is to say, $\tau_{\text{mix}}(\varepsilon, \mu_0, \mathbf{d})$ is the minimum number of iterations to achieve ε error in \mathbf{d} . Here, \mathbf{d} does not need to be a distance (symmetric in the two components), total variation (TV), Wasserstein-2 distance (W_2), KL divergence (KL) and χ^2 -divergence are all feasible choices for \mathbf{d} .

For the discrete-time Markov chain $(\mathbf{x}_n)_{n \geq 0}$, the generator is $\text{id} - T$, so that the Dirichlet form is given by

$$\mathcal{E}(f, g) = \mathbb{E}_{\pi}[f(\text{id} - T)g], \quad f, g \in L^2(\pi),$$

where $(Tg)(\mathbf{x}) := \int_{\mathbb{R}^d} g(\mathbf{y})T(\mathbf{x}, d\mathbf{y})$. The spectral gap of the generator is defined as

$$\lambda := \inf \left\{ \frac{\mathcal{E}(f, f)}{\text{Var}(f)} : f \in L^2(\pi), \text{Var}(f) > 0 \right\}, \quad (5)$$

where the variance of the function $f(\mathbf{x})$ in the target distribution $\pi(\mathbf{x})$ is

$$\text{Var}(f) := \int_{\mathbb{R}^d} f^2 d\pi - \left(\int_{\mathbb{R}^d} f d\pi \right)^2 \geq 0.$$

Since both T and $\text{id} - T$ are positive semidefinite operators in $L^2(\mathbb{R}^d)$, the spectral gap satisfies $0 \leq \lambda \leq 1$. In fact, the transition kernel T has a trivial eigenvalue 1 (the corresponding eigenfunction is constant), and the spectral gap λ measures the difference between the second largest eigenvalue of T and 1.

Note that the definition of the spectral gap λ implies

$$\lambda \text{Var}(f) \leq \mathcal{E}(f, f), \quad \forall f \in L^2(\pi),$$

which is reminiscent of the Poincaré inequality in the continuous-time diffusion process. Therefore, λ can also be understood as the Poincaré constant of the generator $\text{id} - T$. If the spectral gap $\lambda > 0$, then we can derive the exponential decay of χ^2 -divergence $\chi^2(\mu_n || \pi)$.

Theorem 1 Suppose $(\mathbf{x}_n)_{n \geq 0}$ is a reversible Markov chain in \mathbb{R}^d with the invariant distribution π . Let μ_n be the distribution law of \mathbf{x}_n in \mathbb{R}^d , and λ be the spectral gap of $(\mathbf{x}_n)_{n \geq 0}$ as defined in (5). If the initial distribution μ_0 satisfies $\chi^2(\mu_0 || \pi) < +\infty$, then

$$\sqrt{\chi^2(\mu_n || \pi)} \leq (1 - \lambda)^n \sqrt{\chi^2(\mu_0 || \pi)}, \quad \forall n \geq 0. \quad (6)$$

Proof. Let T be the transition kernel of the Markov chain. For any $f \in L^2(\pi)$, we have

$$\mu_n(f) = \mathbb{E}[f(\mathbf{x}_n)] = \mathbb{E}[(T^n f)(\mathbf{x}_0)] = \int_{\mathbb{R}^d} (T^n f) d\mu_0, \quad \pi(f) = \int_{\mathbb{R}^d} (T^n f) d\pi,$$

and thus we have the equality

$$\int_{\mathbb{R}^d} f(d\mu_n - d\pi) = (\mu_n - \pi)(f) = \int_{\mathbb{R}^d} (T^n f)(d\mu_0 - d\pi), \quad \forall f \in L^2(\pi).$$

which can be equivalently written as

$$\left(\frac{\mu_n - \pi}{\pi}, f \right)_{L^2(\pi)} = \left(\frac{\mu_0 - \pi}{\pi}, T^n f \right)_{L^2(\pi)}, \quad \forall f \in L^2(\pi). \quad (7)$$

