
三角函数恒等式

虚空若叶睦

2025 年 7 月 15 日

本文档将介绍一些三角函数恒等式的计算方法. 参考资料包括Victor Moll的论文An
Elementary Trigonometric Equation和Art of Problem Solving上的部分讨论.

1 构造多项式

如果目标等式关于各个三角函数呈现对称性, 则可以尝试构造以三角函数为根的多项
式. 例如, 方程 cos 4α = − cos 3α在α ∈ [0, π]时的解为

α =
π

7
,
3π

7
,
5π

7
, π.

而另一方面, cos 4α = − cos 3α可以写为关于 x = cosα的四次方程:

(x+ 1)(8x3 − 4x2 − 4x+ 1) = 0,

因此 8x3 − 4x2 − 4x+ 1 = 0对应的三个根恰好为 cos π
7
, cos 3π

7
, cos 5π

7
. 这可以得到:

cos π
7
+ cos 3π

7
+ cos 5π

7
=

1

2
,

cos π
7

cos 3π
7

cos 5π
7

= −1

8
.

根据该结果可以继续证明

sin 2π

7
+ sin 4π

7
+ sin 8π

7
=

√
7

2
.

事实上, 两边平方后可以得到(
sin 2π

7
+ sin 4π

7
+ sin 8π

7

)2

=
3

2
− 1

2

(
cos 2π

7
+ cos 4π

7
+ cos 8π

7

)
=

3

2
+

1

2

(
cos π

7
+ cos 3π

7
+ cos 5π

7

)
=

7

4
.
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更进一步, 可以证明

cos 5π
28

+ cos 11π
28

+ cos 13π
28

=

√
7 + 1

2
√
2

.

事实上, 两边平方后可以得到(
cos 5π

28
+ cos 11π

28
+ cos 13π

28

)2

= cos2 5π
28

+ cos2 11π
28

+ cos2 13π
28

+ 2 cos 5π
28

cos 11π
28

+ 2 cos 11π
28

cos 13π
28

+ 2 cos 5π
28

cos 13π
28

=
3

2
+

1

2

(
cos 5π

14
+ cos 11π

14
+ cos 13π

14

)
+ cos 4π

7
+ cos 3π

14
+ cos 2π

7
+ cos 9π

14
+ cos 6π

7
+ cos π

14

=
3

2
+

1

2

(
cos π

14
+ cos 3π

14
− cos 5π

14

)
+ cos 2π

7
+ cos 4π

7
+ cos 6π

7

=
3

2
+

1

2

(
sin 3π

7
+ sin 5π

7
− sin π

7

)
− cos π

7
− cos 3π

7
− cos 5π

7

=
3

2
+

1

2
·
√
7

2
− 1

2
= 1 +

√
7

4
.

因此等式得证. 类似地还可以证明

cos π

28
− cos 3π

28
+ cos 9π

28
=

√
7− 1

2
√
2

.

另一方面, 方程 tan 4α = − tan 3α在α ∈ [0, π)时的解为

α = 0,
π

7
,
2π

7
,
3π

7
,
4π

7
,
5π

7
,
6π

7
.

若将 tan 4α = − tan 3α改写为 x = tanα的方程, 则可得到

(x3 − 7x)2 = 7(x2 + 1)2.

根据 tanα的符号, 可以得到两个多项式:

• x3 +
√
7x2 − 7x+

√
7 = 0的三个根为 tan π

7
, tan 2π

7
, tan 4π

7
.

• x3 −
√
7x2 − 7x−

√
7 = 0的三个根为 tan 3π

7
, tan 5π

7
, tan 6π

7
.

于是可以得到如下等式:

cot π
7
+ cot 2π

7
+ cot 4π

7
=

√
7,

cot2 π
7
+ cot2 2π

7
+ cot2 4π

7
= 5.
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考察方程 cos 3α = −1

2
的解, 可以得到: 方程

8x3 − 6x+ 1 = 0

的三个根恰好为 cos 2π
9
, cos 4π

9
, cos 8π

9
. 于是有

cos 2π
9

+ cos 4π
9

+ cos 8π
9

= 0,(
1 + 2 cos 2π

9

)(
1 + 2 cos 4π

9

)(
1 + 2 cos 8π

9

)
= −3,

1

1 + 2 cos 2π
9

+
1

1 + 2 cos 4π
9

+
1

1 + 2 cos 8π
9

= 0,

cos7 π
9
+ cos7 5π

9
+ cos7 7π

9
=

63

128
,

1

1− cos π
9

+
1

1− cos 5π
9

+
1

1− cos 7π
9

= 18.

