
清华大学求真书院2025年春季博士资格考试 (分析部分)

虚空若叶睦

2025 年 5 月 19 日

1. (10 pts) Compute the Fourier transform û(ξ) of u(x) =
x

1 + x2
. (Here we use the

following definition for the Fourier transform of L1 functions

û(ξ) =

∫
Rd

e−ix·ξu(x)dx

and extend to tempered distributions.)

分析 先来回顾缓增函数的定义.

(1) 在泛函分析中, Schwartz空间是一切光滑且任意阶导数以多项式速率衰减的函数:

S(R) =
{
φ ∈ C∞(R;C) : sup

x∈R
|xnφ(m)(x)| <∞ 对任何非负整数 n,m ⩾ 0成立

}
,

也称为速降函数空间. 等价地说, 当φ ∈ S(R)时, φ的 n,m-范数

∥φ∥n,m := sup
x∈R

|xnφ(m)(x)|

都是有限的. 接着, 在 S(R)上可以定义一个度量

d(φ,ψ) =
∞∑

n,m=0

2−n−m
∥φ− ψ∥n,m

1 + ∥φ− ψ∥n,m
,

则 (S(R), d)是完备度量空间 (但不是Banach空间), 且在 S(R)中有

lim
k→∞

φk = φ⇐⇒ lim
k→∞

∥φk − φ∥n,m = 0 对任何整数 n,m ⩾ 0成立.

(2) S(R)上的一个线性泛函 f : φ→ ⟨f, φ⟩是连续的, 如果存在正整数N使得

|⟨f, φ⟩| ⩽ C
∑

0⩽n,m⩽N

∥φ∥n,m.
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一般地, 定义 S ′(R)是 S(R)上所有连续线性泛函的空间 (即对偶空间):

S ′(R) :=
{
f : S(R) → C : f在 S(R)上线性且连续

}
,

并称为缓增函数空间.

(3) Fourier变换F : u → û在是 S(R)上的连续映射. 于是对任何 f ∈ S ′(R), 可定义 f的

Fourier变换为满足
⟨f̂ , φ⟩ = ⟨f, φ̂⟩, ∀φ ∈ S(Rd)

的函数 f̂ : R → C. 于是F 是 S ′(R)上的线性映射.

不过, 以上定义对于解题的直接帮助不大, 本题的切入口主要是∫
R

x

x2 + 1
e−ixξdx = i

d
dξ

∫
R

1

x2 + 1
e−ixξdx,

因此只需先求出 (x2 + 1)−1的Fourier变换再对 ξ求导.

解 我们首先来计算 (x2 + 1)−1的Fourier变换, 即

F (ξ) =

∫
R

1

x2 + 1
e−ixξdx.

容易看出上述积分对一切 ξ ∈ R都绝对收敛. 下面介绍两种计算F (ξ)的方法.

(1) 首先, 可以把F (ξ)等价地写为

F (ξ) = 2

∫ ∞

0

cos(ξx)
x2 + 1

dx.

注意到 (x2 + 1)−1 =
∫∞
0 e−t(x2+1)dt, 于是F (ξ)可计算为

F (ξ) = 2

∫ ∞

0

(∫ ∞

0
e−t(x2+1)dt

)
cos(ξx)dx

= 2

∫ ∞

0

(∫ ∞

0
cos(ξx)e−tx2dx

)
e−tdt (交换次序)

=
√
π

∫ ∞

0

1√
t
e−t− ξ2

4t dt = 2
√
π

∫ ∞

0
e−u2− ξ2

4u2 du. (换元 t = u2)

为计算最后一项的积分, 定义

G(a) =

∫ ∞

0
e−u2− a

u2 du,
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则F (ξ) = 2
√
πG( ξ

2

4 ), 且G(0) =
√
π
2 . 注意到

G′(a) = −
∫ ∞

0

1

u2
e−u2− a

u2 du,

从而有

G(a) +
√
aG′(a) =

∫ ∞

0

(
1−

√
a

u2

)
e−u2− a

u2 du

=

∫ ∞

0
e−(u+

√
a

u
)2+2

√
ad
(
u+

√
a

u

)
= 0, (积分的上下限均为∞)

于是我们得到微分方程G(a) +
√
aG′(a) = 0, 求解之后得到

G(a) =

√
π

2
e−2

√
a, a ⩾ 0.

因此F (ξ) = 2
√
πG( ξ

2

4 ) = πe−|ξ|.

(2) 容易看出F (ξ)是偶函数, 于是不妨假设 ξ ⩽ 0. 下面定义 γ是复平面C上半径为R的上

半圆的边界, 其中γ1, γ2分别是半圆弧和直径的部分:

γ = γ1 ∪ γ2, γ1 =
{
z ∈ C : |z| = R, Im(z) ⩾ 0

}
,

γ2 = {z ∈ C : Im(z) = 0,−R ⩽ Re(z) ⩽ R},

且 γ1, γ2的定向均为逆时针.

根据留数定理,∫
γ1

1

z2 + 1
e−izξdz +

∫
γ2

1

z2 + 1
e−izξdz = 2πiRes

(
1

z2 + 1
e−izξ, i

)
= πeξ. (1)
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另一方面, γ1和 γ2上的积分可估计为∣∣∣∣ ∫
γ1

1

z2 + 1
e−izξdz

∣∣∣∣ ⩽ ∫
γ1

1

R2 − 1
eIm(z)ξd|z| ⩽ πR

R2 − 1
,

∫
γ2

1

z2 + 1
e−izξdz =

∫ R

−R

1

x2 + 1
e−ixξdx.

