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Section 1

采样问题和采样算法简介
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计算数学中的采样问题

计算数学中的采样 (sampling)问题的出现源于对高维分布的近似.

给定目标分布 𝜋(x) ∝ e−V(x) ,其中V(x)是Rd上的势能函数. 采样的目
标是高效生成一列样本点 (Xn)∞n=0,使得当n充分大时, Xn的分布

𝜇n ∈ P(Rd)能快速且准确地收敛到目标分布 𝜋(x).

采样问题广泛地出现在计算物理,数据科学和机器学习等领域. 典型
的应用场景包括: 自由能的计算,贝叶斯推断和扩散生成式模型.
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采样算法简介

解决采样问题的核心是设计合适的采样算法. 在大部分采样算法中,
算法在每个迭代点Xn ∈ Rd附近收集V(x)或∇V(x)的信息,并用于确
定下一个迭代点Xn+1的位置.

采样算法的复杂度是指调取V(x)和∇V(x)的次数.

常用的采样算法包括:
• Metropolis–Hastings算法
• Hamiltonian Monte Carlo (HMC)
• 基于Langevin动力学的离散格式: Euler–Maruyama, MALA,

randomized midpoint, BAOAB & UBU
• 随机梯度采样算法: SG-LD, SG-HMC, RBM
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采样算法的误差刻画

在本报告中,我们主要研究基于Langevin动力学的采样算法. 遍历性
是刻画Langevin动力学收敛速度的核心概念.

设随机过程 (xt)t⩾0的对偶半群为 (Pt)t⩾0,即若 x0 ∼ 𝜈,则 xt ∼ 𝜈Pt. 若 𝜋

是 (xt)t⩾0的不变分布,即

𝜋Pt = Pt, ∀t ⩾ 0,

且存在常数C, 𝜆 > 0使得以及一个概率度量d(·, ·),使得

d(𝜈Pt, 𝜋) ⩽ Ce−𝜆td(𝜈, 𝜋), ∀t ⩾ 0,

则称 (xt)t⩾0具有遍历性.

常用的概率度量包括: 全变差, Wasserstein距离和KL散度 (相对熵).
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采样算法的误差刻画

为Langevin动力学 (xt)t⩾0的离散格式指定步长h > 0,可以得到离散
解 (Xn)∞n=0. 采样误差与Langevin动力学的收敛速度和步长均相关.

例: Rd上的过阻尼Langevin动力学形如

dxt = −∇U(xt) +
√

2dBt, t ⩾ 0,

其中 (Bt)t⩾0为Brown运动. 它的Euler–Maruyama格式为

Xn+1 = Xn − h∇U(Xn) +
√

2h(B(n+1)h − Bnh), n ⩾ 0.

上述离散解 {Xn}∞n=0的误差可控制为: (定理5, [BDMS18])

W2(𝜈P̃h
n, 𝜋) ⩽ Ce−𝜆nh + Ch,

其中C, 𝜆为常数, P̃h
n为 (Xn)∞n=0的对偶半群.
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采样算法的误差刻画

一般地,假设Langevin动力学 (xt)t⩾0的离散解为 (Xn)∞n=0,且其对偶半
群为 P̃h

n. 若存在一个满足 lim
h→0

𝜀(h) = 0的误差函数 𝜀(h),使得

d(𝜈P̃h
n, 𝜋) ⩽ Ce−𝜆nh + C𝜀(h),

则称 (Xn)∞n=0的采样误差具有指数衰减性.

本报告的主题对于特定的高维Langevin动力学及其离散格式,证明
相应的遍历性和采样误差的指数衰减性.
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博士期间的主要工作

主要研究了路径积分分子动力学 (path integral molecular dynamics)和随机
分组方法 (random batch method)的遍历性和采样误差:

1 Efficient sampling of thermal averages of interacting quantum particle
systems with random batches (J. Chem. Phys., 2021)

2 Ergodicity and long-time behavior of the random batch method for
interacting particle systems (M3AS, 2023)

3 Error analysis of time-discrete random batch method for interacting
particle systems and associated mean-field limits
(IMA J. Numer. Anal., 2023)

4 Dimension-free ergodicity of path integral molecular dynamics
(accepted by CiCP, 2023)
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Section 2

路径积分分子动力学
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正则系综平均的路径积分表示

路径积分分子动力学 (path integral molecular dynamics)是计算量子
系统的正则系综 (canonical ensemble)平均的一套标准方法.

