
倒数平方和是多少?

虚空若叶睦

2025 年 7 月 29 日

以下题目来源于北京大学杨家忠教授.

给定实数 k > 1. 记方程 tanx = kx在 (0,+∞)上的根依次为 x1, x2, · · · . 证明:
∞∑
n=1

1

x2n
=

3k − 1

6(k − 1)
.

这题乍一看挺难的, 因为 xn并没有显式的表达式, 只知道 xn ∈
(
(n− 1)π, (n− 1

2)π
)
.

不严格但简洁的证明

一个与原问题非常相关的结果是:
∞∑
n=1

1

n2
=

π2

6
. (1)

等式 (1)有一个惊人的 “证明”: 由于 sinx在R上的根为 {±nπ}, 因此可以形式地写出

sinx

x
∼

∞∏
n=1

(x− nπ)(x+ nπ) =

∞∏
n=1

(x2 − n2π2). (2)

于是由 (2)可以得到
sin

√
x√

x
∼

∞∏
n=1

(x− n2π2). (3)

在 (3)的两端对 x求导, 形式上可以得到
√
x cos

√
x− sin

√
x

2
√
x3

∼
∞∑
n=1

1

x− n2π2

∞∏
n=1

(x− n2π2). (4)
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将 (3)(4)两式相除, 即可得到
∞∑
n=1

1

n2π2 − x
=

1−
√
x cot

√
x

2x
. (5)

在两端令 x → 0可知 (5)的右端极限为 1

6
, 从而等式 (1)成立? (这对吗?)

如果用类似的方法求解原问题, 可以考察函数

sinx

x
− k cosx

这是一个偶函数, 且所有根为 {±xn : n ∈ N}. 因此可以形式地写出

sinx

x
− k cosx ∼

∞∏
n=1

(x2 − x2n) =⇒
sin

√
x√

x
− k cos

√
x ∼

∞∏
n=1

(x− x2n). (6)

在两边对 x求导, 有
√
x cos

√
x− sin

√
x

2
√
x3

+
k sin

√
x

2
√
x

∼
∞∑
n=1

1

x− x2n

∞∏
n=1

(x− x2n). (7)

将 (6)(7)两式相除可以得到

∞∑
n=1

1

x2n
= − lim

x→0


√
x cos

√
x− sin

√
x

2
√
x3

+
k sin

√
x

2
√
x

sin
√
x√

x
− k cos

√
x

 = −
−1

6 + k
2

1− k
=

3k − 1

6(k − 1)
. (8)

因此可以得到
∞∑
n=1

1

x2n
. (如何严格证明呢?)

严格证明: 复变函数

由于目标表达式是分式求和形式, 一个自然的想法是利用复变函数及留数的性质构造恒等
式. 根据 (6), 可以定义C上的全纯函数

f(z) =
sin

√
z√

z
− k cos

√
z =

∞∑
n=0

(−1)n

(2n)!

(
1

2n+ 1
− k

)
zn. (9)

下面来验证 f(z)的一些简单性质.
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引理 1 f(z)在C中的所有零点是 {x2n : n ∈ N}.

证明 注意到 f(w2) =
sinw

w
− k cosw, 故只需等价地证明, 方程

sinw = kw cosw (10)

在C中的所有零点是 {±xn : n ∈ N}. 利用表达式

sinw =
eiw − e−iw

2i
, cosw =

eiw + e−iw

2

可以将 (10)改写为
eiw − e−iw = ikw(eiw + e−iw).

再令w = x+ iy, 其中 x, y为实数, 则上式可以改写为

k =
(2 sinx cosh y + 2i cosx sinh y)(2 cosx cosh y + 2i sinx sinh y)

(2 cosx cosh y)2 + (2 sinx sinh y)2
.

由于上式的实部必须为 0, 可以得到 sinh(2y) = 0, 从而 y = 0. 故w为实数.

由于
sinx

x
− k cosx为偶函数, 且在 (0,+∞)上的根恰好为 {xn : n ∈ N}, 引理得证. ■

根据引理 1, 我们来定义另一个函数

g(z) =
f ′(z)

f(z)
−

∞∑
n=1

1

z − x2n
. (11)

由于 xn = O(n), 故
∞∑
n=1

1

z − x2n
在 z ̸= x2n时绝对收敛. 因此 g(z)在C\{x2n}上为全纯函数.