考察方程 tan 3α =
√
3的解, 可以得到: 方程

x3 − 3
√
3x2 − 3x+

√
3 = 0

的三个根恰好为 tan π

9
, tan 4π

9
, tan 7π

9
. 由此可得

tan2 π

9
+ tan2 2π

9
+ tan2 4π

9
= 33,

tan6 π

9
+ tan6 2π

9
+ tan6 4π

9
= 33273.

2 sin和 tan的线性组合

有一类三角函数恒等式具有 tan a+B sin b = C的形式, 它可以等价地写为

sin a+
1

2
B sin(a+ b)− 1

2
sin(a− b) = C cos a.

两边平方后可以得到

1

4
(2− 2C2 +B2) =

1

4
(2 + 2C2 − 2B2) cos(2a) + 1

8
B2 cos(2a+ 2b) +

1

8
B2 cos(2a− 2b)

+
1

2
B cos(2a+ b) +

1

4
B2 cos(2b)− 1

2
B cos(2a− b). (∗)

若能找到一些特殊的常数 a, b, c和B,C使得 (∗)成立, 则可构造特殊的三角函数恒等式.
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• 取B = 4, C2 = 11, 则 (∗)可转化为

cos(2a− 2b)− cos(2a− b) + cos(2a) + cos(2a+ b) + cos(2a+ 2b) + 2 cos(2b) = −1

2
.

于是取 a =
3kπ

11
, b = 2kπ

11
, k ∈ Z, k ̸≡ 0 mod 11, 可得到等式

tan
(
3kπ

11

)
+ 4 sin

(
2kπ

11

)
= ±

√
11.

特别地, 当 3k ≡ 1, 2, 3, 4, 5 mod 11时分别有

tan
(

π

11

)
+ 4 sin

(
3π

11

)
=

√
11,

tan
(
2π

11

)
− 4 sin

(
5π

11

)
= −

√
11,

tan
(
3π

11

)
+ 4 sin

(
2π

11

)
=

√
11,

tan
(
4π

11

)
+ 4 sin

(
π

11

)
=

√
11,

tan
(
5π

11

)
− 4 sin

(
4π

11

)
=

√
11.

• 取B = 4, C2 = 3且 a = b, 则 (∗)可改写为

− cos a+ cos(2a) + cos(3a) + cos(4a) = 1

2
.

上式等价于

sin(5a/2) cos(2a)
sin(a/2) =

1

2
(3 + 4 cos a) ⇐⇒ sin(9a/2) = 2 sin(3a/2).

从上式可以解得

a =
π

9
× {1, 5, 6, 7, 11, 12}+ 12mπ

9
.

因此可得到下列等式:

tan
(
π

9

)
+ 4 sin

(
π

9

)
=

√
3,

tan
(
2π

9

)
− 4 sin

(
2π

9

)
= −

√
3,

tan
(
4π

9

)
− 4 sin

(
4π

9

)
=

√
3.
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• 取B = −4, C2 = 7且 2a = b, 可以从 (∗)得到如下等式:

tan
(
π

7

)
− 4 sin

(
2π

7

)
= −

√
7,

tan
(
2π

7

)
− 4 sin

(
3π

7

)
= −

√
7,

tan
(
3π

7

)
− 4 sin

(
π

7

)
=

√
7.

3 平方Gauss和定理

平方Gauss和定理的内容如下: 设 n是正整数, 则

Gn =
n−1∑
j=0

e
2πij2

n =



(1 + i)
√
n, 若 n ≡ 0 mod 4,

√
n, 若 n ≡ 2 mod 4,

0, 若 n ≡ 2 mod 4,

i
√
n, 若 n ≡ 3 mod 4.

上述结果本质上是Gauss二次互反律的三角形式. 虽然它造型优美, 但是其证明并非初等,
需要用到解析数论的相关知识.
平方Gauss和定理可以用来构造 n次单位根满足的较低次数的多项式 (比分圆多项式

的次数都低). 例如, 由G11 = i
√
11可以得到 11次单位根 x = e

2πi
11 满足

1 + 2(x+ x3 + x4 + x5 + x9) = i
√
11.