因此在 (1)中令R→ ∞可以得到

F (ξ) =

∫
R

1

x2 + 1
e−ixξ = πeξ, ξ ⩽ 0.

由于F (ξ)是偶函数, 在一般条件下F (ξ) = πe−|ξ|.

最后, 对F (ξ)取导数即可得到 x(x2 + 1)−1的Fourier变换:∫
R

x

x2 + 1
e−ixξdx = i

d
dξF (ξ) = −iπ sgn(ξ)e−|ξ|

其中 sgn(ξ)表示 ξ的符号. ■

2. (10 pts) Compute the Fourier series ∑
n∈Z

ane
inx

of the characteristic function f of [−1, 1], that is,

f(x) =

1, if |x| ⩽ 1,

0, if 1 < |x| ⩽ π.

Find all points x ∈ [−π, π] for which this series converges absolutely.

分析 这是一个常规的Fourier级数计算的问题. 它的难度看上去远不值 10分.

解 直接计算即可得到, 对任意 n ∈ Z,

an =
1

2π

∫ π

−π
f(x)e−inxdx =

1

2π

∫ 1

−1
einxdx =


1

π
, n = 0,

sinn
πn

, n ̸= 0.
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因此 f(x)的Fourier级数形如

f(x) ∼ 1

π
+

1

π

∑
n ̸=0

sinn
n

einx =
1

π
+

2

π

∞∑
n=1

sinn cosnx
n

.

下面我们验证该级数在任意 x处都不绝对收敛, 即
∞∑
n=1

| sinn cosnx|
n

= +∞ (1)

对任意 x ∈ [−π, π]成立. 事实上, 有
∞∑
n=1

| sinn cosnx|
n

⩾
∞∑
n=1

sin2 n cos2 nx
n

=
1

4

∞∑
n=1

(1− cos 2n)(1 + cos 2nx)
n

,

并且由Dirichlet判别准则,
∞∑
n=1

1

n
= +∞,

∞∑
n=1

cos 2n
n

收敛,
∞∑
n=1

cos 2nx
n

收敛,
∞∑
n=1

cos 2n cos 2nx
n

收敛.

因此, 一定有 (1)成立, 即Fourier级数在任意 x ∈ [−π, π]处均不绝对收敛. ■

3. (10 pts) For all u0 ∈ C∞
c (R), we define u(t, x) ∈ C∞(R2) as follows

u(t, x) =
1√
2π

∫
R
ei(tξ

3+xξ)û0(ξ)dξ.

Show that for all x0 ∈ R, the function t → ∂xu(t, x0) belongs to L2(R) and there exists a
constant c0 > 0 independent of x0 and u, such that∫

R
|∂xu(t, x0)|2dt = c0

∫
R
|u0(x)|2dx.

分析 我不知道这么逆天的题目是怎么放到第 3题的位置的, 这题的难度放到实变函数的最
后一题都不过分. 要是我出题, 我会把题目出成这个样子:

(1) (5 pts) For any u0 ∈ C∞
c (R), use Fourier transform to solve the linearized KdV equation:

∂u

∂t
+
∂3u

∂x3
= 0.

Show u(t, x) ∈ C∞(R2).
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(2) (5 pts) Show that there exists a constant c0 > 0 independent of x0 and u, such that∫
R
|∂xu(t, x0)|2dt = c0

∫
R
|u0(x)|2dx.

正如我在前述题干条件中提到的, 这个方程的背景是线性化的KdV (Korteweg–de Vries1)
方程, 它可用来描述浅水波中的孤立波现象. 当方程的初始值是Dirac函数 δ(x)时, 方程有
一个半显式的解2:

u(t, x) =
1

(3t)
1
3

Ai
(

x

(3t)
1
3

)
,

其中Ai(x)是Airy函数, 其定义为

Ai(x) = 1

π

∫ ∞

0
cos
(
t3

3
+ xt

)
dt,

它满足微分方程Ai′′(x) = xAi(x). 一般地, 当方程的初始值是 u0(x)时, 方程的解为

u(t, x) =
1

(3t)
1
3

∫
R
Ai
(
x− y

(3t)
1
3

)
u0(y)dy.

不过, 上述表达式很难应用到解题当中. 原题的具体求解仍需使用 u(t, x)的Fourier形式.

解 由 u0 ∈ C∞
0 (R) ⊂ S(R)可知 û0 ∈ S(R). 根据 u(t, x)的定义, 有

u(t, x) =
1

3
√
2π

∫
R
ξ−

2
3 ei(tξ+xξ

1
3 )û0(ξ

1
3 )dξ.

对 x取导数后可得

∂xu(t, x) =
i

3
√
2π

∫
R
ξ−

1
3 ei(tx+xξ

1
3 )û0(ξ

1
3 )dξ. (1)

由于−1
3 > −1且 û0(ξ

1
3 )是速降函数, 上述积分在R上绝对收敛. 因此由 (1)有

|∂xu(t, x)|2 =
1

18π

∫∫
R2

ξ−
1
3 η−

1
3 eit(ξ−η)eix(ξ

1
3−η

1
3 )û0(ξ

1
3 )û0(η

1
3 )dξdη.