Rd中的量子系统可由Hamilton算子

Ĥ = −Δ
2
+ V(x̂),

来描述,该系统在温度T下的正则系综由密度算子

𝜌̂𝛽 =
1
Z𝛽

e−𝛽Ĥ,

其中 𝛽 = 1/(kBT),而Z𝛽 = Tr
[
e−𝛽Ĥ]是配分函数 (partition function).
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路径积分分子动力学

观测算子O(x̂)在正则系宗 𝜌̂𝛽中的平均定义为

〈O(x̂)〉𝛽 =
1
Z𝛽

Tr
[
e−𝛽ĤO(x̂)

]
=

1
Z𝛽

∫
Rd

〈x|e−𝛽Ĥ |x〉O(x)dx,

其中 〈x|e−𝛽Ĥ |y〉是 e−𝛽Ĥ作为迹类 (trace class)算子的核函数,而

Z𝛽 = Tr
[
e−𝛽Ĥ] = ∫

Rd
〈x|e−𝛽Ĥ |x〉dx

是系统的配分函数.

计算 〈O(x̂)〉𝛽的关键,在于估计并采样密度函数 〈x|e−𝛽Ĥ |x〉.
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正则系综平均的路径积分表示

计算 〈x|e−𝛽Ĥ |x〉本质上需要求解 Ĥ对应的抛物方程,若直接使用空间
离散或谱方法,计算复杂度将随d指数级增长 (维数灾难).

路径积分提供了近似 〈x|e−𝛽Ĥ |x〉的一种方法,且复杂度随d线性增长.

给定 x1 ∈ Rd,利用路径积分中的时间切片法, 〈x1 |e−𝛽Ĥ |x1〉可近似为

〈x1 |e−𝛽Ĥ |x1〉

≈
∫ N∏

j=1

〈
xj
��e− 𝛽N

2 Ve
𝛽N
2 Δe−

𝛽N
2 V��xj+1

〉
dx2 · · · dxN (使用Strang分裂)

=
1

(2𝜋𝛽N)
dN
2

∫
exp

(
− 1

2𝛽N

N∑
j=1

|xj − xj+1 |2 − 𝛽N

N∑
j=1

V(xj) − EN (x)
)
dx2 · · · dxN,

其中 𝛽N = 𝛽/N, xN+1 = x1.
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正则系综平均的路径积分表示

上述表达式包含N珠-环聚合物 (N-bead ring polymer)的势能函数:

EN(x) =
1

2𝛽N

N∑
j=1

|xj − xj+1 |2 + 𝛽N

N∑
j=1

V(xj),

其中相邻的珠由弹性势能 |xj − xj+1 |2连接.

x1

x2

x3
x4x5

x6

x7

x8x9 x10

图: 一个10珠-环聚合物的图示
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正则系综平均的路径积分表示

采样Rd中的密度函数 〈x|e−𝛽Ĥ |x〉可转化为采样RdN中的经典Gibbs
分布 𝜋N(x) ∝ exp(−EN(x)).

由于Strang分裂的局部误差是O(𝛽3
N),使用

〈Ô〉𝛽,N :=
1
ZN

∫
RdN

(
1
N

N∑
j=1

O(xj)
)

exp(−EN(x))dx

估计系综平均 〈Ô〉𝛽时的误差为O(N𝛽3
N).

路径积分表示只有在N足够大时才能得到精确的系综平均.
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主要贡献

EN(x) =
1

2𝛽N

N∑
j=1

|xj − xj+1 |2 + 𝛽N

N∑
j=1

V(xj), 𝜋N(x) ∝ exp(−EN(x)).