于是, 根据等式
4i sin 2π

11
= 2(x− x−1) = 2(x− x10)

和

i tan 3π

11
=

x
3
2 − x−

3
2

x
3
2 + x−

3
2

=
x3 − 1

x3 + 1
=

x3 − x33

x3 + 1

= x3(1− x15)
1 + x15

1 + x3

= x3(1− x4)(1− x3 + x6 − x9 + x12)

= −x− x2 + x3 + x4 + x5 − x6 − x7 − x8 + x9 + x10,
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可以得到

i tan 3π

11
+ 4i sin 2π

11
= 1 + 2(x+ x3 + x4 + x5 + x9)− (1 + x+ x2 + · · ·+ x10)

= 1 + 2(x+ x3 + x4 + x5 + x9) = i
√
11,

于是再次得到等式 tan 3π

11
+ 4 sin 2π

11
=

√
11. 利用平方Gauss和定理还可以证明如下结果:

tan 2π

7
+ 4 sin 2π

7
− 4 sin π

7
=

√
7,

tan 4π

19
+ 4 sin 5π

19
− 4 sin 6π

19
+ 4 sin 9π

19
=

√
19,

tan π

9
+ 2 sin π

9
− 2 sin 2π

9
+ 2 sin 4π

9
=

√
3,

√
3 tan

(
7π

18

)
− 4 sin

(
7π

18

)
= 1.

这些等式也可以用乘上 cos再平方的方法证明.

4 n次单位根的经典结果

以下介绍与 n次单位根相关的经典结果. 由于 n次单位根 ζ = e
2πi
n 满足

1 + ζ + · · ·+ ζn−1 = 0,

因此容易得到
n−1∑
k=0

cos
(
2kπ

n

)
=

n−1∑
k=0

sin
(
2kπ

n

)
= 0.

根据二倍角公式, 还有

n−1∑
k=0

cos2
(
2kπ

n

)
=

n−1∑
k=0

sin2

(
2kπ

n

)
=

n

2
.

下面证明一些稍难的结论. 首先是正弦函数的乘积:

n−1∏
k=1

sin
(
kπ

n

)
=

n

2n−1
. (1)
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为证明 (1), 注意到 n次单位根 ζ满足

1 + x+ · · ·+ xn−1 =
n−1∏
k=1

(x− ζk).

令 x = 1, 即可得到
n−1∏
k=1

|1− ζk| = n.

然而, |1− ζk| = |e
kπi
n − e−

kπi
n | = 2 sin

(
kπ

n

)
, 因此由上式立刻得到 (1)成立. 利用同样的方

法, 可以得到余弦函数的乘积:

n−1∏
k=1

cos
(
kπ

n

)
=

0, n为偶数,

(−1)
n−1
2 n, n为奇数.

(2)

将 (1)(2)两式相除, 即可得到: 当 n为奇数时,

n−1
2∏

k=1

tan
(
kπ

n

)
=

√
n.

接下来证明: 对一切正整数 n > 1, 有

n−1∑
k=1

1

sin2(kπn )
=

n2 − 1

3
. (3)

下面将介绍 4种截然不同的证明方法.

1. 利用de Moivre定理

注意到
1

sin2 θ
= 1 + cot2 θ, 故 (3)等价于

n−1∑
k=1

cot2
(
kπ

n

)
=

(n− 1)(n− 2)

3
. (4)

根据 de Moivre定理, 对任意 θ ∈ [0, 2π]有

cosnθ + i sinnθ = (cos θ + i sin θ)n =
n∑

j=0

Cj
n(cos θ)n−j(i sin θ)j .
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比较两边的虚部可以得到

sinnθ =

[n−1
2

]∑
k=0

(−1)kC2k+1
n cosn−2k−1 θ sin2k+1 θ = C1

n cosn−1 θ sin θ−C3
n cosn−3 θ sin3 θ+· · · .

在两边除以 sinn θ之后即得

sinnθ

sinn θ
=

[n−1
2

]∑
k=0

(−1)kC2k+1
n cotn−2k−1 θ.

注意到, 上式左侧在 θ =
kπ

n
, k = 1, · · · , n− 1时为 0, 而右侧是关于 cot θ的 n− 1次多项式,

于是 n− 1次多项式

P (t) =

[n−1
2

]∑
k=0

(−1)kC2k+1
n tn−2k−1 = C1

nt
n−1 − C3

nt
n−3 + C5

nt
n−5 − · · ·

的 n− 1个根恰好为 cot kπ
n

, k = 1, · · · , n− 1. 为计算 (4), 只需计算P (t)的 n− 1个根的平

方和. 为方便起见, 记P (t)的 n− 1个根分别为 t1, · · · , tn−1. 据Vieta定理,
n−1∑
k=1

tk = 0,
∑

1⩽k<l⩽n

tktl = −C3
n

C1
n

= −(n− 1)(n− 2)

6
.