Define the Hilbert space $M \subset L^2(\pi)$ by

$$M = \{f \in L^2(\pi) : \pi(f) = 0\}, \quad (f, g)_M := (f, g)_{L^2(\pi)},$$

then the spectral gap $\lambda > 0$ implies $T|_M$ has the largest eigenvalue $1 - \lambda < 1$. For any $f \in L^2(\pi)$ with $\pi(f) = 0$, (7) can now be written as

$$\left(\frac{\mu_n - \pi}{\pi}, f \right)_M = \left(\frac{\mu_0 - \pi}{\pi}, T^n f \right)_M, \quad \forall f \in M, \quad (8)$$

Using Cauchy's inequality, (8) implies for any $f \in M$,

$$\left| \left(\frac{\mu_n - \pi}{\pi}, f \right)_M \right| \leq \left\| \frac{\mu_0 - \pi}{\pi} \right\|_M \|T^n f\|_M \leq (1 - \lambda)^n \left\| \frac{\mu_0 - \pi}{\pi} \right\|_M \|f\|_M,$$

and thus we obtain the inequality

$$\left\| \frac{\mu_n - \pi}{\pi} \right\|_M \leq (1 - \lambda)^n \left\| \frac{\mu_0 - \pi}{\pi} \right\|_M,$$

which is exactly equivalent to (6), yielding the exponential decay of the χ^2 -divergence. ■

As a consequence of Theorem 1, we have the following estimate of the mixing time:

Corollary 1 Under the same conditions of Theorem 1, the mixing time of $(x_n)_{n \geq 0}$ satisfies

$$\tau_{\text{mix}}(\varepsilon, \mu_0; d) \lesssim \lambda^{-1} \log \left(\frac{\sqrt{\chi^2(\mu_0 || \pi)}}{\varepsilon} \right), \quad (9)$$

where the discrepancy d can be chosen from

$$d \in \{\text{TV}, \sqrt{\text{KL}}, \sqrt{\chi^2}, \sqrt{\alpha} W_2\}.$$

As converse problem of Corollary 1, it can be proved that for any fixed $\varepsilon > 0$, there exists a constant c and an initial distribution μ_0 with $\chi^2(\mu_0 || \pi) \leq 1$ such that

$$\tau_{\text{mix}}(\varepsilon, \mu_0; \sqrt{\chi^2}) \gtrsim \lambda^{-1} \log \left(\frac{1}{\varepsilon} \right). \quad (10)$$

Further explanations on (10) can be found on Page 66 of [1].

In practice, however, the spectral gap λ of a given transition kernel T is difficult to estimate directly. A common alternative is to study the *conductance* (also known as *Cheeger constant*), which is defined by

$$C := \inf \left\{ \frac{\int_S sT(x, S^c)\pi(dx)}{\pi(S)} : S \subset \mathbb{R}^d, \pi(S) \leq \frac{1}{2} \right\}. \quad (11)$$

The conductance C and the spectral gap λ are connected by Cheeger's inequality [2]:

$$C^2 \lesssim \lambda \lesssim C. \quad (12)$$

Therefore, the conductance C can be used to control the bounds of the spectral gap λ .

3 Upper bound estimate

The size of the mixing time highly depends on the quality of the initial distribution μ_0 . We introduce the notion of a *warm* start for the MALA sequence $(\mathbf{x}_n)_{n \geq 0}$:

Definition 1 The initial distribution μ_0 is a M_0 -warm start with respect to π if for any Borel set $E \subset \mathbb{R}^d$, it holds that

$$\mu_0(E) \leq M_0 \pi(E).$$

Clearly, μ_0 is a M_0 -warm start implies

$$\frac{|\mu_0(\mathbf{x}) - \pi(\mathbf{x})|}{\pi(\mathbf{x})} \leq \max\{M_0 - 1, 1\}, \quad \forall \mathbf{x} \in \mathbb{R}^d,$$

and thus the χ^2 -divergence is bounded by

$$\chi^2(\mu_0 || \pi) = \mathbb{E}_\pi \left[\left(\frac{d\mu}{d\pi} - 1 \right)^2 \right] \leq (M_0 + 1)^2.$$

In other words, a warm start controls the initial χ^2 -divergence.

The main theorem on the upper bound of the mixing time of MALA is stated as follows.