下面证明: x2n总是 g(z)的可去奇点. 事实上, 根据导数的定义可以得到

lim
z→x2

n

(z − x2n)g(z) = lim
z→x2

n

(
(z − x2n)f

′(z)

f(z)
− 1

)
= lim

z→x2
n

(z − x2n)f
′(z)− f(z)

f(z)

= lim
z→x2

n

f ′(z) + (z − x2n)f
′′(z)− f ′(z)

f ′(z)
(L’Hôpital法则)

= lim
z→x2

n

(z − x2n)
f ′′(x2n)

f ′(x2n)
= 0.

因此由Riemann可去奇点定理知 x2n是 g(z)的可去奇点. 进而, g(z)在C上为全纯函数.
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引理 2 g(z)在C上全局有界.

证明 由于 g(z)是C上的全纯函数, 根据最大模原理, 只需证明对每个非零整数m, g(w2)在

L1
m = {z ∈ C : Re(w) = mπ}, L2

m = {z ∈ C : Im(w) = mπ}.

上全局有界. 由于 g(w2)本身是关于w的偶函数, 所以只需考察m是正整数的情形. 即证
明: 存在不依赖于正整数m的常数C1, C2,

|f ′(w2)|
|f(w2)|

⩽ C1,

∣∣∣∣ ∞∑
n=1

1

w2 − x2n

∣∣∣∣ ⩽ C2, ∀w ∈ L1
m ∪ L2

m. (12)

关于C1的估计 利用 (8)中的计算结果可以得到: 当m ̸= 0且w ∈ L1
m ∪ L2

m时,

∣∣∣∣f ′(w2)

f(w2)

∣∣∣∣ =
∣∣∣∣∣∣∣
w cosw − sinw

2w3
+

k sinw

2w
sinw

w
− k cosw

∣∣∣∣∣∣∣ ⩽ (k + 2)

∣∣∣∣sinw

w

∣∣∣∣+ | cosw|∣∣∣∣sinw

w
− k cosw

∣∣∣∣ = (k + 2)

1 +

∣∣∣∣ w

tanw

∣∣∣∣∣∣∣∣ kw

tanw
− 1

∣∣∣∣
因此, C1的估计成立的充分条件是: 当w ∈ L1

m ∪ L2
m时,∣∣∣∣ w

tanw

∣∣∣∣ ⩾ 1 (13)

为了证明 (13), 考虑w ∈ L1
m和L2

m两种情形.

• 当w ∈ L1
m时, 设w = mπ + iy, 其中 y ∈ R. 则

tanw = tan(iy) = sin(iy)
cos(iy) = i

e2y − 1

e2y + 1
.

于是可得到

w

tanw
= (y − imπ) · e

2y + 1

e2y − 1
=⇒

∣∣∣∣ w

tanw

∣∣∣∣ = y · e
2y + 1

e2y − 1
⩾ 1,

因此 (13)在w ∈ L1
m时成立.

• 当w ∈ L2
m时, 设w = y + imπ, 其中 y ∈ R. 则

tanw = tan(y + imπ) =
tan y + i tanh(mπ)

1− i tan y tanh(mπ)
,
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从而

w

tanw
= (y+ imπ) · 1− i tan y tanh(mπ)

tan y + i tanh(mπ)
=⇒

∣∣∣∣ w

tanw

∣∣∣∣ ⩾ mπ

√
1 + tan2 y tanh2(mπ)

tan2 y + tanh2(mπ)
.

由于 | tanh(mπ)| ⩽ 1恒成立, 有不等式√
1 + tan2 y tanh2(mπ)

tan2 y + tanh2(mπ)
⩾ tanh(mπ),

从而可得 ∣∣∣∣ w

tanw

∣∣∣∣ ⩾ mπ tanh(mπ) ⩾ π tanh(π) > 1.

因此 (13)在w ∈ L2
m时成立.

