
积分发散函数的比较

虚空若叶睦

2025 年 8 月 2 日

在PiKaChu345的视频BV1Evh7z3EWj中提到了一个发散级数的比较问题:

若非负数列 {an}∞n=1单调递减, 且
∑∞

n=1 an = +∞, 证明:

∞∑
n=1

min
{
an,

1

n

}
= +∞.

视频使用了Cauchy凝聚判别法证明该结果. 下面给出该问题的连续版本:

若非负函数 f(x)在 [1,+∞)上连续单调递减, 且
∫∞
1 f(x)dx = +∞, 证明:∫ ∞

1
min

{
f(x),

1

x

}
= +∞.

容易看出, 从连续版本可以直接得到级数版本的证明. 下面给出连续版本的证明:

证明 1. 化归为分段线性函数

首先, 可以不妨设 f(x)在 [1,+∞)上是连续的分段线性函数. 事实上, 对于一般的连续函数
f(x), 可以在每个区间 [n, n+ 1]用一个分段线性函数 fn(x)对 f(x)进行近似, 且使得

• 端点重合: fn(n) = f(n), fn(n+ 1) = f(n+ 1);

• 单调递减: fn(x)在 [n, n+ 1]上单调递减;

• 一致逼近: |fn(x)− f(x)| ⩽ 1/n2, 对任意 x ∈ [n, n+ 1]成立.
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由于 f(x)在 [n, n+ 1]上一致连续, 所有这样的 fn(x)可以通过简单的均匀线性插值来得到.
在定义了函数列 {fn(x)}∞n=1后, 定义分片线性函数

f̃(x) = fn(x), x ∈ [n, n+ 1].

则可以验证 ∫ ∞

1
f̃(x)dx ⩾

∫ ∞

1
f(x)dx−

∫ ∞

1
|f̃(x)− f(x)|dx

⩾
∫ ∞

1
f(x)dx−

∞∑
n=1

1

n2
= +∞

并且 ∫ ∞

1
min

{
f(x),

1

x

}
dx ⩾

∫ ∞

1
min

{
f̃(x),

1

x

}
dx−

∫ ∞

1
|f̃(x)− f(x)|dx

⩾
∫ ∞

1
min

{
f̃(x),

1

x

}
dx−

∞∑
n=1

1

n2
,

因此只需要证明min{f̃(x), 1x}的积分发散. 这使我们化归为 f(x)为分段线性函数的情形.

2. 构造交替出现的增减零点

令 f(x)是分段线性函数, 且不妨设 f(1) < 1, 否则可取一个充分小的 c < 0, 并用 cf(x)代替

f(x)进行讨论. 下面考察 f(x) = 1
x在 [1,+∞)上的零点. 由于 1

x为严格凸函数,故 f(x) = 1
x

只有孤立的零点. 下面重点考察两类零点:

• 增零点 给定 x0 ∈ (1,+∞), 若 f(x0) =
1
x0
且存在 δ > 0使得 f(x) − 1

x在 (x0 − δ, x0)

上恒负且在 (x0, x0 + δ)上恒正, 则称 x0为增零点.

• 减零点 给定 x0 ∈ (1,+∞), 若 f(x0) =
1
x0
且存在 δ > 0使得 f(x) − 1

x在 (x0 − δ, x0)

上恒正且在 (x0, x0 + δ)上恒负, 则称 x0为减零点.

除了增减零点外, 也有可能出现左右均非负或非正的零点, 但这样的零点不会从本质上改变
f(x)− 1

x在局部的符号, 故不纳入讨论的范围.