Theorem 2 Suppose the target distribution $\pi(\mathbf{x})$ is α -log concave β -smooth in \mathbb{R}^d . There exists a small absolute constant $c > 0$, such that for any $\varepsilon > 0$, MALA with a M_0 -warm start and the step size

$$h = \frac{c\alpha^{\frac{3}{2}}}{\beta^{\frac{4}{3}} d^{\frac{1}{2}} \log(d\kappa M_0/\varepsilon)} \tag{13}$$

has an upper bound of the mixing time given by

$$\tau_{\text{mix}}(\varepsilon, \mu_0; \mathbf{d}) \lesssim \frac{\beta^{\frac{4}{3}} d^{\frac{1}{2}}}{\alpha^{\frac{3}{2}}} \log \left(\frac{M_0}{\varepsilon} \right) \log \left(d\kappa + \frac{M_0}{\varepsilon} \right), \tag{14}$$

where the discrepancy \mathbf{d} can be chosen from

$$\mathbf{d} \in \{\text{TV}, \sqrt{\text{KL}}, \sqrt{\chi^2}, \sqrt{\alpha} W_2\}.$$

Sketch of proof. First we introduce the s -conductance by

$$C_s := \inf \left\{ \frac{\int_S T(\mathbf{x}, S^c) \pi(d\mathbf{x})}{\pi(S) - s} : S \subset \mathbb{R}^d, s < \pi(S) \leq \frac{1}{2} \right\}.$$

The total variation between μ_n and π can be estimated using the following result [3].

Lemma 1 For any $n \in \mathbb{N}$ and $0 < s < \frac{1}{2}$, the distribution law μ_n at the n -th step of the Markov chain $(\mathbf{x}_n)_{n \geq 0}$ satisfies

$$\|\mu_n - \pi\|_{\text{TV}} \leq M_0 s + M_0 \exp\left(-\frac{C_s^2 n}{2}\right),$$

where M_0 is the warm start parameter of μ_0 . As a consequence, if the $s = \varepsilon/(2M_0)$, then

$$n \geq \frac{2}{C_s^2} \log \frac{2M_0}{\varepsilon} \implies \|\mu_n - \pi\|_{\text{TV}} \leq \varepsilon. \quad (15)$$

Therefore, we need to estimate the s -conductance C_s .

Next we aim to estimate the difference $\|T_{\mathbf{x}} - Q_{\mathbf{x}}\|_{\text{TV}}$, which characterizes rejection rate of \mathbf{x} with a distributional viewpoint.

Lemma 2 Let Q be a proposal kernel, and T be its Metropolis adjustment. Let \bar{Q} be a kernel which is reversible with respect to π . Then for any $x \in \mathbb{R}^d$,

$$\|T_{\mathbf{x}} - Q_{\mathbf{x}}\|_{\text{TV}} \leq 2\|\bar{Q}_{\mathbf{x}} - Q_{\mathbf{x}}\|_{\text{TV}} + \int_{\mathbb{R}^d} \frac{\pi(\mathbf{y})\bar{Q}(\mathbf{x}, \mathbf{y})}{\pi(\mathbf{x})} \left| \frac{Q(\mathbf{x}, \mathbf{y})}{\bar{Q}(\mathbf{x}, \mathbf{y})} - 1 \right| d\mathbf{y}. \quad (16)$$

In particular, by choosing \bar{Q} to be generated by the precise solution of the Langevin diffusion (4) in the step size h , we can bound the RHS of (16) in a probabilistic level.