于是
n−1∑
k=1

t2k =

( n−1∑
k=1

tk

)2

− 2
∑

1⩽k<l⩽n

tktl =
(n− 1)(n− 2)

3
,

即 (4)成立, 故 (3)得证.

2. 幂级数的展开

令 ζ = e
2πi
n 为 n次单位根, 则等式 (3)可以等价地写为

n−1∑
k=1

1

|1− ζk|2
= −

n−1∑
k=1

ζk

(1− ζk)2
=

n2 − 1

12
. (5)

定义函数 fn(t) = −
n−1∑
k=1

ζk

(1− tζk)2
, 则将 fn(t)展开为 t的幂级数可得

fn(t) = −
n−1∑
k=1

ζk

(1− tζk)2
= −

n−1∑
k=1

ζk
∞∑

m=0

(m+1)tmζkm = −
∞∑

m=0

(m+1)tm
n−1∑
k=1

ζk(m+1). (6)
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注意到
n−1∑
k=1

ζk(m+1) =

n− 1, 若 n |m+ 1,

− 1, 若 n ∤ m+ 1.

因此由 (6)可以得到

fn(t) = −
∞∑

m=0

(m+ 1)tm
(
− 1 + n · 1{n |m+1}

)
=

∞∑
m=0

(m+ 1)tm − n
∑

m :n |m+1

(m+ 1)tm

=
1

(1− t)2
− n

∞∑
k=0

(k + 1)nt(k+1)n−1

=
1

(1− t)2
− n2tn−1

(1− tn)2
.

接下来只需证明:

lim
t→1

(
1

(t− 1)2
− n2tn−1

(tn − 1)2

)
=

n2 − 1

12
. (7)

直接计算可以得到

lim
t→1

(
1

(t− 1)2
− n2tn−1

(tn − 1)2

)
= lim

t→1

( n−1∑
k=0

tk
)2

− n2tn−1

(tn − 1)2

= lim
t→1

2
n−1∑
k=0

tk
n−2∑
k=0

(k + 1)tk − n2(n− 1)tn−2

2n(tn − 1)
(L’Hôpital法则)

= lim
t→1

2

n−1∑
k=0

tk
n−3∑
k=0

(k + 2)(k + 1)tk + 2

( n−2∑
k=0

(k + 1)tk
)2

− n2(n− 1)(n− 2)tn−3

2n2

=

2n
n−3∑
k=0

(k + 2)(k + 1) + 2

(
n(n− 1)

2

)2

− n2(n− 1)(n− 2)

2n2

=

2n2(n− 1)(n− 2)

3
+

n2(n− 1)2

2
− n2(n− 1)(n− 2)

2n2
=

n2 − 1

12
.

故 (7)成立, 等式 (3)得证.
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3. 参数化后展开分式

首先来证明一个一般化的结果: 设 a ∈ R且 |a| ̸= 1, 则有

n−1∑
k=1

1

a2 + 1− 2a cos
(
2kπ
n

) =
n(an + 1)

(a2 − 1)(an − 1)
− 1

(a− 1)2
. (8)

令 ζ = e
2πi
n 为 n次单位根, 则 (8)可以等价写为

n−1∑
k=1

1

|a− ζk|2
=

n(an + 1)

(a2 − 1)(an − 1)
− 1

(a− 1)2
. (9)

由于 zn − 1 =

n−1∏
k=0

(z − ζk), 在两边对 z取对数后得

ln(zn − 1) =
n−1∑
k=0

ln
(
z − ζk

)
.

在两边对 z求导后可得
nzn−1

zn − 1
=

n−1∑
k=0

1

z − ζk
. (9)

当 |a| ̸= 1时, 有

1

|a− ζ|k
=

1

(a− ζk)(a− ζ−k)
=

1

a2 − 1

(
a

a− ζk
− 1

1− aζk

)
, k = 0, 1, · · · , n− 1.

