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A5 设 f, g都是 [0,+∞)上正的单调递减函数, 且反常积分
∫∞
0 f(x)dx和

∫∞
0 g(x)dx都发

散, 试问
∫∞
0 min{f(x), g(x)}dx是否一定发散. 如果是, 请给出证明; 如果否, 请给出反例.

分析 根据经验, 要求证明或给出反例的问题基本都是有反例的. 在这个问题中, 如果想要
f(x)和 g(x)的积分发散而min{f(x), g(x)}的积分收敛, 则 f(x)和 g(x)应该交替取最小值.
基于这个想法, 可以将 f(x)和 g(x)都取成分段常数函数, 而每一段的函数值和区间长度由
参数控制.

解 设 {an}∞n=0是正的单调递减数列, 对应函数在每一分段的函数值; 而 {xn}∞n=1是正数数

列, 对应每一分段的区间长度. 按照如下表格定义函数 f(x)和 g(x):

x1 x2 x3 x4 · · ·
f(x) a0 a2 a2 a4 · · ·
g(x) a1 a1 a3 a3 · · ·

也就是说, f(x)在长度为 x1, x2, x3, x4, · · · 的区间上的值分别为 a0, a2, a2, a4, · · · , 而 g(x)在

长度为 x1, x2, x3, x4, · · · 的区间上的值分别为 a1, a1, a3, a3, · · · . 于是可得∫ ∞

0
f(x)dx ⩾

∑
n是奇数

an−1xn = a0x1 + a2x3 + a4x5 + · · · ,

∫ ∞

0
g(x)dx ⩾

∑
n是偶数

an−1xn = a1x2 + a3x4 + a5x6 + · · · ,

∫ ∞

0
min{f(x), g(x)}dx =

∑
n

anxn = a1x1 + a2x2 + a3x3 + · · · .

要使得 f(x)和 g(x)的积分发散, 而min{f(x), g(x)}的积分收敛, 只需满足不等式

anxn ⩽ 1

n2
, an−1xn ⩾ 1

n
, ∀x ∈ N.
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欲满足上述不等式, 只需取
an =

1

n!
, xn =

(n− 1)!

n
. ■

A7 假设 f ∈ C1(R)满足 f > 0和 f ′(x) = f(x− 1), 试求 f .

分析 先来猜问题的解. 由于方程关于 f线性, 可以不妨设 f(0) = 1. 由于 f ′(x) = f(x)的

解是 f(x) = ex, 可以自然地猜测 f(x)具有 eax的指数函数的形式. 代入计算可得 a = e−a,
这个关于 a的方程存在唯一解. 不过, 证明 f(x) = eax是唯一的可行解并非易事, 需要通
过构造函数迭代的不动点关系来求解. 另外, 尽管容易验证 f(x)在R上解析, 但是 f(x)的

Taylor展开式对本题基本没有帮助.

解 首先, 容易发现 f(x)和 f ′(x)均在R上严格单调递增, 从而 f(x)为凸函数. 根据凸性,

f(x− 1) = f ′(x) ⩾ f(x)− f(x− 1),

因此可得f(x− 1) ⩾ 1
2f(x)对一切 x ∈ R成立. 下面定义函数

g(x) = log f(x),

则根据条件可以得到

g′(x) =
f ′(x)

f(x)
=

f(x− 1)

f(x)
= exp(g(x− 1)− g(x)), (1)

于是1
2 ⩽ g′(x) ⩽ 1恒成立.
任取一 x0 ∈ R, 在 (1)的右端使用微分中值定理, 存在 x1 ∈ (x0 − 1, x0)使得

g′(x0) = exp
(
−g′(x1)

)
.

设 a是方程 a = e−a的解, 则a ⩾ 1
2 . 根据中值定理, 存在介于 a和 g′(x1)之间的数 ξ1使得

g′(x0)− a = exp
(
−g′(x1)

)
− exp(−a) = − exp(−ξ1)(g

′(x1)− a).

由于ξ1 ⩾ 1
2 , 从上面的等式可得到不等式

|g′(x0)− a| ⩽ e−
1
2 |g′(x1)− a|.
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根据归纳法, 对每个整数 n ⩾ 0, 都存在 xn+1 ∈ (xn − 1, xn)使得

|g′(xn)− a| ⩽ e−
1
2 |g′(xn+1)− a|, n = 0, 1, 2, · · · . (2)

因此, 由递推关系 (2)可以得到

|g′(x0)− a| ⩽ e−
n
2 |g′(xn)− a| ⩽ e−

n
2 (a+ 1), n = 0, 1, 2, · · · .

