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In this note, we show that for a diffusion process in R%, how the functional inequalities
are related to exponential convergence of the diffusion process. In particular, the log-
Sobolev inequality implies the exponential decay of the KL divergence, while the Poincaré
inequality implies the exponential decay of the y2-divergence. The content of this paper is

based on [1].

1 Problem setup

Let V(x) be the potential function in R, and we consider the diffusion process (X;)i=o
defined by
dX; = —VV(X;) + V2dB;, (1)

where (By);>0 is the Brownian motion in R?. Under mild conditions on the potential
function V' (z), the unique invariant distribution is

m(x) = le_v(g”), Z = / e V@,
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The Fokker—Planck equation corresponding to the diffusion process (1) is
Oppe =V - (VV (@) pe) + A, (2)

where () is the density of the distribution law of X;.
To measure the difference of a distribution p(x) from the target distribution, introduce
two the KL divergence and the y?-divergence by

X2 (ullm) = Eﬂ[(jf: - 1)2] :/ ('u(x)_—wda: :/R @) g,

R4 m(r) a m(x)




Using the inequality
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we immediately obtain
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Hence y2-divergence is stronger than the KL divergence.

2 Diffusion process as Wasserstein-2 gradient flow

An important property of the diffusion process (1) is that its Fokker—Planck equation (2)
can be equivalently interpreted as the gradient flow of the KL divergence in the Wasserstein-
2 metric. Recall that (Py(RY), W) is a complete metric space of probability distributions,
where P2 (R?) contains the distribution p with finite second-order moments, namely,

/ |22 p(z)dz < 4o0.
Rd

Furthermore, W, is the Wasserstein-2 distance of the probaility distributions in Po(R%):
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where I'(u, ) is the set of the joint distributions on R? x R? whose marginal distributions
in the first and second components are p and v, respectively.

For a general functional F'(x) in Po(R?), the Wasserstein-2 gradient flow of the distri-
butions (p¢)¢>0 is defined by

oF
Ope =V - — 3
i =V (TG ). ®)
which is an anolgue of the continuity equation. When F'(u) is the KL divergence, we have
OF wu(x) OF  Vu(x)
— =1+4+log——= =logu(x)+ V(x) + const. = V— = + VV(x).
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Then we find that (3) is exactly the same with the Fokker—Planck equation (2). Note that
(2) and (3) can also be written as

d
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which avoids using the potential V' (z) explicitly. These findings above imply the decay of
the KL(u||m) can be used to quantify the convergence rate of the diffusion process.



3 Decay rate of KL and y?-divergences

When the distribution (pt)¢>0 evolves according to the Fokker—Planck equation (2) or
the gradient flow (3), we aim to find the sufficient conditions of the exponential decay of
KL(p¢||m) or x?(pe||7). Direct calculation shows that
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where the RHS is known as the Fisher information. According to (4), a sufficient condition
for the exponential decay of KL(p||7) is

Bue(g?) = [ Pogl?)an — [ gan)oe( [ gan) <20us [ 1alfan )

which is known as the log-Sobolev inequality, where Crg is the log-Sobolev constant. By

choosing g = \/dp¢/dm in (5), we find that (5) becomes
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and thus from (4) we obtain
KL(pe]|7) < e/ UKL (pao ).

Similar results can be established for the y2-divergence. Using the integration by parts,
it is easy to compute
d
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hence a sufficient condition for the exponential decay of x?(u/|r) is
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which is known as the Poincaré inequality, where Cp is the Poincaré constant. By choosing
g = dp/dm in (7), we obtain
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and thus from (6) we obtain
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Now comes an interesting question. It is known that the log-Sobolev inequality is
stronger than the Poincaré inequality [2], namely, Crg > Cp. As a consequence, the
convergence derived from the Poincaré inequality is always faster than the log-Sobolev
inequality. Also, since x2-divergence is stronger than the KL divergence, our arguments
imply that the Poincaré inequality yields both a faster convergence rate and a stronger
convergence compared to the log-Sobolev inequality. Does it mean that it is more beneficial
to employ the Poincaré inequality?

Not always. One point is that LS requires a weaker requirement on the initial distribu-
tion (weaker than L?). Also, the uniform-in-IN ergodicity of the interacting particle system
can be derived using the log-Sobolev inequality rather than the Poincaré inequality [3].
The generalized I" calculus is also compatible with the log-Sobolev inequality [1].
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