Lemma 3 Assume $h \leq 1/(3\beta^{\frac{4}{3}})$ and let $\mathbf{x} \sim \pi$. For any $\delta > 0$, with probability at least $1 - \delta$ we have

$$\|\bar{Q}_{\mathbf{x}} - Q_{\mathbf{x}}\|_{\text{TV}} \lesssim \beta^{\frac{4}{3}} h \sqrt{\frac{d + \log(1/\delta)}{\alpha}}.$$

Lemma 4 Let $k \geq 1$ be any integer. There exists an absolute constant $c > 0$ such that if

$$h \leq \frac{c\alpha^{\frac{1}{2}}}{\beta^{\frac{4}{3}} d^{\frac{1}{2}} k},$$

then

$$\left\{ \mathbb{E}_{\mathbf{x} \sim \pi} \left[\left| \int_{\mathbb{R}^d} \frac{\pi(\mathbf{y})\bar{Q}(\mathbf{y}, \mathbf{x})}{\pi(\mathbf{x})} \left| \frac{Q(\mathbf{y}, \mathbf{x})}{\bar{Q}(\mathbf{y}, \mathbf{x})} - 1 \right| \right|^k \right] \right\}^{\frac{1}{k}} \lesssim \alpha^{-\frac{1}{4}} \beta h \sqrt{k} (\sqrt{d} + \sqrt{k}).$$

Note that \bar{Q} and Q correspond to the continuous Langevin diffusion (4) and its Euler–Maruyama discretization, respectively, $\bar{Q}_{\mathbf{x}} - Q_{\mathbf{x}}$ can be understood as the *local discretization error*. Lemmas 3 and 4 show that the discretization error is approximately $O(\sqrt{dh})$.

Using Lemmas 2, 3 and 4, we can arrive at the following result.

Lemma 5 Fix $c_0 > 0$ and $0 < s < \frac{1}{2}$. There exists a constant c_1 depending only on c_0 such that when $\mathbf{x} \sim \pi$ and the step size

$$h = \frac{c_1 \alpha^{\frac{1}{2}}}{\beta^{\frac{4}{3}} d^{\frac{1}{2}} \log(d\kappa/s)},$$

then the following holds with probability at least $1 - c_0 s \sqrt{h}$:

$$\|T_{\mathbf{x}} - Q_{\mathbf{x}}\|_{\text{TV}} \leq \frac{1}{6}.$$

Lemma 5 successfully bounds the rejection rate at \mathbf{x} when the step size h is chosen as $\tilde{O}(d^{-\frac{1}{2}})$. Then Lemma 5 produces the following estimate of the s -conductance C_s :

Lemma 6 There exists a absolute constant c such that when the step size

$$h = \frac{c_1 \alpha^{\frac{1}{2}}}{\beta^{\frac{4}{3}} d^{\frac{1}{2}} \log(d\kappa/s)},$$

the s -conductance of the MALA chain satisfies

$$C_s \gtrsim \sqrt{\alpha h}.$$

Finally, combining Lemmas 1 and 6 we obtain the desired result. ■

Roughly speaking, Theorem 2 shows that when the step size h is chosen as $\tilde{O}(d^{-\frac{1}{2}})$, the mixing time of MALA is bounded by

$$\tau_{\text{mix}}(\varepsilon, \mu_0; d) = O\left(\frac{d^{\frac{1}{2}}}{(\log \varepsilon)^2}\right).$$

Although the dependence of τ_{mix} on the error tolerance ε is not optimal, the dependence on the dimension d is quite satisfactory. It shows that every $O(d^{\frac{1}{2}})$ iterations of MALA must provide an uncorrelated sample of the target distribution π . Now, a natural question is, does the choice $\mathcal{O}(d^{-\frac{1}{2}})$ of the step size h has an exponent? That is to say, if we choose h to be $\tilde{O}(d^{-\frac{1}{2}+\delta})$ for a small constant $\delta > 0$, will the mixing time be smaller or larger? This question will be answered in the analysis of the lower bound complexity.

4 Lower bound estimate

The lower bound estimate of MALA's mxing time $\tau_{\text{mix}}(\varepsilon, \mu_0; d)$ requires different settings from the upper bound estimate. Since the mixing time of a Markov chain is governed by the inverse of the spectral gap λ (see Corollary 1), and λ itself is bounded by the conductance

C , we can identify the lower bound of the complexity of MALA by estimating the upper bound of either the spectral gap λ or the conductance C . Here, we recall that λ (or C) only depends on potential function $V(\mathbf{x})$ and the step size h . Therefore, the problem of the upper bound of λ (or C) can be proposed as follows:

Given the dimension d and the parameters $0 < \alpha \leq 1 \leq \beta$. We aim to find a positive constant $c = c(d, \alpha, \beta)$, such that there exists a α -convex β -smooth potential function $V(\mathbf{x})$ in \mathbb{R}^d , and the corresponding MALA transition kernel

$$T(\mathbf{x}, \mathbf{y}) = [1 - A(\mathbf{x})]\delta_{\mathbf{x}}(\mathbf{y}) + Q(\mathbf{x}, \mathbf{y})A(\mathbf{x}, \mathbf{y})$$

defined in (3) has the spectral gap λ (or the conductance C)

$$\lambda \leq c(d, \alpha, \beta), \quad (\text{or } C \leq c(d, \alpha, \beta)).$$

In particular, the key point the problem above is find an instance of the potential function $V(\mathbf{x})$, such that using MALA to obtain new samples of π is very difficult. In the thesis [1], the instance is constructed as

$$V_{\eta}(\mathbf{x}) = \frac{\|\mathbf{x}\|^2}{2} - \frac{1}{2d^{2\eta}} \sum_{i=1}^d \cos(d^{\eta}x_i), \quad (17)$$

where $\eta \in (0, \frac{1}{4})$ is a parameter. The corresponding target distribution is

$$\pi_{\eta}(\mathbf{x}) \propto \exp(-V_{\eta}(\mathbf{x})), \quad \mathbf{x} \in \mathbb{R}^d. \quad (18)$$

The potential function $V_{\eta}(\mathbf{x})$ is always $\frac{1}{2}$ -convex $\frac{3}{2}$ -smooth, and can be viewed as the sum of a Gaussian part $V_G(\mathbf{x})$ and the perturbation part $V_P(\mathbf{x})$ given by

$$V_G(\mathbf{x}) = \frac{\|\mathbf{x}\|^2}{2}, \quad V_P(\mathbf{x}) = -\frac{1}{2d^{2\eta}} \sum_{i=1}^d \cos(d^{\eta}x_i).$$

The following result show that the conductance C can be exponentially small with respect to the dimension d if we choose the step size $h \geq d^{-\frac{1}{2}+3\delta}$ for some $\delta > 0$.

Theorem 3 Fix $\delta \in (0, \frac{1}{18})$ and $\eta = \frac{1}{4} - \delta$. Let C denotes the conductance of MALA chain with the target distribution π_{η} and the step size h . Then if $h \in [d^{-\frac{1}{2}+3\delta}, d^{-\frac{1}{3}}]$, we have

$$C \lesssim \exp(-\Omega(d^{4\delta})). \quad (19)$$

Sketch of proof. An intuitive interpretation of this result is provided as follows:

1. It can be computed that the standard Gaussian distribution $\mathcal{N}(0, I_d)$ satisfies

$$\text{KL}(\mathcal{N}(0, I_d) || \pi_\eta) = O(d^{1-4\eta}).$$

Therefore, to ensure that π_η is far away from the standard Gaussian distribution $\mathcal{N}(0, I_d)$ (so that π_η is difficult to sample), we need to choose $\eta \in (0, \frac{1}{4})$.

2. The fluctuation length in the perturbation potential $V_P(\mathbf{x})$ is $d^{-\eta}$, while the movement of the Langevin proposal in a single coordinate is $O(\sqrt{h})$. Therefore, the step size h needs to satisfy the relation $h \lesssim d^{-2\eta}$ to sample the correct distribution, otherwise MALA will directly ignore the high-frequency potential function $V_P(\mathbf{x})$ and produce samples from the standard Gaussian distribution $\mathcal{N}(0, I_d)$.