令 n → ∞即得 g′(x0) = a. 由于 x0的取值是任意的, 因此由 g′(x) ≡ a可得到

f(x) = Ceax, C > 0. ■

A8 假设α > −1, 证明: 存在只依赖于α的常数C1, C2 > 0, 使得

C1|x|αe−|x| ⩽
∫ +∞

−∞
e−(x−t)2 |t|αe−|t|dt ⩽ C2|x|αe−|x|

对任何 |x| ⩾ 8成立.

分析 这种题目用到的技巧不难, 但需要用到的分类讨论非常麻烦. 我认为这道题的水准与
Ave Mujica的剧情水平相当, 分一堆基本没啥关系的情况讨论然后包汉堡就行了.

解 不妨设 x > 0. 只需要证明,

I(x) =

∫ +∞

−∞
e−(x−t)2 |t|α

xα
e−(|t|−x)dt

在 x → ∞时有正的上下极限. 根据 t > 0和 t < 0的情况, 可以将 I(x)写为 I+(x) + I−(x),

I+(x) =

∫ +∞

0
e−(x−t)2 t

α

xα
e−(t−x)dt, I−(x) =

∫ +∞

0
e−(x+t)2 t

α

xα
e−(t−x)dt.

于是可以看出 I+(x) ⩾ I−(x) ⩾ 0, 从而只需证明 I+(x)有正的上下极限.
接着, 把 I+(x)拆分为 I1+(x) + I2+(x), 其中

I+1 (x) =

∫ x

0
e−(t−x)2−(t−x) t

α

xα
dt, I+2 (x) =

∫ +∞

x
e−(t−x)2−(t−x) t

α

xα
dt.

下面我们来证明 I+2 (x)有正的上下极限. 将 I+2 (x)改写为

I+2 (x) =

∫ +∞

0
e−t2−t

(
1 +

t

x

)α

dt. (1)
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取正整数 n ⩾ α, 则容易看出当 x ⩾ 1时, 必然有

I+2 (x) ⩽
∫ +∞

0
e−t2(1 + t)ndt < +∞.

为估计 I+2 (x)的下界, 由α > −1可得不等式(
1 +

t

x

)α

⩾
(
1 +

t

x

)−2

⩾ 1− 2t

x
,

因此由 (1)可以得到

I+2 (x) ⩾
∫ +∞

0
e−t2−t

(
1− 2t

x

)
dt ⩾ 1

2
− 2

x

∫ +∞

0
te−t2−tdt,

从而在 x → ∞时有
lim
x→∞

I+2 (x) ⩾ 1

2
, lim

x→∞
I+2 (x) < +∞. (2)

基于结果 (2), 我们只需再证明I+1 (x)有正的上极限. 作换元 t → tx, 可得

I+1 (x) = x

∫ 1

0
e−x2(t−1)2−x(t−1)tαdt.

再次作换元 t → 1− t, 有

I+1 (x) = x

∫ 1

0
e−x2t2+xt(1− t)αdt. (3)

注意当−1 < α < 0时, I+1 (x)在 t = 1处为反常积分. 为了估计 (3)中 I+1 (x)的上界, 注意到

x

∫ 1

0
e−x2t2+xtdt ⩽

∫ +∞

0
e−t2+tdt ⩽ 2,

再利用不等式 ae−a2+a ⩽ 1, 可得到

I+1 (x) ⩽ 2 + x

∫ 1

0
e−x2t2+xt

[
(1− t)α − 1

]
dt

⩽ 2 +

∫ 1

0

(1− t)α − 1

t
dt (被积函数在 t = 0处连续)

< +∞,

因此在 x → ∞时有
lim
x→∞

I+1 (x) ⩾ 0, lim
x→∞

I+1 (x) < +∞. (4)

结合 (2)(4)可知原命题得证. ■
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O 给定实数 λ > 0, 假设 f ∈ C∞([a, b])是区间 [a, b] ⊂ R上的实值光滑函数, 并定义积分

I =

∫ b

a
eif(x)dx.

(1) 设 |f ′(x)| ⩾ λ对任意 x ∈ [a, b]成立, 且 f ′(x)单调. 证明存在常数 c > 0使得 |I| ⩽ c

λ
.

(2) 设 |f ′′(x)| ⩾ λ对任意 x ∈ [a, b]成立. 证明存在常数 c > 0使得 |I| ⩽ c√
λ

.

分析 本题实质上是要证明Riemann–Lebesgue引理. 在 (2)中, 可以先考虑 eiλx
2
的积分.