对任意正数 a > 0, 在上式两边同乘 e−
t2

2a 并积分, 可得∫
R
|∂xu(t, x)|2e−

t2

2adt = 1

18π

∫
R2

ξ−
1
3 η−

1
3

(∫
R
eit(ξ−η)− t2

2adt
)
eix(ξ

1
3−η

1
3 )û0(ξ

1
3 )û0(η

1
3 )dξdη

=
1

18

√
2a

π

∫∫
R2

ξ−
1
3 η−

1
3 e−

a
2
(ξ−η)2eix(ξ

1
3−η

1
3 )û0(ξ

1
3 )û0(η

1
3 )dξdη. (2)

1de Vries是一个姓氏. 类似的, Kevin de Bruyne的姓氏是 de Bruyne.
2可以参考论文: Shigeo Tarama. “Analyticity of solutions of the Korteweg-de Vries equation.” J. Math.

Kyoto Univ. 44 (1) 1–32, 2004.
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在 (2)中, 我们期待当 a→ ∞时, 左边收敛到
∫
R |∂xu(t, x)|2dt, 而右边会因为

√
a
2πe

−a
2
(ξ−η)2

变成Dirac函数而变成一个一维积分. 这个过程是需要严格化的,为此我们需要下面的引理:

引理 对任何实数 0 ⩽ β < 1
2 , 有

lim
a→∞

√
a

∫∫
R2

|ξ−
1
3 − η−

1
3 |

|ξ|β(1 + ξ2)
e−

a
2
(ξ−η)2dξdη = 0. (3)

固定 ξ, 将对 η的积分分为两段: |η| ⩾ 1
2 |ξ|和 |η| ⩽ 1

2 |ξ|.

• 当 |η| ⩾ 1
2 |ξ|时, 利用不等式

|ξ−
1
3 − η−

1
3 |

|ξ|β
=

|η
1
3 − ξ

1
3 |

|ξ|
1
3
+β |η|

1
3

=
|η − ξ|

|ξ|
1
3
+β |η|

1
3 (ξ

2
3 + ξ

1
3 η

1
3 + η

2
3 )

⩽ |η − ξ|
|ξ|

1
3
+β

2

|η − ξ|
1
3

3

|ξ|
1
6 |η − ξ|

1
2

=
6|η − ξ|

1
6

|ξ|
1
2
+β

,

可以得到

I1(a) =
√
a

∫∫
|η|⩾ 1

2
|ξ|

|ξ−
1
3 − η−

1
3 |

|ξ|β(1 + ξ2)
e−

a
2
(ξ−η)2dξdη

⩽ 6
√
a

∫∫
R2

|η − ξ|
1
6

|ξ|
1
2
+β(1 + ξ2)

e−
a
2
(ξ−η)2dξdη

= 6
√
a

∫
R

1

|ξ|
1
2
+β(1 + ξ2)

dξ
∫
R
|u|

1
6 e−

a
2
u2du (换元 u = η − ξ)

⩽ 6

a
1
12

∫
R

1

|ξ|
1
2
+β(1 + ξ2)

dξ
∫
R
|v|

1
6 e−

1
2
v2dv (换元 v =

√
au)

⩽ Cβ

a
1
12

,

其中Cβ是仅依赖于 β的常数.

• 当 |η| ⩽ 1
2 |ξ|时, 利用不等式

|ξ−
1
3 − η−

1
3 | ⩽ 2|η|−

1
3 , e−

a
2
(ξ−η)2 ⩽ e−

a
8
ξ2 ,
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可以得到

I2(a) =
√
a

∫∫
|η|⩽ 1

2
|ξ|

|ξ−
1
3 − η−

1
3 |

|ξ|β(1 + ξ2)
e−

a
2
(ξ−η)2dξdη

⩽ 2
√
a

∫∫
|η|⩽ 1

2
|ξ|

1

|η|
1
3 |ξ|β(1 + ξ2)

e−
a
8
ξ2dξdη

⩽ 2
√
a

∫
R

2|ξ|
2
3

2
3

1

|ξ|β
e−

a
8
ξ2dξ

= 6
√
a

∫
R
|ξ|

2
3
−βe−

a
8
ξ2dξ

=
6

a
1
3
− 1

2
β

∫
R
|u|

2
3
−βe−

1
8
u2du (换元 u =

√
aξ)

⩽ Cβ

a
1
3
− 1

2
β
,

其中Cβ是仅依赖于 β的常数.

综合 I1(a)和 I2(a)的估计可以得到

√
a

∫∫
R2

|ξ−
1
3 − η−

1
3 |

|ξ|β(1 + ξ2)
e−

a
2
(ξ−η)2dξdη ⩽ Cβ

(
1

a
1
12

+
1

a
1
3
− 1

2
β

)
.

从而引理得证.

回到等式 (2). 注意到
|eix(ξ

1
3−η

1
3 ) − 1| ⩽ |x||ξ

1
3 − η

1
3 |,

因此在 (3)中取 β = 0可得到

lim
a→∞

√
a

∫∫
R2

|ξ|−
1
3 |η|−

1
3 e−

a
2
(ξ−η)2

∣∣eix(ξ 1
3−η

1
3 ) − 1

∣∣∣∣û0(ξ 1
3 )û0(η

1
3 )
∣∣dξdη = 0.