如果 f(x) = 1
x的增减零点的数量是有限的, 那么 f(x) ⩾ 1

x或 f(x) ⩽ 1
x会在 x充分大时恒

成立, 从而目标结论成立. 否则, 增减零点的数量是无穷个. 由于 f(x) = 1
x的增零点和减零

点一定是交替出现的 (因为 f(x)− 1
x会在增减零点处变号), 因此可以设所有的增减零点为

1 < a1 < b1 < · · · < ak < bk < ak+1 < bk+1 < · · · ,
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其中 {ak}∞k=1为增零点, {bk}∞k=1为减零点. (如下图所示)

由于 f(x) = 1
x在每个区间 [n, n+ 1]上的零点有限, 故我们有 lim

k→∞
ak = +∞. 于是

[ak,+∞) =

∞∪
k=1

(
[ak, bk] ∪ [bk, ak+1]

)
.

并且当 x ∈ [ak, bk]时, 有 1
x ⩽ f(x) ⩽ 1

ak
; 当 x ∈ [bk, ak+1]时, 有 1

ak+1
⩽ f(x) ⩽ 1

x .

3. 用增减零点估计积分式

现在我们分别估计积分
∫∞
a1

f(x)dx和
∫∞
a1

min{f(x), 1x}dx. 一方面,

+∞ =

∫ ∞

a1

f(x)dx =
∞∑
k=1

(∫ bk

ak

f(x)dx+

∫ ak+1

bk

f(x)dx
)

⩽
∞∑
k=1

(∫ bk

ak

1

ak
dx+

∫ ak+1

bk

f(x)dx
)

=

∞∑
k=1

bk − ak
ak

+

∞∑
k=1

∫ ak+1

bk

f(x)dx.

于是我们得到
∞∑
k=1

bk − ak
ak

+
∞∑
k=1

∫ ak+1

bk

f(x)dx = +∞. (1)
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另一方面, 若
∫∞
a1

min{f(x), 1x}dx < +∞, 则有

+∞ >

∫ ∞

a1

min
{
f(x),

1

x

}
dx

=
∞∑
k=1

(∫ bk

ak

1

x
+

∫ ak+1

bk

f(x)dx
)

=

∞∑
k=1

log bk
ak

+

∞∑
k=1

∫ ak+1

bk

f(x)dx.

于是我们得到
∞∑
k=1

log bk
ak

+
∞∑
k=1

∫ ak+1

bk

f(x)dx < +∞. (2)

4. 从积分式推导矛盾

接下来我们将从 (1)(2)两式中推导矛盾. 在 (2)的条件下, 有
∞∑
k=1

log bk
ak

< +∞ =⇒ lim
k→∞

log bk
ak

= 0 =⇒ bk
ak
有界.

由于函数 logx
x−1 在 [1,+∞)的任意有界子区间上有正的下界, 故存在常数 c ∈ (0, 1), 使得

log bk
ak

⩾ c
bk − ak

ak
对任意正整数 k成立.

因此从 (2)可以得到

c
∞∑
k=1

bk − ak
ak

+
∞∑
k=1

∫ ak+1

bk

f(x)dx < +∞,

但这与 (1)矛盾! 故原命题得证. ■

上面的证明虽然比较繁琐, 但是本质是这样的一种控制条件: 对任意常数K > 0, 存在仅依
赖于K的常数 c(K), 使得不等式

log b

a
⩾ c(K)

b− a

a

对满足 log b
a ⩽ K的区间端点 b > a恒成立. 基于上面的观察, 可以推广到更一般的函数.
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定理 1 (积分发散函数的比较)

设定义在 [0,+∞)上的函数 g(x)满足如下条件:

• g(x)连续, 单调递减且为严格凸函数 (即 g′′(x) > 0);

•
∫∞
0 g(x)dx = +∞;

• (积分控制条件) 对任意常数K > 0, 存在仅依赖于K的常数 c(K), 使得不等式∫ b

a
g(x)dx ⩾ c(K)(b− a)g(a)

对满足
∫ b
a g(x)dx ⩽ K的区间端点 b > a恒成立.

若非负函数 f(x)在 [0,+∞)上连续单调递减, 且
∫∞
0 f(x)dx = +∞, 则∫ ∞

0
min

{
f(x), g(x)

}
= +∞.