解 (1) 不妨设 f ′(x) ⩾ λ > 0在 [a, b]上恒成立. 利用分部积分, 有

I =

∫ b

a
eif(x)dx =

∫ b

a

1

f ′(x)
deif(x)

=
1

f ′(b)
eif(b) − 1

f ′(a)
eif(a) −

∫ b

a
eif(x)d

(
1

f ′(x)

)
.

由于 1/f ′(x)是单调函数, 因此上式中的积分可解释为Riemann-Stieltjes积分. 于是

|I| ⩽ 1

|f ′(b)|
+

1

|f ′(a)|
+

∣∣∣∣ ∫ b

a
d
(

1

f ′(x)

)∣∣∣∣ ⩽ 4

λ
.

因此只需取 c = 4即可使不等式成立.

(2) 不妨设 f ′′(x) ⩾ λ > 0恒成立, 于是 f(x)在 [a, b]上是强凸的. 先不妨设 f(x)在 x0 ∈
(a, b)处取最小值. 现在, 把区间 [a, b]分成三段区域:

D1 =

[
a, x0 −

1√
λ

]
, D2 =

[
x0 −

1√
λ
, x0 +

1√
λ

]
, D3 =

[
x0 +

1√
λ
, b

]
,

并且定义 I1, I2, I3为 eif(x)在这三段上的积分. 由于区间 I2的长度均为
2√
λ

, 因此自然地有

I2 ⩽
2√
λ

. 为了估计 I3, 注意到由于 f ′(x) ⩾ λ, 在 x ∈ D3时有

f ′(x) = f ′(x0) +

∫ x

x0

f ′′(y)dy ⩾ 0 + λ(x− x0) ⩾
√
λ,

因此依结论 (1)有 |I3| ⩽
4√
λ

. 同理有 |I1| ⩽
4√
λ

. 于是

|I| ⩽ |I1|+ |I2|+ |I3| ⩽
4√
λ
+

2√
λ
+

4√
λ
=

10√
λ
,

因此只需取常数 c = 10即可使不等式成立.
如果 f(x)没有在 (a, b)上的某一点取最小值, 则 f(x)一定在 [a, b]上单调递减或单调上

升. 在递减和递增的情况下, 分别取 x0 = b和 x0 = a依然可以完成上述证明. ■
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C 设 f是定义在Cantor集C (定义 I0 = [0, 1], In+1为 In中 2n个不交的闭区间分别去掉

中间三分之一得到的 2n+1个闭区间的并, C为所有 In的交) 上的连续函数, 并且 f的像集

是不可数的. 证明: 存在C的与R等势的子集 I (即: 存在R到 I的双射), 使得 f在 I上是

严格单调的.

分析 本题太过抽象, 拼尽全力无法战胜... 在解答本题前, 需要了解以下知识:

• 可数集和Z的势是ℵ0, 不可数集是指一切不与Z等势的无穷集.

• R的势是ℵ1, 它和自然数集的所有子集等势. R与Z不等势, 即ℵ0 < ℵ1.

• 连续统假设是指ℵ0和ℵ1之间没有其它的集合的势. 连续统假设与常用的 ZFC公理
系统独立. 本题不需要用到连续统假设.

• Cantor集是不可数集, 且与R等势. Cantor集的Lebesgue测度为 0.

• Cantor集是三进制下只包含数字 {0, 2}的小数.

• Cantor集是有界闭集 (紧集).

• Cantor集是自相似的, 且分形维数为 log3 2 ≈ 0.6309.

• f在C上连续, 是指对任意 x0 ∈ C和 ε > 0, 存在 δ > 0使得

f
(
(x0 − δ, x0 + δ) ∩ C

)
⊂

(
f(x0)− ε, f(x0) + ε

)
.

f在C上有界且满足一致连续的条件.

由于Cantor集的性质比较复杂, 可以先考虑一个稍简单的版本:

C’ 设 f是定义在区间 [a, b]上的连续函数, 且不恒为常数. 证明: 存在 [a, b]的与R等势的子
集 I, 使得 f在 I上是严格单调的.