综上可知,
∣∣∣∣f ′(w2)

f(w2)

∣∣∣∣ ⩽ C1在w ∈ L1
m ∪ L2

m上恒成立.

关于C2的估计 根据三角不等式, 只需证明:
∞∑
n=1

1

|w2 − x2n|
⩽ C2, ∀w ∈ L1

m ∪ L2
m. (14)

为了证明 (14), 考虑w ∈ L1
m和L2

m两种情形.

• 当w ∈ L1
m时, 设w = mπ + iy, 其中 y ∈ R. 此时有

|w2 − x2n| = |w − xn||w + xn| = |mπ − xn + iy||mπ + xn + iy|

⩾ |m2π2 − x2n| ⩾ (mπ − xn)
2.

因此 (14)可以改写为
∞∑
n=1

1

(mπ − xn)2
⩽ C2. (15)

由于 xn ∈
(
(n− 1)π, (n− 1

2)π
)
, 可定义 yn = xn − (n− 1)π ∈

(
0, π2

)
. 于是有不等式

tan yn = k(yn + (n− 1)π) ⩾ kyn =⇒ yn ⩾ sin yn ⩾ k cos yn ⩾ k

(
1− y2n

2

)
,
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从而有
π

2
⩾ yn ⩾

√
2k2 + 1− 1

k
对一切正整数 n成立.

∞∑
n=1

1

(mπ − xn)2
=

m∑
n=1

1

(mπ − xn)2
+

1

(xm+1 −mπ)2
+

∞∑
n=m+2

1

(xn −mπ)2

⩽ 1

y2m+1

+
1

π2

( m∑
n=1

1

(m− n+ 1
2)

2
+

∞∑
n=m+2

1

(n− 1−m)2

)

⩽
(

k√
2k2 + 1− 1

)2

+
2

π2

∞∑
n=1

1

(n− 1
2)

2
< +∞.

故 (15)成立, w ∈ L1
m的情形得证.

• 当w ∈ L2
m时, 设w = y + imπ, 其中 y ∈ R. 则

|w2 − x2n| = |w − xn||w + xn| = |y − xn + imπ||y + xn + imπ|

=
√(

(y − xn)2 +m2π2
)(
(y + xn)2 +m2π2

)
⩾ |y2 − x2n|+ π2. (Cauchy不等式)

于是只需证明: 存在不依赖于 y ⩾ 0的常数C2, 使得
∞∑
n=1

1

|y2 − x2n|+ π2
⩽ C2. (16)

注意不等式 (16)不依赖于m. 给定 y ⩾ 0, 存在唯一的正整数m使得 (m − 1)π ⩽ y <

mπ. 又 xn ∈ ((n− 1)π, nπ), (16)的左端可以表示为

∞∑
n=1

1

|y2 − x2n|+ π2
⩽

m−1∑
n=1

1

y2 − x2n + π2
+

∞∑
n=m+1

1

x2n − y2 + π2
+

1

π2

⩽ 1

π2

m−1∑
n=1

1

(m− n− 1)2 + 1
+

1

π2

∞∑
n=m+1

1

(n−m− 1)2 + 1
+

1

π2

⩽ 1

π2

(
1 + 2

∞∑
n=0

1

n2 + 1

)
< +∞.

故 (15)成立, 从而w ∈ L2
m的情形得证.

综上可知, 全纯函数 g(z)在直线L1
m和L2

m上有界. 由最大模原理, g(z)在C上全局有界. ■
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根据上述结果, g(z)是C上全局有界的全纯函数, 由Liouville定理, g(z)一定是常数函
数. 不妨设 g(z) ≡ G, 其中G ∈ C. 则由 (11)可得

f ′(z)

f(z)
−

∞∑
n=1

1

z − x2n
= G. (17)

在 (17)中取 z = −(mπ)2, 则可验证 (17)的左端在m → ∞时的极限为 0. 最终, 我们得到

f ′(z)

f(z)
=

∞∑
n=1

1

z − x2n
. (18)

取 z = 0并应用 (8)即可得到
∞∑
n=1

1

x2n
=

3k − 1

6(k − 1)
, 结论得证.
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