积分控制条件的直观含义是: 只要区间 [a, b]上的积分有上界, 就可以用这个积分控制矩形
的面积 (b− a)g(a). 下面给出该结果的证明.

证明 和之前的证明类似, 可以假设 f(x)是分段线性函数, 且 f(0) < g(0). 注意到, 对于
任意一条直线 y = kx + b, 方程 g(x) = kx + b的零点至多有两个 (因为 g(x)严格凸), 故
f(x) = g(x)的增减零点一定是孤立点集. 进一步, 假设增减零点为无穷集, 且设所有的增减
零点为

0 < a1 < b1 < · · · < ak < bk < ak+1 < bk+1 < · · · ,

其中 {ak}∞k=1为增零点, {bk}∞k=1为减零点, 且 lim
k→∞

ak = +∞.

如果结论不成立, 即
∫∞
0 min{f(x), g(x)}dx < +∞, 则类似于 (1)(2)可以得到

∞∑
k=1

(bk − ak)g(ak) +

∞∑
k=1

∫ ak+1

bk

f(x)dx = +∞, (3)

∞∑
k=1

∫ bk

ak

g(x)dx+

∞∑
k=1

∫ ak+1

bk

f(x)dx < +∞. (4)

由 (4)可以得到
∑∞

k=1

∫ bk
ak

g(x) < +∞, 从而
∫ bk
ak

g(x)dx有一个不依赖于 k的上界K. 根据
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积分控制条件, 存在一个常数 c ∈ (0, 1)使得∫ bk

ak

g(x)dx ⩾ c(bk − ak)g(ak)

对所有正整数 k成立. 因此从 (4)出发可以得到
∞∑
k=1

(bk − ak)g(ak) +

∞∑
k=1

∫ ak+1

bk

f(x)dx < +∞,

但这与 (3)矛盾! 故原命题成立. ■

定理的简单应用

作为定理 1的简单应用, 可以验证一些比 1
x衰减更快的函数满足积分控制条件. 一个简单的

例子是定义在 [2,+∞)上的函数:

g(x) =
1

x(logx)α , 0 < α < 1.

容易计算得到 ∫ b

a
g(x)dx =

∫ b

a

1

x(logx)αdx =
(log(b/a))1−α

1− α
,

因此
∫ b
a g(x)dx ⩽ K有上界意味着 b/a ⩽ K ′对某个常数K ′ > 1成立. 此时可以验证

log(b/a) ⩾ c1
b− a

a

对某个 c1 > 0成立, 从而积分控制条件可以转化为(
b− a

a

)1−α

⩾ c(b− a)

a(log a)α ⇐= c

(
b− a

a

)α

⩽ (log 2)α ⇐= c1(K
′)α ⩽ (log 2)α,

因此符合要求的 c > 0必然存在. 于是从定理 1出发可得到如下推论:
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推论 2 (积分发散函数的比较)

设α ∈ (0, 1). 若非负函数 f(x)在 [2,+∞)上连续单调递减, 且
∫∞
2 f(x)dx = +∞, 则∫ ∞

2
min

{
f(x),

1

x(logx)α

}
= +∞.

推论 2也自然地有一个离散版本.

推论 3 (发散级数的比较)

设α ∈ (0, 1). 若非负数列 {an}∞n=2单调递减, 且
∑∞

n=2 an = +∞, 则

∞∑
n=2

min
{
an,

1

n(logn)α

}
= +∞.

反例的构造

是否所有的单调递减的函数 g(x)都能使得定理 1成立? 答案是否定的, 比如 2024年清华新
生数理基础大赛的题目A5给出了反例. 一般的, 可以给出反例存在的一个充分条件:

定理 2 (积分发散函数的比较)

设定义在 [0,+∞)上的函数 g(x)满足如下条件:

• g(x)连续且单调递减;

• 存在常数 0 ⩽ a1 < b1 < · · · < ak < bk < · · · 使得 lim
k→∞

ak = +∞且
∞∑
k=1

(bk − ak)g(ak) = +∞,

∞∑
k=1

∫ bk

ak

g(x)dx+
∞∑
k=1

(ak+1 − bk)g(ak+1) < +∞.