为采样目标分布 𝜋N(x),需要构造RdN上的Langevin动力学,使其不
变分布恰好为 𝜋N(x),并且离散该动力学所需的步长h不依赖于N.

论文的主要贡献是,采样分布 𝜋N(x)的Langevin动力学拥有与珠数N
无关的收敛速率. 收敛速率的值依赖于势能函数V(x)的正则性条件.
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正则坐标下的Langevin动力学

利用正则坐标变换,可以将N珠-环聚合物的势能函数改写为

EN(ξ) =
1

2𝛽2
N

N−1∑
k=0

𝜔2
k |𝜉k |2 + 𝛽N

N∑
j=1

V
( N−1∑

k=0
𝜉kcj,k︸    ︷︷    ︸

xj (ξ)

)
,

其中 cj,k为离散Fourier系数: cj,0 =
1
√
𝛽

,

cj,2k−1 =

√
2
𝛽

sin
(
2𝜋kj

N

)
, cj,2k =

√
2
𝛽

cos
(
2𝜋kj

N

)
, k = 1, · · · , N − 1

2
,

而𝜔k对应于N珠-环聚合物的第 k个模的特征振荡频率:

𝜔0 = 0, 𝜔2k−1 = 𝜔2k =
2
𝛽N

sin
(
k𝜋
N

)
, k = 0, 1, · · · , N − 1

2
.
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正则坐标下的Langevin动力学

第 k个模的振荡频率𝜔k随 k线性增长. 如果在Langevin动力学中直
接使用−∇EN(ξ)作为下降方向,则会在时间离散中遇到刚性问题.

可以使用预条件方法克服EN(ξ)的刚性. 引入a > 0并定义势能函数

Va(x) = V(x) − a
2
|x|2, x ∈ Rd,

则N珠-环聚合物的势能可以改写为

EN(ξ) =
1

2𝛽2
N

N−1∑
k=0

(𝜔2
k + a) |𝜉k |2 + 𝛽N

N∑
j=1

Va
( N−1∑

k=0
𝜉kcj,k︸    ︷︷    ︸

xj (ξ)

)
,

其中每一个 |𝜉k |2的系数𝜔2
k + a > 0.
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正则坐标下的Langevin动力学

在第 k个模上使用 (𝜔2
k + a)−1作为预条件系数,则Langevin动力学形如

¤𝜉k = − 1
𝜔2

k + a
∇EN(ξ) +

√
2

𝜔2
k + a

¤Bk, k = 0, 1, · · · ,N − 1,

其中 {Bk}N−1
k=0 是Rd上独立的Brown运动. 上述动力学可以等价地写为

预条件过阻尼Langevin动力学

¤𝜉k = −𝜉k −
1

𝜔2
k + a

N∑
j=1

∇Va(xj(ξ))cj,k +
√

2
𝜔2

k + a
¤Bk, k = 0, 1, · · · ,N − 1.

该动力学的不变分布是 𝜋N(ξ) ∝ exp(−EN(ξ)).
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正则坐标下的Langevin动力学

若在正则坐标 {𝜉k}N−1
k=0 的基础上再引入正则速度 {𝜂k}N−1

k=0 ,则也可得到欠
阻尼版本的预条件Langevin动力学.

预条件欠阻尼Langevin动力学


¤𝜉k = 𝜂k,

¤𝜂k = −𝜉k −
𝛽N

𝜔2
k + a

N∑
j=1

∇Va(xj(ξ))cj,k − 𝜂k +
√

2
𝜔2

k + a
¤Bk,

k = 0, 1, · · · ,N−1.

该动力学的不变分布是

𝜇N(ξ,η) ∝ exp
(
− 1

2

N−1∑
k=0

(𝜔2
k + a)( |𝜉k |2 + |𝜂k |2) − 𝛽N

N∑
j=1

Va
( N−1∑

k=0
𝜉kcj,k

))
.
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预条件Langevin动力学的遍历性

接下来叙述预条件Langevin动力学的遍历性结果. 需要如下假设:

基本假设

给定常数 a > 0,势能函数

Va (x) = V(x) − a
2
|x|2, x ∈ Rd,

在Rd上二阶可微,且存在常数M1,M2 ⩾ 0使得:

1 Va (x)可以被分解为
Va (x) = Vc (x) + Vb (x),

其中∇2Vc (x) ≽ Od且 |Vb (x) | ⩽ M1对任意 x ∈ Rd成立.