因此由 (2)可得到估计: 固定 x ∈ R, 当 a→ ∞时,∫
R
|∂xu(t, x)|2e−

t2

2adt = 1

18

√
2a

π

∫∫
R2

ξ−
1
3 η−

1
3 e−

a
2
(ξ−η)2 û0(ξ

1
3 )û0(η

1
3 )dξdη + o(1). (4)

继续使用类似的技巧, 注意到

|û0(η
1
3 )− û0(ξ

1
3 )| ⩽ C|η

1
3 − ξ

1
3 |,
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在 (3)中取 β = 0, 由 (4)可以得到∫
R
|∂xu(t, x)|2e−

t2

2adt = 1

18

√
2a

π

∫∫
R2

ξ−
1
3 η−

1
3 e−

a
2
(ξ−η)2

∣∣û0(ξ 1
3 )
∣∣2dξdη + o(1). (5)

最后, 在 (3)中取 β = 1
3 , 由 (5)可以得到∫

R
|∂xu(t, x)|2e−

t2

2adt = 1

18

√
2a

π

∫∫
R2

ξ−
2
3 e−

a
2
(ξ−η)2

∣∣û0(ξ 1
3 )
∣∣2dξdη + o(1)

=
1

9

∫
R
ξ−

2
3

∣∣û0(ξ 1
3 )
∣∣2dξ + o(1)

=
1

3

∫
R

∣∣û0(ξ)∣∣2dξ + o(1) (换元 ξ → ξ3)

=
1

3

∫
R
|u0(x)|2dx+ o(1), (Parseval等式)

因此可得到 ∫
R
|∂xu(t, x)|2e−

t2

2adt = 1

3

∫
R
|u0(x)|2dx+ o(1). (6)

在两边令 a→ ∞, 并由单调收敛定理得到∫
R
|∂xu(t, x)|2dt =

1

3

∫
R
|u0(x)|2dx.

因此常数 c0 =
1
3 . ■

4. (10 pts) Let f : Ω → C be non-constant and holomorphic, where Ω is an open bounded
set containing the closed unit disk |z| ⩽ 1. Assume |f(w)| = 1 whenever |w| = 1, show
that f(Ω) contains the open unit disk.

分析 这是一个中规中矩的复分析题目. 主要利用的性质是最大模原理, 即全纯函数在有界
连通闭区域的最大模一定在边界上取到.

解 记单位圆盘D = {z ∈ C : |z| < 1}, 其闭包为 D̄ = {z ∈ C : |z| ⩽ 1}, 边界为 ∂D = {z ∈
C : |z| = 1}. 由于 f(z)是D上的全纯函数且连续到边界 ∂D, 因此 f(z)在 D̄上的最大模在

∂D上取到, 从而
|f(z)| ⩽ 1, ∀z ∈ D. (1)

下面证明 f(z)在D内有零点. 否则, 1

f(z)
是D上的全纯函数且连续到边界, 由最大模原理

|f(z)| ⩾ 1, ∀z ∈ D. (2)
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由 (1)(2)可得 |f(z)| = 1在D上恒成立, 从而 f(z)在D上恒为常数, 导致矛盾.

下面证明: 若实数 r ∈ [0, 1)使得对任意 |w| ⩽ r, 方程 f(z) = w在D内有解, 则对任意
|w| ⩽ 1

2− r + (1− r)2
, 方程 f(z) = w在D内有解.

使用反证法. 假设对某个 |w0| ⩽
1

2− r + (1− r)2
, 方程 f(z)− w0在D内没有解, 则函数

g(z) =
1

f(z)− w0

是D上的全纯函数且连续到边界, 因此其最大模在边界上某点 z0 ∈ ∂D取到. 因此

|f(z0)− w0| ⩽ |f(z)− w0|, ∀z ∈ D. (3)

根据条件, 方程 f(z) = rw0一定在D内有解, 因此存在 z1 ∈ D使得 f(z1) = rw0. 在 (3)中
取 z = z1, 可得

|f(z0)− w0| ⩽ (1− r)|w0| =⇒ 1 = |f(z0)| ⩽ (2− r)|w0|,

于是我们得到不等式 |w0| ⩾
1

2− r
>

1

2− r + (1− r)2
, 导致矛盾.

定义数列 {rn}∞n=0如下:

rn = 0, rn+1 =
1

2− rn + (1− rn)2
, n = 0, 1, · · · .

则根据数学归纳法, 对任意 n ⩾ 0和 |w| ⩽ rn, 方程 f(z) = w在D内有解.

最后, 来证明 lim
n→∞

rn = 1. 令 an = 1− rn, 则 an满足

a0 = 1, an+1 =
an(1 + an)

1 + an + a2n
, n = 0, 1, · · · .

于是 {an}∞n=0为正的单调递减数列, 且极限为 0. 因此 lim
n→∞

rn = 1.

由于rn可以取到任意接近 1的值, 可得到: 对任意 |w| < 1, 方程 f(z) = w在D内有解. ■

5. (15 pts) Consider the following second order linear equation for real-valued u = u(x):

x
d2u
dx2 + 2

du
dx + u = 0.

(i) Prove that all nontrivial solutions have infinite number of zeroes on (1,+∞).

(ii) Is it true that all nontrivial solutions must have finite number of zeroes on (0, 1)?

(iii*) Is it true that there exists a nontrivial solution u ∈ C2[0,+∞)?
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分析 这是一个和微分方程的解的零点数量有关的问题. 对于 (i), 只需证明 u(x)在 [A,+∞)

不可能恒正, 于是可以考察其对数函数 v(x) = logu(x). 对于 (ii), 麻烦的点在于方程在
x = 0处的系数会变得无穷大, 导致其在 x = 0难以分析. 此时需要对方程的时间尺度做适
当的变换, 并综合使用稳定性分析的一些技巧. (iii)是我自己加的一道题.

解 注意到, 若取 v = u′, 则原微分方程可以改写为关于 u, v的一阶线性微分方程:u
′ = v,

v′ = −1

x
(2v + u),

因此在任意 x0 ∈ (0,+∞)处给定 u(x0)和 v(x0) = u′(x0),方程的解可以连续延拓到 (0,+∞).