在等式两端对 k = 0, 1, · · · , n− 1求和, 并利用 (9)可以得到

n−1∑
k=0

1

|a− ζk|2
=

1

a2 − 1

( n−1∑
k=0

a

a− ζk
−

n−1∑
k=0

1

1− aζk

)
=

1

a2 − 1

(
nan

an − 1
+

n

an − 1

)
=

n(an + 1)

(a2 − 1)(an − 1)
.
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于是 (8)得证. 最后, 在 (8)中令 a → 1可得所需结果. 作换元 a = 1 + t, 则

lim
a→1

n(an + 1)

(a2 − 1)(an − 1)
− 1

(a− 1)2

= lim
t→0

n[(1 + t)n + 1]

t(t+ 2)[(1 + t)n − 1]
− 1

t2

= lim
t→0

n
[
2 + C1

nt+ C2
nt

2 + o(t2)
]

t(t+ 2)
[
C1
nt+ C2

nt
2 + C3

nt
3 + o(t3)

] − 1

t2

= lim
t→0

n

(
2 + nt+

n(n− 1)

2
t2
)

nt2(t+ 2)

(
1 +

n− 1

2
t+

(n− 1)(n− 2)

6
t2
) − 1

t2

= lim
t→0

(
2 + nt+

n(n− 1)

2
t2
)
− (t+ 2)

(
1 +

n− 1

2
t+

(n− 1)(n− 2)

6
t2
)

t2(t+ 2)

(
1 +

n− 1

2
t+

(n− 1)(n− 2)

6
t2
)

= lim
t→0

2 + nt+
n(n− 1)

2
t2 − (t+ 2)− n− 1

2
t(t+ 2)− (n− 1)(n− 2)

3
t2

2t2

= lim
t→0

n(n− 1)

2
t2 − n− 1

2
t2 − (n− 1)(n− 2)

3
t2

2t2

=
1

2

(
(n− 1)2

2
− (n− 1)(n− 2)

3

)
=

n2 − 1

12
.

因此由 (8)可以得到
n−1∑
k=1

1

1− cos
(
2kπ
n

) =
n2 − 1

6
,

于是 (3)成立. 注意到 (8)也可以写为

2π

n

n−1∑
k=0

1

a2 + 1− 2a cos
(
2kπ
n

) =
2π(an + 1)

(a2 − 1)(an − 1)
.

当 |a| ̸= 1时, 在上式中令 n → ∞可以得到经典积分结果:∫ 2π

0

dθ
a2 + 1− 2a cos θ =

1

|a2 − 1|
.
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4. 化归为矩阵特征值

先证明下面的等式:

2

n−1∑
k=1

1

sin2(kπn )
=

n−1∑
k=1

1

sin2(kπ2n )
. (10)

利用二倍角公式, 容易看出 (10)等价于
n−1∑
k=1

1

1− cos2(kπn )
=

n−1∑
k=1

1

1− cos
(
kπ
n

) ⇐⇒
n−1∑
k=1

cos
(
kπ
n

)
1− cos2(kπn )

= 0.

由于 cos
(
kπ
n

)
+ cos

(
(n−k)π

n

)
= 0, 故由对称性可知上式成立, 从而 (10)成立. 接下来只需证

明
n−1∑
k=1

1

sin2(kπ2n )
=

2(n2 − 1)

3
. (11)

令An是主对角线为 1, 次对角线为−1的三对角矩阵:

An =



2 −1 · · · 0 0

−1 2 · · · 0 0
...

... . . . ...
...

0 0 · · · 2 −1

0 0 · · · −1 2


.

则An的全部特征值为

λk = 2− 2 cos kπ

n+ 1
= 4 sin2

(
kπ

2(n+ 1)

)
, k = 1, · · · , n.

因此 (11)可改写为

tr
(
A−1

n

)
=

n∑
k=1

1

λk
=

n(n+ 2)

6
. (12)

根据逆矩阵的定义, A−1
n 的对角线元素可以写为

(A−1
n )i,i =

Ci,i

det(An)
, i = 1, · · · , n,

其中Ci,i是An在 (i, i)处的代数余子式. 于是, (12)可等价写为

1

det(An)

n∑
i=1

Ci,i =
n(n+ 2)

6
. (13)
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一方面, det(An)可以通过对第一行作Laplace展开得到:

det(An) = 2 det(An−1)− (−1) det


−1 −1 · · ·

0
. . .

... An−2

 = 2 det(An−1)− det(An−2),

于是由数学归纳法可得 det(An) = n+ 1. 另一方面, 容易看出

Ci,i = det
[
Ai−1 0

0 An−i

]
= det(Ai−1) det(An−i) = i(n− i+ 1).

故有
1

det(An)

n∑
i=1

Ci,i =
1

n+ 1

n∑
i=1

i(n− i+ 1) =
n(n+ 2)

6
.

从而 (13)成立, 等式 (3)得证.
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