2 Va (x)的Hesse矩阵满足

−M2Id ≼ ∇2Va (x) ≼ M2Id

对任意 x ∈ Rd成立.
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预条件Langevin动力学的遍历性

定理 3.1 (p. 39)
令 (Pt)t⩾0是预条件过阻尼Langevin动力学的Markov半群,则对R2dN任意

恒正的光滑函数 f(ξ),有

Ent𝜋N (Ptf) ⩽ e−2𝜆1tEnt𝜋N (f), ∀t ⩾ 0,

其中收敛速率𝜆1 = exp(−4𝛽M1).

这里Ent𝜋N (f)是指密度函数 f(ξ,η)在 𝜋N中的相对熵:

Ent𝜋N (f) :=
∫
Rd

f log fd𝜋N −
( ∫

Rd
fd𝜋N

)
log

( ∫
Rd

fd𝜋N

)
.
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预条件Langevin动力学的遍历性

定理 3.2 (p. 41)
令 (Pt)t⩾0是预条件欠阻尼Langevin动力学的Markov半群,则对R2dN中任

意恒正的光滑函数 f(ξ,η),有

W𝜇N (Ptf) ⩽ e−2𝜆2tW𝜇N (f), ∀t ⩾ 0,

其中收敛速率𝜆2 =
a2

3M2
2 + 5a2

exp(−4𝛽M1).

这里W𝜇N (f)是指密度函数 f(ξ,η)在 𝜋N中的类相对熵:

W𝜇N (f) =
(M2

2
a2 + 1

)
Ent𝜇N (f) +

N−1∑
k=0

1
𝜔2

k + a

∫
R2dN

|∇𝜂k f − ∇𝜉k f|2 + |∇𝜂k f|2

f d𝜇N.
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预条件Langevin动力学的遍历性

定理3.1和3.2中的收敛速率𝜆1和𝜆2均不依赖于珠数N. 主要证明技术:

泛函不等式 (Bakry–Émery理论,研究扩散过程的遍历性)

Bakry, Gentil & Ledoux. (2014). Analysis and geometry of Markov
diffusion operators (Vol. 103). Cham: Springer.

Wang. (2006). Functional inequalities Markov semigroups and spectral
theory. Elsevier.

广义Γ算子 (研究退化扩散过程的遍历性)

Monmarché, P. (2019). Generalized Γ calculus and application to
interacting particles on a graph. Potential Analysis, 50(3), 439–466.
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数值算例: 1维势能函数

令势能函数V(x)和观测函数O(x)定义为:

V(x) = 1
2

x2 + x cos x, O(x) = sin
( 𝜋
2

x
)
, x ∈ R.

采用预条件欠阻尼Langevin动力学,取步长h = 1
16和演化时间T = 5 × 106.

图: 计算正则系宗平均 〈O(x̂)〉𝛽的时间平均误差. 左: 𝛽 = 1. 右: 𝛽 = 4.

可以看出不同的珠数N对应的收敛速度大致相同.
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Section 3

随机分组方法
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相互作用粒子系统

相互作用粒子系统 (interacting particle system, IPS)在计算物理、计
算化学乃至定量经济学都有重要的应用.

设Rd中的N个粒子受到外部势能U(x)和相互作用势能V(x)的作用,
则RdN中的目标分布 𝜋(x)可以写为

𝜋(x) ∝ exp©­«−
N∑

i=1
U(xi) − 1

N − 1

∑
1⩽i<j⩽N

V(xi − xj)ª®¬.
目标: 使用漂移力b(x) = −∇U(x)和相互作用力K(x) = −∇V(x)的信
息高效采样 𝜋(x).