(i) 只需证明: 对方程的任意非零解 u(x)和任意A ⩾ 2, u(x)在 [A,+∞)上至少有一个零点.
否则, 有 u(x) ̸= 0在 [A,+∞)上恒成立. 于是可定义 [A,+∞)上的实值函数

w(x) =
u′(x)

u(x)
,

于是有w′ =
u′′u− (u′)2

u2
, 从而w(x)在 [A,+∞)上满足微分方程

w′(x) = −2w(x) + 1

x
− w2(x). (1)

下面分两种情形讨论.

• 若w(x) ⩾ −1

2
在 [A,+∞)上恒成立, 则由w′(x) ⩽ −w2(x) ⩽ 0可知w(x)在 [A,+∞)

单调递减. 令w∗ = lim
x→+∞

w(x) ∈ R. 则根据方程 (1)有

lim
x→+∞

w′(x) = −w2
∗.

但由于w(x)在 x→ +∞时收敛, 必须有w∗ = 0. 从而存在A1 ⩾ A, 使得在 x ⩾ A1时

恒有w(x) ⩾ −1

4
. 当 x ⩾ A1时, 有不等式

w(A1)− w(x) = −
∫ x

A1

w′(y)dy =

∫ x

A1

(
2w(y) + 1

y
+ w2(y)

)
dy

⩾ 1

2

∫ x

A1

1

y
dy =

1

2
log x

A1
.

令 x→ ∞, 则左端收敛而右端发散到+∞, 导致矛盾.
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• 于是可令 x0 ∈ [A,+∞)满足w(x0) ⩽ −1

2
. 下面证明:

若 x ⩾ 2满足w(x) ⩽ −1

2
, 则有w′(x) ⩽ −1

2
w2(x). (2)

事实上, 由方程 (1)可以得到

w′(x) =
−2w(x)− 1

x
− w2(x) ⩽ −2w(x)− 1

2
− w2(x)

= −1

2

(
w(x) + 1

)2 − 1

2
w2(x) ⩽ −1

2
w2(x).

由 (2)可以推出w(x) ⩽ −1

2
在 [x0,+∞)上恒成立. 否则, 令

x1 = inf
{
x ⩾ x0 : w(x) > −1

2

}
, (3)

则由w(x)的连续性可得w(x1) = −1

2
, 于是由 (2)可得w′(x1) ⩽ −1

2
w2(x1) = −1

8
. 因

此, 存在 δ > 0使得w(x) ⩽ −1

2
对任意 x ∈ [x1, x1 + δ]都成立, 这与 (3)矛盾.

于是w(x) ⩽ −1

2
和w′(x) ⩽ −1

2
w2(x)在 [x0,+∞)上恒成立, 因此有

1

w(x)
− 1

w(x0)
⩾ x− x0

2

对 x ∈ [x0,+∞)恒成立. 但当 x→ +∞时, 左端有界而右端发散到+∞, 导致矛盾.

综合以上可知, w(x)不可能在 [A,+∞)上一直存在, 因此 u(x)在 [A,+∞)一定有零点.

(ii) 正确. 事实上, 所有非零解均在 (0, 1]上至多只有一个解. 为证明该结论, 首先需要对方
程做一些变换. 取 v = u′, 并考察关于 u, v的线性微分方程:u

′(x) = v(x),

v′(x) = −1

x

(
2v(x) + u(x)

)
,

做时间变量的变换 t = − logx, 则 t ∈ [0,+∞)且 x = e−t, 于是

dx
dt = −e−t =⇒


du
dt =

du
dx

dx
dt = −e−tv(t),

dv
dt =

dv
dx

dx
dt = 2v(t)− u(t).
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因此, 最终我们只需证明如下结论: 若 u(t)和 v(t)在 t ∈ [0,+∞)上满足线性微分方程u
′(t) = −e−tv(t),

v′(t) = 2v(t) + u(t),
(4)

且 u(t)和 v(t)不全为零函数, 则 u(t)在 [0,+∞)上至多只有一个零点.

如果 u(t)在 [0,+∞)上已经没有零点, 则 (4)立即成立. 否则, 设 t0 ⩾ 0是 u(t)最小的零点.
当 t ⩾ t0时, u(t)可以写为

u(t) = u(t0) +

∫ t

t0

u′(s)ds = −
∫ t

t0

e−sv(s)ds,

从而当 t ⩾ t0时, v(t)满足方程

v′(t) = 2v(t)−
∫ t

t0

e−sv(s)ds. (5)

不妨设 v(t0) > 0, 则 v′(t0) = 2v(t0) > 0. 下面我们证明: 对一切 t ∈ [t0,+∞)都有 v′(t) ⩾ 0.
若不成立, 则可定义

t1 = inf
{
t1 ⩾ t0 : v

′(t) < 0
}
,

则由 v′(t)的连续性有 v′(t1) = 0, 且因为 t1的最小性, 对 t ∈ [t0, t1]总有 v′(t) ⩾ 0. 从而 v(t)

在 [t0, t1]上单调递增. 但是, 根据等式 (5)有

2v(t1) =

∫ t1

t0

e−sv(s)ds ⩽
∫ t1

t0

e−sv(t1)ds = (e−t0 − e−t1)v(t1),

从而有 v(t1) ⩽ 0, 这与 v(t1) ⩾ v(t0) > 0相矛盾.