不失一般性, 假设 f(a) < f(b). 下面证明存在一个与R等势的子集 I, 使得 f在 I上严格单

调递增. 为此需要如下的引理:

引理 0 设 f在闭区间 [a, b]上连续且 f(a) < f(b), 则存在常数 a1, b1 ∈ R使得 a < a1 < b1 <

b及 f(a) < f(a1) < f(b1) < f(b), 且存在常数 c使得

f([a, a1]) ⊂ {x < c}, f([b1, b]) ⊂ {x > c}.
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根据介值定理, 我们可以取 a1和 b1分别为

a1 = min
{
x ∈ [a, b] : f(x) =

2f(a) + f(b)

3

}
, b1 = max

{
x ∈ [a, b] : f(x) =

f(a) + 2f(b)

3

}
,

于是当 x ∈ [a, a1]时总有 f(x) ⩽ f(a1) = (2f(a) + f(b))/3, 当 x ∈ [b1, b]时总有 f(x) ⩾
f(b1) = (f(a) + 2f(b))/3. 从而 a1, b1满足引理 0的要求.

为证明C’, 定义区间D1
0 = [a, b], 根据引理可以将其分为不交的闭区间D1

1 = [a, a1]和

D2
1 = [b1, b]. 一般的, 对于不交的闭区间组 {Dj

n}2
n

j=1, 可以对每个Dj
n应用引理, 并将其分为

闭区间D2j−1
n+1 和D2j

n+1. 这样从D1
0出发可以得到一个类似于Cantor集的无穷树状图:

D1
0

D2
1

D4
2

D8
3D7

3

D3
2

D6
3D5

3

D1
1

D2
2

D4
3D3

3

D1
2

D2
3D1

3

且对每个正整数 n, 值域 {f(Dj
n)}nj=1依次严格递增. 在该树状图的每个可能向下的分支序

列 (例如, D1
0 −D1

1 −D2
2 −D4

3 −D7
4 − · · · ) 中取一个代表元, 组成集合 I. 各个分支的非空

性是由闭区间套定理保证的, 而集合 I的可构造性是由选择公理保证的. (这里一个更直观
的构造方式是令Dn = ∪2n

j=1D
j
n, 然后取 I = ∩∞

n=1Dn. 不过, 这种方式可能导致有的分支序
列是一个闭区间而不是孤立点, 于是 f在该区间上的单调难以说明)
类似于Cantor集的定义, I中的每个元素都与 [0, 1]中的二进制小数一一对应, 从而 I

与R等势. 为了验证 f在 I上严格递增, 只需注意到对任意满足 x1 < x2的 x1, x2 ∈ I, 存在
最小的正整数 n使得 x1和 x2在第 n位上不一样, 即对某个 j ∈ {1, · · · , 2n−1}, 有

x1 ∈ D2j−1
n , x2 ∈ D2j

n ,
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从而 f(x1) < f(x2). 引理 0得证.

在解决了闭区间上的简单版本C’后, 考察原问题C在Cantor集C上的连续函数. 与
闭区间的版本相比, C上的连续函数的一个明显的困难的是它并不满足介值定理. 因此,
f(a) < f(b)并不意味着在 f一定在某个子集 I严格递增. 为此,我们必须放弃在构造D1

1, D
2
1

时大小关系性质 f(D1
1) < f(D2

2). 另外, f的像集是不可数集也不是一个容易利用的条件.
为解决原问题, 我们需要用到下面的两个引理:

引理 1 设E ⊂ R是有界的不可数集. 则存在 a1, b1 ∈ R使得 a1 < b1, 且E ∩ {x < a1}和
E ∩ {x > b1}均为不可数集.

引理 1可以用反证法证明. 假设E ⊂ D0 = [a, b]. 取 a1 = (2a + b)/3 < b1 = (a + 2b)/3,
则E ∩ {x < a1}和E ∩ {x > b1}中至少有一个为可数集. 若E ∩ {x < a1}为可数集, 则取
D1 = [a1, b]; 若E ∩ {x > b1}为可数集, 则取D1 = [a, b1]. 在两种情况下, 都有如下结果:
D1的长度为D0的 2/3, 且E ∩ (D0\D1)为可数集.
按上述构造, 对每个闭区间Dn, 都可以构造区间Dn+1使得Dn+1的长度为Dn的 2/3,

且E ∩ (Dn\Dn+1)为可数集. 由闭区间套定理, 存在唯一的 x0使得 {x0} = ∩∞
n=0Dn. 于是

D0 = [a, b] = {x0} ∪
∞⋃
n=0

(Dn\Dn+1),

因此对集合E有

E ⊂ {x0} ∪
∞⋃
n=0

E ∩ (Dn\Dn+1).

注意上式右端的每一项都是可数集, 因此E是可数集, 矛盾!

引理 2 设D ⊂ R是有界闭集, f在D上连续, 且 f(D)为不可数集. 则存在D的两个闭子集

D1, D2, 使得

• D1, D2在R上是分离的 (存在 c ∈ R使得D1 < c < D2或D2 < c < D1).