For simplicity, we omit the subscript η in the target distribution $\pi_\eta(\mathbf{x})$ and simply write $\pi(\mathbf{x})$. Also note that the distribution $\pi(\mathbf{x})$ is separable, since we have

$$\pi(\mathbf{x}) = \prod_{i=1}^d \pi_1(x_i), \quad \mathbf{x} \in \mathbb{R}^d.$$

where $\pi_1(x) \propto \exp(-V_1(x))$ is a probability density in \mathbb{R} , and the potential function $V_1(x)$

$$V_1(x) = -\frac{1}{2d^{2\eta}} \cos(d^\eta x), \quad x \in \mathbb{R}.$$

After these preparations, we are ready to provide the main part of the proof. First we need the following property of the conductance C :

Lemma 7 Let $E \subset \mathbb{R}^d$ be a Borel set such that $\pi(E) \geq \frac{1}{2}$. Then C is bounded by

$$C \leq 2 \sup_{\mathbf{x} \in E} \int_{\mathbb{R}^d} Q(\mathbf{x}, \mathbf{y}) A(\mathbf{x}, \mathbf{y}) d\mathbf{y}.$$

According to the upper bound of the conductance C in Lemma 7, we only need to prove that there exists a Borel set $E \subset \mathbb{R}^d$ with $\pi(E) \geq \frac{1}{2}$ such that

$$\sup_{\mathbf{x} \in E} \int_{\mathbb{R}^d} Q(\mathbf{x}, \mathbf{y}) A(\mathbf{x}, \mathbf{y}) d\mathbf{y} \leq \exp(-\Omega(d^{4\delta})). \quad (20)$$

The writer personally views (20) as the inverse form of the minorization condition in Doeblin theorem (or Harris ergodic theorem), thus a proper name for the inequality (20) could be the maximization condition, which demonstrates the property that the acceptance probability must be exponentially small in a large Borel set (with probability at least $\frac{1}{2}$).

Note that $Q(\mathbf{x}, \mathbf{y}) A(\mathbf{x}, \mathbf{y})$ in the LHS of (20) is bounded by

$$\int_{\mathbb{R}^d} Q(\mathbf{x}, \mathbf{y}) A(\mathbf{x}, \mathbf{y}) d\mathbf{y} \leq \frac{1}{(4\pi h)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \exp\left(V(\mathbf{x}) - V(\mathbf{y}) - \frac{\|\mathbf{y} - \mathbf{x} - h\nabla V(\mathbf{y})\|^2}{4h}\right) d\mathbf{y} = I_1(\mathbf{x}) I_2(\mathbf{x}),$$

where the quantities $I_1(\mathbf{x})$ and $I_2(\mathbf{x})$ are given by

$$I_1(\mathbf{x}) = \frac{1}{(1+h^2)^{\frac{d}{2}}} \exp\left(\frac{h^2\|\mathbf{x}\|^2}{2(1+h^2)} + V_{\mathbf{P}}(\mathbf{x})\right),$$

$$I_2(\mathbf{x}) = \mathbb{E}_{\mathbf{y} \sim \mu_{\mathbf{x}}} \exp\left(V_{\mathbf{P}}(\mathbf{x}) - V_{\mathbf{P}}(\mathbf{y}) + \frac{1}{2}((1-h)\mathbf{y} - \mathbf{x})^T \nabla V_{\mathbf{P}}(\mathbf{y}) - \frac{h}{4}\|\nabla V_{\mathbf{P}}(\mathbf{y})\|^2\right),$$

and the conditional distribution

$$\mu_{\mathbf{x}} := \mathcal{N}\left(\frac{1-h}{1+h^2}\mathbf{x}, \frac{2h}{1+h^2}I_d\right).$$

Now we only need to prove that there is a Borel set $E \subset \mathbb{R}^d$ with $\pi(E) \geq \frac{1}{2}$ such that

$$I_1(\mathbf{x}) \leq \exp\left(-\frac{1}{8}d^{1-4\eta} + o(d^{1-4\eta})\right), \quad I_2(\mathbf{x}) \leq \exp\left(\frac{1}{16}d^{1-4\eta} + o(d^{1-4\eta})\right). \quad (21)$$

To construct such a $E \subset \mathbb{R}^d$ and prove (21), we need the following two lemmas.