因此必然对一切 t ∈ [t0,∞)都有 v′(t) ⩾ 0, 从而 v(t) > 0对 t ∈ [t0,∞)恒成立. 由于

u′(t) = −e−tv(t) < 0, ∀t ⩾ t0,

因此 u(t)在 [t0,+∞)上严格单调递减. 但 u(t0) = 0, 所以 u(t)在 (t0,+∞)上再无其它零点.
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下图绘制了方程 (4)在 u(0) = 1和不同的 v(0)时的部分图像. 可以看到所有解均与 x

轴有至多一个交点.

(iii) 存在. 为了构造该方程的解, 只需在 x = 0附近求解微分方程

w′(x) = −2w(x) + 1

x
− w2(x). (1)

假设w(x)可以在 0处展开成幂级数, 即

w(x) =

∞∑
n=0

anx
n,

且其中 a0 = −1

2
. 将幂级数的表达式代入 (1), 可以得到

∞∑
n=0

(n+ 3)an+1x
n =

( ∞∑
n=0

anx
n

)2

.

比较两端 xn的系数, 可以得到 {an}∞n=0的递推公式:

an+1 =
1

n+ 3

n∑
k=0

akan−k.
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而另一方面, Catalan数 {bn}∞n=0满足 b0 = 1, 且递推公式为

bn+1 =

n∑
k=0

bkbn−k.

因此由数学归纳法, 有 |an| ⩽ bn恒成立. 注意到Catalan数的生成函数是

1−
√
1− 4x

2x
=

∞∑
n=0

bnx
n,

我们得到w(x)的不等式估计:

|w(x)| ⩽
∞∑
n=0

|an|xn ⩽ 1−
√
1− 4x

2x
,

从而w(x)在 [0, 18 ]上光滑, 且可以由系数 {an}∞n=0唯一确定.

进一步, 由w(x) =
u′(x)

u(x)
可知 u(x)在 [0, 18 ]上的表达式为

u(x) = exp
(∫ x

0
w(y)dy

)
, x ∈

[
0,

1

8

]
.

将上式给出的 u(x)延拓到 [18 ,+∞)即得到原方程的解. ■

6. (15 pts) Let p ∈ [1,∞) and {fn}∞n=1 a sequence of functions in Lp(R) such that fn → f

a.e. and f ∈ Lp(R).

(i) If p ∈ (1,∞), prove that if supn ∥fn∥Lp < ∞, then fn converges to f weakly, i.e., for
any g ∈ Lq(R) with q = p

p−1 ,

lim
n→∞

∫
R
fngdx =

∫
R
fgdx.

(ii) Show that the result in (i) does not hold when p = 1, q = ∞.

分析 本题是中等难度的实变函数题, (i)的证明可以先从 g是简单函数的情形入手, 利用
Egorov定理即可完成证明. (ii)的反例构造是常见的.
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解 (i) 不妨设 f = 0. 先证明如下引理:

引理 若E ⊂ R是有限测度集, E上的函数列 {fn}∞n=1满足

sup
n

∥fn∥Lp(E) < +∞, fn → 0 a.e. in E,

则有

lim
n→∞

∫
E
fndx = 0.

根据Egorov定理, 对任意 δ > 0, 存在可测集Eδ ⊂ E使得m(Eδ) < δ, 且 fn在E\Eδ上一

致收敛到 0. 因此, 存在N ∈ N使得当 n ⩾ N时,

|fn(x)| ⩽ δ, x ∈ E\Eδ.

由于 fn在E上的积分可写为∫
E
fndx =

∫
Eδ

fndx+

∫
E\Eδ

fndx,

于是当 n ⩾ N时, 根据Hölder不等式有∫
E
|fn|dx ⩽

∫
Eδ

|fn|dx+

∫
E\Eδ

|fn|dx

⩽
∫
E
χEδ

(x)|fn(x)|dx+

∫
E\Eδ

δdx

⩽
(∫

E
χEδ

(x)

) 1
q
(∫

E
|fn(x)|pdx

) 1
p

+m(E)δ

⩽ Cδ
1
q +m(E)δ.

由于 δ可以取到任意小的值, 引理得证.

根据引理可知, 在原题的条件下, 对任何简单函数 g, 都有

lim
n→∞

∫
R
fngdx = 0.

一般的, 如果 g ∈ Lq(R), 则可以取一列紧支的简单函数 {gm}∞m=1, 使得

sup
m

∥gm∥Lq < +∞, gm → g in Lq(R).
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于是有不等式估计∣∣∣∣ ∫
R
fngdx

∣∣∣∣ ⩽ ∫
R
|fn||g − gm|dx+

∣∣∣∣ ∫
R
fngmdx

∣∣∣∣
⩽
(∫

R
|fn|pdx

) 1
p
(∫

R
|g − gm|qdx

) 1
q

+

∣∣∣∣ ∫
R
fngmdx

∣∣∣∣.
令 n→ ∞, 由于

∫
R fngmdx收敛到 0, 因此

lim
n→∞

∣∣∣∣ ∫
R
fngdx

∣∣∣∣ ⩽ C

(∫
R
|g − gm|qdx

) 1
q

.

再令m→ ∞即知
∫
R fngdx收敛到 0.

(ii) 取 fn(x) =
1

1 + (x− n)2
, 则

∫
R fn(x)dx为定值, 且 fn(x)在R上处处收敛到 0. 但是, 若

取 g(x) = 1 ∈ L∞(R), 则有

lim
n→∞

∫
R
fn(x)g(x)dx =

∫
R

1

1 + x2
dx > 0.

因此在 p = 1, q = ∞时结论不成立. ■

7. (15 pts) Assume that n ⩾ 2, p ∈ (1, 2), and q ∈ [p,+∞].