则存在非负函数 f(x)在 [0,+∞)上连续单调递减, 且
∫∞
0 f(x)dx = +∞, 但∫ ∞

0
min

{
f(x), g(x)

}
< +∞.
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证明 如果符合上述要求的 g(x)存在, 可以先构造 [a1,+∞)上的函数

f̃(x) =

g(ak), x ∈ [ak, bk),

g(ak+1), x ∈ [bk, ak+1),
k = 1, 2, · · · .

一方面, 可以验证∫ ∞

a1

f̃(x)dx ⩾
∞∑
k=1

∫ bk

ak

f̃(x)dx ⩾
∞∑
k=1

(bk − ak)g(ak) = +∞.

另一方面, 由于

min{f̃(x), g(x)} =

g(x), x ∈ [ak, bk),

g(ak+1), x ∈ [b, ak+1),

可以得到∫ ∞

a1

min{f̃(x), g(x)}dx =

∞∑
k=1

∫ bk

ak

g(x)dx+

∞∑
k=1

(ak+1 − bk)g(ak+1) < +∞.

因此 f̃(x)是符合要求的反例, 但不满足连续的条件. 为此, 只需在 bk的附近用连续函数对

f(x)进行L1([0,+∞))意义下的近似即可. ■

最后我们来说明, 对于 g(x) = 1
x logx , 这样的反例是确实存在的.

推论 4 (积分发散函数的比较)

存在非负函数 f(x)在 [2,+∞)上连续单调递减, 且
∫∞
2 f(x)dx = +∞, 但∫ ∞

2
min

{
f(x),

1

x logx

}
< +∞.

证明 只需按照定理 2的内容选择合适的 ak, bk即可. 定理 2中的两个条件等价于
∞∑
k=2

bk − ak
ak log ak

= +∞,

∞∑
k=2

log log bk
log ak

+

∞∑
k=2

ak+1 − bk
ak+1 log ak+1

< +∞. (5)

取 bk = ak(1 + tk), 其中 tk > 0待定. 由于对给定的 ak, bk, 总可以取充分大的 ak+1使得

ak+1 − bk
ak+1 log ak+1

<
1

log ak+1
<

1

k2
,
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故只需求 tk使得

∞∑
k=2

tk
log ak

= +∞,
∞∑
k=2

log
(
1 +

log(1 + tk)

log ak

)
< +∞,

或者一个更强的条件

∞∑
k=2

tk
log ak

= +∞,
∞∑
k=2

log(1 + tk)

log ak
< +∞. (6)

下面取 tk =
log ak
k log k , 并定义Ak = log ak, 则 (6)的第一个条件成立, 而第二个条件转化为

∞∑
k=2

log(1 + Ak
k log k )

Ak
< +∞. (7)

容易看出, 只需要在 (7)中取Ak ⩾ k2 log k就可以使得

∞∑
k=2

log(1 + Ak
k log k )

Ak
⩽

∞∑
k=2

log(1 + k)

k2 log k < +∞.

因此符合要求的反例存在. ■

如果将上面构造的 ak, bk限制为整数, 也可以得到它的离散版本.

推论 5 (发散级数的比较)

存在单调递减的非负数列 {an}∞n=2, 满足
∑∞

n=2 an = +∞, 但

∞∑
n=2

min
{
an,

1

n logn

}
< +∞.
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下图作为视频的封面.

(I) 设α ∈ [0, 1). 若非负数列 {an}∞n=2单调递减, 且
∑∞

n=2 an = +∞, 则

∞∑
n=2

min
{
an,

1

n(logn)α

}
= +∞.

(II) 存在单调递减的非负数列 {an}∞n=2, 满足
∑∞

n=2 an = +∞, 但

∞∑
n=2

min
{
an,

1

n logn

}
< +∞.

10