睦 (北京大学) 复杂随机过程和数值方法的遍历性和长时间误差 2025年 5月 26日 27 / 40



采样问题和采样算法简介 路径积分分子动力学 随机分组方法 总结和致谢

相互作用粒子系统

可以构造一个Langevin动力学采样目标分布 𝜋(x).

相互作用粒子系统 (IPS):

¤xi
t = b(xi

t) +
1

N − 1

∑
j≠i

K(xi
t − xj

t) +
√

2 ¤Bi
t, i = 1, · · · ,N,

其中 {Bi
t}N

i=1为独立的Brown运动.

在 IPS的离散格式中,计算全部的相互作用力 {K(xi − xj)}i≠j需

要O(N2)的复杂度,这在粒子数N较大时是非常大的开销.
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相互作用粒子系统

随机分组方法 (RBM)是采样 IPS的一种快速算法,它的核心思想是
类似于随机梯度下降 (SGD)给出粒子所受合力的无偏估计.

给定Rd中的粒子系统 {xi}N
i=1. 若C是 {1, · · · ,N}的大小为p的随机子

集,则在 i ∈ C的条件下,有

E
[

1
p − 1

∑
j∈C,j≠i

K(xi − xj) : i ∈ C
]
=

1
N − 1

∑
j≠i

K(xi − xj),

因此左式是 xi所受合力的无偏估计.
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相互作用粒子系统

若在每次迭代中,将 {1, · · · ,N}划分为若干大小为p的子集,且只在
这些子集内部计算相互作用力,则可显著降低复杂度.

随机分组相互作用粒子系统 (RB–IPS):

对每个n ⩾ 0,将 {1, · · · ,N}随机划分为大小为p的子集C1, · · · , Cq.
当 t ∈ [nh, (n + 1)h)时, yt = {yi

t}N
i=1满足

¤yi
t = b(yi

t) +
1

p − 1

∑
j≠i,j∈C

K(yi
t − yj

t) +
√

2 ¤Bi
t, i ∈ C,

其中C ∈ {C1, · · · , Cq}是包含粒子 i的唯一子集.

RB–IPS中相互作用力的复杂度为O(Np).
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相互作用粒子系统

在RB–IPS中使用Euler–Maruyama离散格式,可得到下述采样算法.

离散随机分组相互作用粒子系统 (discrete RB–IPS):对每个n ⩾ 0,
将 {1, · · · ,N − 1}随机划分为大小为p的子集C1, · · · , Cq.

Yi
n+1 = Yi

n+
(
b(Yi

n)+
1

p − 1

∑
j≠i,j∈C

K(Yi
n−Yj

n)
)
h+

√
2(Bi

(n+1)h−Bi
nh), i ∈ C.

目标: 估计数值解Yn = {Yi
n}N

i=1采样目标分布 𝜋(x)的误差.
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随机分组方法

记RB–IPS和discrete RB–IPS的对偶半群为Qh
n和 Q̃h

n. 论文证明了:

RB–IPS有与N无关的收敛速率:

W1(𝜈Qh
n, 𝜋

h) ≲ e−𝛽nhW1(𝜈, 𝜋h),

且其不变分布 𝜋h满足

W1(𝜋h, 𝜋) ≲
√

h
p − 1

+ h2.

discrete RB–IPS的采样误差可控制为

W1(𝜈Q̃h
n, 𝜋) ≲ e−𝜆nh +

√
h.
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遍历性和采样误差

接下来叙述RB–IPS的遍历性和discrete RB–IPS的采样误差结果.

基本假设 1 (全局Lipschitz条件)
对于漂移力b(·),存在常数L0使得

|b(x) | ⩽ L0( |x| + 1), ∀x ∈ Rd.

对于相互作用力K(·),存在常数L1使得

max{|K(x) |, |∇K(x) |, |∇2K(x) |} ⩽ L1, ∀x ∈ Rd.