(i) Show that there exists a constant C (may depend on p, q, n) such that for all radial
function f ∈ C∞

c (Rn\B̄), there holds

∥f∥Lq(Rn) ⩽ C∥f∥W 1,p(Rn).

Here B̄ is the closed unit ball in Rn.

(ii) Show that F has a compact closure in X. Here X is the closure of {f ∈ C∞
c (Rn\B̄) :

f is radial} under L∞(Rn)-norm and

F =
{
f ∈ C∞

c (Rn\B̄) : f is radial and ∥f∥W 1,p(Rn) ⩽ 1
}
.

分析 在本题中, f是径向函数这一条件要充分利用. (i)的形式类似于 Sobolev嵌入不等式,
利用径向函数的特性可以将其转化为一维积分的不等式. (ii)的核心是广义Arzela–Ascoli
定理, 利用F 中函数的等度连续和一致有界来证明F 是相对紧的.
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解 (i) 当 f(x) ∈ C∞
c (Rn\B̄)径向函数时, 令 f(x) = g(|x|), 其中 g ∈ C∞

c ((1,+∞)). 此时有

∇f(x) = g′(|x|) x
|x|
, x ∈ Rn\B̄,

因此 ∫
Rn

|f(x)|pdx =

∫
Rn

|g(|x|)|dx = ωn

∫ ∞

1
rn−1|g(r)|pdr,∫

Rn

|∇f(x)|pdx =

∫
Rn

|g′(|x|)|ndx = ωn

∫ ∞

1
rn−1|g′(r)|pdr,

其中ωn > 0是Rn中单位球体的表面积. 因此只需证明下面的不等式:

sup
r∈(1,+∞)

|g(r)| ⩽ C

(∫ ∞

1
rn−1

(
|g(r)|p + |g′(r)|p

)
dr
) 1

p

, (1)

(∫ ∞

1
rn−1|g(r)|qdr

) 1
q

⩽ C

(∫ ∞

1
rn−1

(
|g(r)|p + |g′(r)|p

)
dr
) 1

p

, (2)

对某个不依赖于 g的常数C成立. 下面不妨设∫ ∞

1
rn−1

(
|g(r)|p + |g′(r)|p

)
dr = 1,

则只需证明 (1)和 (2)的左端有界. 对于 (1), 任取 r1 > r > 1有

g(r1)− g(r) =

∫ r1

r
g′(s)ds.

因此, 根据Hölder不等式可以得到

|g(r1)− g(r)| ⩽
∫ r1

r
|g′(s)|ds

⩽
(∫ r1

r
sn−1|g′(s)|pds

) 1
p
(∫ r1

r
s
−n−1

p−1 ds
) p−1

p

⩽ C
(
r

p−n
p−1 − r

p−n
p−1

1

) p−1
p
. (3)

注意, 当 n ⩾ 2时, 这里的指数
p− n

p− 1
⩽ p− 2

p− 1
< 0.

因此可令 r1 → ∞, 从而得到

|g(r)| ⩽ Cr
p−n
p , r ⩾ 1.
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特别的, g(r) ⩽ C对任何 r > 1成立, 从而 (1)得证.

为证明 (2), 只需注意当 q ⩾ p时, 由 g(r)的有界性可以得到∫ ∞

1
rn−1|g(r)|qdr ⩽ C

∫ ∞

1
rn−1|g(r)|pdr = C.

因此 (1)(2)均成立, 不等式 (i)得证.

(ii) 首先来确定集合X的范围.

引理 1 定义集合X是 (1,+∞)上连续且端点处收敛到 0的函数族, 即

X =
{
g ∈ C((1,+∞)) : lim

r→1
g(r) = lim

r→+∞
g(r) = 0

}
,

则X是C∞
c ((1,+∞))在L∞((1,+∞))意义下的闭包.

容易看出X是闭集,且C∞
c ((1,+∞)) ⊂ X,故 C∞

c ((1,+∞)) ⊂ X. 下面证明X ⊂ C∞
c ((1,+∞)),

即X中的任意函数都可以被 (1,+∞)上的光滑紧支函数一致逼近. 只需证明一个稍弱的结
论: X中的任意函数可以被 (1,+∞)上的连续紧支函数一致逼近. 这是因为, 任何 (1,+∞)

上的连续紧支函数 g(r)可以被其Gauss卷积

gδ(r) =
1√
2πδ

∫
R
e−

(r−s)2

2δ2 g(s)ds

一致逼近, 并且当 δ充分小时, gδ(r)的支集包含在 (1,+∞)中.

当 g(r) ∈ X时, 对任意 ε > 0, 存在 δ > 1和R > δ使得

|g(r)| ⩽ ε

2
, 对任意 r ∈ (1, δ] ∪ [R,+∞).

下面取函数 gδ(r)

gδ(r) =



2g(δ)

δ

(
r − δ

2

)
, 若

δ

2
⩽ r ⩽ δ,

g(r), 若 δ < r < R,

g(R)− g(R)(r −R), 若R ⩽ r ⩽ R+ 1,

0, 其它,

则容易验证 |g(r)− gδ(r)| ⩽ ε在 r ∈ (1,+∞)上恒成立, 且 gδ(r)的支撑集包含在 (1,+∞).
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接下来我们来证明广义Arzela–Ascoli定理:

引理 2 设函数族F ⊂ X满足以下条件:

• 一致有界. 存在M > 0使得 ∥g∥L∞ ⩽M对所有 g ∈ F 成立.