Lemma 8 Assume the step size $h \leq d^{-\frac{1}{3}}$. Then there exists a Borel set $E_1 \subset \mathbb{R}^d$ with $\pi(E_1) \geq \frac{3}{4}$ such that for $\mathbf{x} \in E_1$,

$$I_1(\mathbf{x}) = \frac{1}{(1+h^2)^{\frac{d}{2}}} \exp\left(\frac{h^2\|\mathbf{x}\|^2}{2(1+h^2)} + V_{\mathbf{P}}(\mathbf{x})\right) \leq \exp\left(-\frac{1}{8}d^{1-4\eta} + o(d^{1-4\eta})\right).$$

It is easy to see the second order moments of the target distribution π is $d + O(d^{1-4\eta})$. Using the concentration inequality, there exists a Borel set $E'_1 \subset \mathbb{R}^d$ with $\pi(E'_1) \geq \frac{7}{8}$ such that for any $\mathbf{x} \in E'_1$,

$$\|\mathbf{x}\|^2 \leq d + O(d^{1-4\eta}) + O(d^{\frac{1}{2}}).$$

As a consequence, for $\mathbf{x} \in E'_1$ we obtain the inequality

$$\frac{1}{(1+h^2)^{\frac{d}{2}}} \exp\left(\frac{h^2\|\mathbf{x}\|^2}{2(1+h^2)}\right) \leq \exp\left(O(d^{1-4\eta}h^2) + O(d^{\frac{1}{2}}h^2)\right). \quad (22)$$

On the other hand, the separability of the potential function $V(\mathbf{x})$ implies that

$$\mathbb{E}_{\mathbf{x} \sim \pi}[V_{\mathbf{P}}(\mathbf{x})] = -\frac{1}{2d^{2\eta}} \sum_{i=1}^d \mathbb{E}_{x_i \sim \pi} \cos(d^\eta x_i) = -\frac{1}{8}d^{1-4\eta} + O(d^{1-8\eta}).$$

Then there exists a Borel set $E''_1 \subset \mathbb{R}^d$ with $\pi(E''_1) \geq \frac{7}{8}$ such that for $\mathbf{x} \in E''_1$,

$$\exp[V_{\mathbf{P}}(\mathbf{x})] \leq \exp\left(-\frac{1}{8}d^{1-4\eta} + o(d^{1-4\eta})\right). \quad (23)$$

Concluding (22) and (23) we obtain the result by choosing $E_1 = E'_1 \cap E''_1$.

Lemma 9 Assume the step size $h \in [d^{-\frac{1}{2}+3\delta}, d^{-\frac{1}{3}}]$. Then there exists a Borel set $E'_2 \subset \mathbb{R}^d$ with $\pi(E'_2) \geq \frac{3}{4}$ such that for any $\mathbf{x} \in E'_2$,

$$\begin{aligned} I_2(\mathbf{x}) &= \mathbb{E}_{\mathbf{y} \sim \mu_{\mathbf{x}}} \exp \left(V_{\mathbf{P}}(\mathbf{x}) - V_{\mathbf{P}}(\mathbf{y}) + \frac{1}{2} ((1-h)\mathbf{y} - \mathbf{x})^T \nabla V_{\mathbf{P}}(\mathbf{y}) - \frac{h}{4} \|\nabla V_{\mathbf{P}}(\mathbf{y})\|^2 \right) \\ &\leq \exp \left(\frac{1}{16} d^{1-4\eta} + o(d^{1-4\eta}) \right). \end{aligned}$$

We choose the Borel set E_2 with $\pi(E_2) \geq \frac{3}{4}$ such that

$$\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq d} |x_i| \leq 4\sqrt{\ln(8d)}.$$

Since the potential function $V_{\mathbf{P}}(\mathbf{x})$ is separable, we only need to show

$$\mathbb{E}_{y_i \sim \mu_{x_i}} \exp \left(\frac{\cos(d^\eta y_i)}{2d^{2\eta}} + \frac{((1-h)y_i - x_i) \sin(d^\eta y_i)}{4d^\eta} - \frac{h \sin^2(d^\eta y_i)}{16d^{2\eta}} \right) \leq \exp \left(\frac{1}{16} d^{-4\eta} + o(d^{-4\eta}) \right), \quad (24)$$

where μ_{x_i} is the Gaussian distribution $\mathcal{N}(\frac{1-h}{1+h^2}x_i, \frac{2h}{1+h^2})$. Take the first component as the example. When $y_1 \sim \mu_{x_1}$, we can write

$$y_1 = \frac{1-h}{1+h^2}x_1 + \sqrt{\frac{2h}{1+h^2}}\xi, \quad \xi \sim \mathcal{N}(0, 1).$$