• f(D1), f(D2)在R上是分离的 (存在 c′ ∈ R使得 f(D1) < c′ < f(D2)或 f(D2) < c′ <

f(D1)).

• f(D1)和 f(D2)均为不可数集.

引理 2可视为引理 0的变种, 它要求D1, D2分离以及 f(D1), f(D2)分离, 目的就是将来验
证 f的严格单调特性. 为证明引理 2, 令E = f(D)为 f的像集, 则E为有界闭集 (紧集上
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的连续函数有界) 且为不可数集. 根据引理 1, 存在 a1 < b1使得E1 = E ∩ {x ⩽ a1}和
E2 = E ∩ {x ⩾ b1}均为闭的不可数集. 接着, 定义

F1 = f−1(E1) = {x ∈ D : f(x) ∈ E1}, F2 = f−1(E2) = {x ∈ D : f(x) ∈ E2},

则F1, F2为不交的闭集 (对于连续函数 f , 闭集的原像是闭集), 且满足引理 2中的后两条.
下面我们希望改造F1和F2使之也满足第一条, 即两个集合是分离的. 对于集合F1来

说, 必然存在 x1 ∈ F1, 使得对任意 δ > 0, f(F1 ∩ (x1 − δ, x1 + δ))均为不可数集. 如果这样
的 x1不存在, 则对任意 x ∈ F1, 都存在 δ > 0, 使得 f(F1 ∩ (x− δ, x+ δ))为可数集. 根据紧
集上的有限覆盖定理, 存在一组有限的 {(xλ, δλ)}λ使得

F1 ⊂
⋃
λ

(xλ − δλ, xλ + δλ)� =⇒ E1 = f(F1) ⊂
⋃
λ

f
(
F1 ∩ (xλ − δλ, xλ + δλ)

)
.

但上式的右端是有限个可数集的并, 因此E1是可数集, 矛盾! 因此符合要求的 x1 ∈ F1必然

存在. 类似的, 必然存在 x2 ∈ F2, 使得对任意 δ > 0, f(F2 ∩ (x2 − δ, x2 + δ))均为不可数集.
最后, 我们取 δ = |x1−x2|

3 , 以及D1 = F1 ∩ (x1 − δ, x1 + δ)和D2 = F2 ∩ (x2 − δ, x2 + δ).
则D1, D2被

x1+x2
2 分离, 且 f(D1), f(D2)均为不可数集. 引理 2得证.

解 回到原问题C的证明. 令D1
0为Cantor集C, 则D1

0为有界闭集且 f(D1
0)不可数. 据引

理 2, 存在D1
0的两个闭子集D1

1, D
2
1, 使得D1

1在R上位于D2
1的左侧, 且 f(D1

1)和 f(D2
1)是

分离的不可数集. 一般的, 对任何非负整数 n及正整数 j ∈ {1, · · · , 2n}, 存在Dj
n的两个闭

子集D2j−1
n+1 , D2j

n+1, 使得D2j−1
n+1 位于D2j

n+1的左侧, 且 f(D2j−1
n+1 )和 f(D2j

n+1)是分离的不可数

集. 如此这般我们再次得到了类似引理 0证明当中的无穷树状图:

D1
0

D2
1

D4
2

D8
3D7

3

D3
2

D6
3D5

3

D1
1

D2
2

D4
3D3

3

D1
2

D2
3D1

3

不过, 这里一个关键的区别是, 像集 f(D2j−1
n+1 )和 f(D2j

n+1)的大小关系是不确定的, 无法
直接利用分支序列来构造集合 I. 不过, 我们仍可以通过抽取部分分支序列的方式来构造
I. 对于非负整数 n和正整数 j ∈ {1, · · · , 2n}, 称 (n, j)是“左小右大”的, 如果 f(D2j−1

n+1 ) <
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f(D2j
n+1); 否则是“左大右小”的. 如果树状图中存在某一个节点 (n, j)使得(n, j)与其所有

子节点都是“左大右小”的, 则可以按照引理 0的方法构造 I (需用到闭集套定理) 并验证
f在 I上严格单调递减. 否则, 任意节点 (n, j)自身或者有一个子节点 (n′, j′)是“左小右大”

的. 现在, 在树状图上把所有非“左小右大”的节点 (n, j)都替换为其“左小右大”的节点,
子节点也做相应的替换. 这样就可以得到一个全部节点都是“左小右大”的树状图, 从而可
以构造 I使得 f在 I上严格单调递增. 于是原命题得证. ■
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