• 一致衰减. 对任意 ε > 0, 存在 δ > 1和R > δ使得

|g(r)| < ε, 对所有 r ∈ (1, δ] ∪ [R,+∞)成立

• 内闭等度连续. 对任何R > δ > 1, F 中的所有函数 g在 [δ,R]上等度连续.

即对任意 ε > 0, 存在 δ > 0使得当 r1, r2 ∈ [δ,R]且 |r1− r2| < δ时, |g(r1)− g(r2)| < ε

对所有 g ∈ F 成立.

则F 在X中是相对紧的, 即 F̄ 是紧集.

要证明广义Arzela–Ascoli定理, 只需证明: 对任意 ε > 0, 存在X中的有限个半径为 ε的开

球覆盖F . 首先, 根据一致衰减, 可以取R > δ > 1使得

|g(r)| < ε

2
, 对所有 r ∈ (1, δ] ∪ [R,+∞)和 g ∈ F 成立. (4)

接着, F 中的所有函数在 [δ,R]上满足一致有界和等度连续的条件,因此由经典Arzela–Ascoli
定理, F |[δ,R]在L∞([δ,R])中是相对紧的. 进而F |[δ,R]可以被L∞([δ,R])中有限个半径为 ε

2

的开球覆盖,即存在L∞([δ,R])中的函数列 {gk}Kk=1,使得对任意 g ∈ F ,都存在 k ∈ {1, · · · ,K}

|g(r)− gk(r)| <
ε

2
, 对所有 δ ⩽ r ⩽ R成立. (5)

下面将 gk(r)的定义域延拓到 (1,+∞). 定义

g̃k(r) =


gk(δ)

δ − 1
(r − 1), 若 1 < r ⩽ δ,

gk(r), 若 δ ⩽ r ⩽ R,

gk(R)− gk(R)(r −R), 若R ⩽ r ⩽ R+ 1,

则函数列 {g̃k(r)}Kk=1包含于X, 且只要 (4)(5)成立, 就可以得到

|g(r)− g̃k(r)| < ε, 对所有 r ∈ (1,+∞)成立.

于是, 以 {g̃k(r)}Kk=1为中心, ε为半径的开球可以覆盖F 中的所有函数 g. 故F 是相对紧的.
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回到原题. (3)说明了对任意R > δ > 1, F 中所有函数在 [δ,R]上是等度连续的. 另外根据

|g(r)| ⩽ Cmin
{(

1− r
p−n
p−1

) p−1
p
, r

p−n
p

}
, ∀r ∈ (1,+∞),

可知F 中的函数在 r = 1和 r = +∞处一致收敛到 0. 因此, 根据广义Arzela–Ascoli定理,
F 在X中是相对紧的. ■

8. (15 pts) Given a domain Ω ⊂ C and a point p ∈ Ω, define

c(p) = sup{|f ′(p)| : f ∈ (Ω, D)p},

where D is the open unit disk |z| < 1 and (Ω, D)p is the set of holomorphic maps f : Ω → D

with f(p) = 0.

(i) Find the value of c(p) when Ω = C\{0, 1, 2}.
(ii) Find the value of c(p) when Ω = D.

分析 本题的主要难度在于在 (ii)中构造一个全纯函数 f(z), 使得 f(p) = 0, 并且当 |z| =

1时总有 |f(z)| = 1. 满足该条件的函数是Blaschke因子, 即 f(z) =
z − p

1− p̄z
, 且 f ′(p) =

1

1− p2
. 而证明 |f ′(p)| ⩽ 1只需利用Cauchy积分公式即可完成.

解 (i) 根据Riemann的可去奇点定理, 由于 f(z)在 0, 1, 2处为可去奇点, 因此 f(z)可以解

析延拓到这些点上. 于是 f(z)是C上的有界全纯函数, 根据Liouville定理, f(z)为常数函
数. 由于 f(p) = 0, 因此 f(z) ≡ 0. 于是有 c(p) = 0 .

(ii) 首先来说明, 当 |p| < 1时, |f ′(p)|可以取到 1

1− p2
. 取

f(z) =
z − p

1− p̄z
,

则 f(p) = 0. 且当 |z| = 1时, 有

|f(z)| = |z − p|
|z̄z − p̄z|

=
|z − p|

|z||z̄ − p̄|
= 1.

根据最大模原理, 当 |z| < 1时, 总有 |f(z)| < 1, 这意味着 f ∈ (D,D)p. 此时

f ′(p) = lim
z→p

f(z)

z − p
=

1

1− p2
,
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所以 |f ′(p)|至少可以取到 1

1− p2
.

另一方面, 为了估计 |f ′(p)|的上界, 由旋转对称性可不妨设 p ∈ [0, 1). 对任意 f ∈ (D,D)p,
由Cauchy积分公式可得, 对任意R ∈ (p, 1),

f ′(p) =
1

2πi

∮
|z|=R

f(z)

(z − p)2
dz.

由于 |f(z)| ⩽ 1在 |z| = R上成立, 有

|f ′(p)| ⩽ 1

2π

∮
|z|=R

1

|z − p|2
|dz| = R

2π

∫ 2π

0

1

|Reiθ − p|2
dθ.

令R→ 1, 即可得到

|f ′(p)| ⩽ 1

2π

∫ 2π

0

1

|eiθ − p|2
dθ = 1

2π

∫ 2π

0

1

1 + p2 − 2p cos θdθ. (1)

注意到积分公式: 当 a > |b|时,∫ 2π

0

1

a+ b cos θdθ =
2π√
a2 − b2

,

因此由 (1)可以得到
|f ′(p)| ⩽ 1

1− p2
,

故命题得证, 即 c(p) =
1

1− p2
. ■
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