In this case, (24) can be equivalently written as

$$\mathbb{E}_{\xi} \exp \left(\underbrace{\frac{\cos(d^\eta y_1)}{2d^{2\eta}}}_{\Delta_1} - \underbrace{\frac{h \sin(d^\eta y_1)}{16d^{2\eta}}}_{\Delta_2} - \underbrace{\frac{2\bar{h}x_1 \sin(d^\eta y_1)}{4d^\eta}}_{\Delta_3} + \underbrace{\frac{\sqrt{2\tilde{h}}\xi \sin(d^\eta y_1)}{4d^\eta}}_{\Delta_4} \right) \leq \exp \left(\frac{1}{16} d^{-4\eta} + o(d^{-4\eta}) \right), \quad (25)$$

where the constants $\bar{h} := h/(1+h^2)$ and $\tilde{h} := (1-h)^2h/(1+h^2)$. Roughly speaking, the main parts of the LHS of (25) are the first the second order parts, namely

$$\begin{aligned} (\leq 1\text{st order}) &= 1 + \mathbb{E}\Delta_1 - \mathbb{E}\Delta_2 - \mathbb{E}\Delta_3 + \mathbb{E}\Delta_4 = 1 - \frac{h}{32d^{2\eta}} + o(d^{-5\eta}), \\ (\leq 2\text{nd order}) &= \frac{1}{16d^{4\eta}} + \frac{\tilde{h}}{32d^{2\eta}} + o(d^{-4\eta}). \end{aligned}$$

Concluding these two inequalities, we can show that

$$\mathbb{E}_{\xi} \exp (\Delta_1 - \Delta_2 - \Delta_3 + \Delta_4) \leq \exp \left(\frac{1}{16d^{4\eta}} + o(d^{-4\eta}) \right),$$

which completes the proof. \blacksquare

Finally, Lemmas 8 and 9 produce the inequality (21) with the choice $E = E_1 \cap E_2$. \blacksquare

Our final result is that the spectral gap λ has a trivial upper bound h .

Theorem 4 The spectral gap λ of MALA chain with the target distribution π_η and the step size $0 < h \leq 1$ satisfies $\lambda \lesssim h$.

The proof is short and can be found on Page 95 of the thesis [1].

5 Optimal choice of step size h

Collecting the complexity results in Theorems 2, 3 and 4, we are now ready to discuss the optimal choice of the step size h for a general α -convex β -smooth potential function $V(\mathbf{x})$.

First, Theorem 2 shows that $h = \tilde{O}(h^{-\frac{1}{2}})$ is a reasonable choice, as the mixing time $\tau_{\text{mix}}(\varepsilon, \mu_0; \mathbf{d})$ is bounded by $O(d^{\frac{1}{2}}(\log \varepsilon)^{-2})$. Furthermore, an effective sample of the target distribution π can be obtained within $O(\sqrt{d})$ steps. Next, Theorem 4 implies $O(h^{-1}(\log \varepsilon)^{-1})$ is a lower bound of the mixing time, which motivates us to choose a larger step size h to acquire better convergence rates. Finally, Theorem 3 shows that if the step size $h = d^{-\frac{1}{2}+3\delta}$ for any sufficiently small $\delta > 0$, then the mixing time must grow exponentially with the dimension d . Therefore, $h = \tilde{O}(h^{-\frac{1}{2}})$ is an optimal choice for step size h with a general convex function potential.

References

- [1] Chen Lu. *Upper and Lower Bounds for Sampling*. PhD thesis, Massachusetts Institute of Technology, 2023.
- [2] Gregory F Lawler and Alan D Sokal. Bounds on the L^2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality. *Transactions of the American mathematical society*, 309(2):557–580, 1988.
- [3] Yin Tat Lee and Santosh S Vempala. Stochastic localization+Stieltjes barrier=tight bound for log-Sobolev. In *Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing*, pages 1122–1129, 2018.