全局Lipschitz条件保证了Euler–Maruyama离散格式的稳定性.
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遍历性和长时间误差

基本假设 2 (漂移力条件)
给定 r ⩾ 0,函数 𝜅(r)定义为

𝜅(r) = inf
{
− (x − y) · (b(x) − b(y))

|x − y|2
: x, y ∈ Rd, |x − y| = r

}
,

且满足下列条件:

1 𝜅(r)在 (0,+∞)上连续;

2 𝜅(r)在 (0,+∞)上有一致的下界;

3 lim
r→∞

𝜅(r) > 0.

充分条件: 在Rd\B(0,R)有∇2U(x) ≽ mId对某个m > 0成立.
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遍历性和长时间误差

定理4.2 & 4.3 (p. 64 & 69)
令 (Qh

n)n⩾0为RB–IPS的对偶半群. 存在常数L∗
1 > 0,使得当

0 < L1 ⩽ L∗
1

时,有不等式:

W1(𝜇Qh
n, 𝜈Q

h
n) ⩽ Ce−𝛽nhW1(𝜇, 𝜈), ∀n ⩾ 0

对任何概率分布 𝜇, 𝜈 ∈ P(RdN)成立. 并且, RB–IPS的不变分布 𝜋h满足

W1(𝜋h, 𝜋) ⩽ C

√
h

p − 1
+ h2.

常数C, 𝛽, L∗
1仅依赖于d, 𝜅(·), 𝜎, L0.
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遍历性和长时间误差

定理4.5 (p. 78)
令 (Q̃h

n)n⩾0为discrete RB–IPS的对偶半群. 存在常数L∗
1, h

∗ > 0,使得当

0 < L1 ⩽ L∗
1, 0 < h ⩽ h∗

时,对于给定的初始分布 𝜈 ∈ P(RdN),有不等式:

W1(𝜈Q̃h
n, 𝜋) ⩽ Ce−𝜆nh + C

√
h.

常数C, 𝜆, L∗
1, h

∗仅依赖于d, 𝜅(·), 𝜎, L0和初始分布 𝜈.

特别的,这些常数都不依赖于粒子数N,分组大小p和步长h.
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遍历性和长时间误差

主要证明技术:

反射耦合方法

Eberle. (2016). Reflection couplings and contraction rates for diffusions.
Probability theory and related fields, 166, 851-886.

三角不等式 (有限时间误差+遍历性=⇒长时间误差)

Mattingly, Stuart & Tretyakov. (2010). Convergence of numerical
time-averaging and stationary measures via Poisson equations. SIAM
Journal on Numerical Analysis, 48(2), 552-577.

Schuh, & Souttar. (2024). Conditions for uniform in time convergence:
applications to averaging, numerical discretisations and mean-field
systems. arXiv preprint arXiv:2412.05239. (Inspired from my work)
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数值算例: 相互作用系统

设外部势能U(x)和相互作用势能V(x)为

U(x) = 1
2

x2 + 3.5e−(x−0.3)2
, V(x) = −e−x2

.

图: 目标分布 𝜋(x)在 x1上的边缘

分布与 exp(−U(x))的对比，反映
了相互作用项 V(x) 对整体分布
的影响.
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数值算例: 相互作用系统

图: 当粒子数N = 64时, discrete RB–IPS在不同步长下的采样误差. 可以
看出,离散误差占主要部分,而随机分组误差占比很小.
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总结和展望

已有的工作:

1 验证了路径积分分子动力学 (PIMD)在欠阻尼 Langevin方程形式下能够实
现与珠数 N无关的收敛速度,这一结果提升了该方法的理论适用性.

2 研究了随机分组相互作用粒子系统 (RB–IPS)的遍历性,并分析了离散版本
(discrete RB–IPS)的采样误差,为相关采样算法的理论研究奠定了基础.

未来的研究计划:

1 针对随机梯度采样算法进行严格的误差分析,并进一步完善其理论框架.

2 借助机器学习技术和扩散生成模型,探索设计新型高效的采样算法,以提高
复杂分布采样的适用范围.

3 针对更为实际的应用场景 (如高维物理和数据科学问题),设计专门的采样
算法,提升其在实际问题中的表现.
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