
n 元复数不等式合集

虚空若叶睦

2025 年 8 月 26 日

1. 对任意正整数 n和复数 z1, · · · , zn, 证明:
n∑

k=1

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ max
{
2,

1

n

n∑
k=1

|zk|
}
.

月之森女子学园，有个复数不等式大家都不会证。

证不出来就没法获得Poppin’ Party的演唱会门票，粉丝们急得像热锅蚂蚁。
请了三个中学生，两个大学生，一个博士生，通通束手无策。

最后请来了一位绿头发的少女，什么资料都没带，而且说她只会三角不等式。

她面向这个复数不等式，停在某个绝对值符号的地方，凝视半分钟。

然后——「唰！」——在此处用了一个三角不等式。

不出几行，不等式就证出来了。

户山香澄突然出现在教室里，并对绿发少女说：「谢谢你完成我的数学作业！这

些门票就送给你们吧！记得来上海看哦！」随即离开了现场。

粉丝们非常开心，问绿发少女：「小睦，你想要多少报酬？」

「168亿日元。」
粉丝们傻眼：「你才写了几行诶！怎么那么贵？」

若叶睦淡淡地说：「三角不等式，1日元。知道在哪里放缩，16799999999日元。」
不知道从哪冒出的一名中年男性开口了：「你的金钱观念怎么了？你才 16岁吧？
16岁就敢要 168亿日元，32岁就能要 332亿日元，64岁要 672亿日元，都能把
Bushiroad买下来了。作为公司的社长，我可能得打败你。真的。」
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如上所言, 这个不等式的确只用三角不等式就能证明. 先来看其中的一个结论:
n∑

k=1

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ 2. (1)

n = 1时, 不等式 (1)显然成立. 假设不等式对 n− 1的情形成立, 考察 n的情形.

• 若存在下标 k使得 |zk| ⩾ 1. 不妨设 |zn| ⩾ 1. 则由三角不等式可得

|1− zn|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ ∣∣∣∣zn +
n∏

k=1

zk

∣∣∣∣ ⩾ ∣∣∣∣1 + n−1∏
k=1

zk

∣∣∣∣,
因此为证明不等式 (1), 只需验证

n−1∑
k=1

|1− zk|+
∣∣∣∣1 + n−1∏

k=1

zk

∣∣∣∣ ⩾ 2,

而上式由归纳假设即知成立. 故 (1)得证.

• 若对所有下标 k都有 |zk| ⩽ 1, 则由三角不等式可得
n∑

k=1

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ n−1∑
k=1

|1− zk|+
∣∣∣∣2− zn +

n∏
k=1

zk

∣∣∣∣
⩾

n−1∑
k=1

|1− zk|+ 2−
∣∣∣∣zn(1− n−1∏

k=1

zk

)∣∣∣∣
⩾ 2 +

n−1∑
k=1

|1− zk| −
∣∣∣∣1− n−1∏

k=1

zk

∣∣∣∣.
接下来只需证明: 对任何满足模长不超过 1的复数 z1, · · · , zn−1, 有不等式

n−1∑
k=1

|1− zk| ⩾
∣∣∣∣1− n−1∏

k=1

zk

∣∣∣∣. (2)

事实上, 利用三角不等式可以直接得到
n−1∑
k=1

|1− zk| ⩾ |1− z1|+ |z1 − z1z2|+ |z1z2 − z1z2z3|+ |z1 · · · zn−2 − z1 · · · zn−2zn−1|

⩾ |1− z1 · · · zn−1| =
∣∣∣∣1− n−1∏

k=1

zk

∣∣∣∣.
从而 (2)成立. 故不等式 (1)得证.
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综上可知, 不等式 (1)对任何复数 z1, · · · , zn都成立. 不等式的另一边可以强化为:
n∑

k=1

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ |z1|+
n∏

k=2

min{|zk|, 1}. (3)

当 n = 1时, (3)显然成立. 当 n = 2时, 可以证明, 对任意复数 z1, z2, 有

|1− z1|+ |1− z2|+ |1 + z1z2| ⩾ |z1|+ |z2|. (4)

直接利用三角不等式可得:

|1− z1|+ |1− z2|+ |1 + z1z2| = |1− z1|+ |1− z̄2|+ |1 + z1z2|

⩾ |z1 − z̄2|+ |1 + z1z2|

⩾
√

|z1 − z̄2|2 + |1 + z1z2|2

=
√
(1 + |z1|2)(1 + |z2|2)

⩾ |z1|+ |z2|.

于是 (4)成立. 为了证明一般的情形, 对 n使用数学归纳法. 假设 (3)对 n − 1的情形成立,
考察 n的情形. 分类讨论如下情况:

• 若存在下标 k ∈ {2, · · · , n}使得 |zk| ⩽ 1, 不妨设 k = 2. 于是
n∑

k=1

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ |1− z1|+ |1− z2|+ |z2(1− z3)|+
n∑

k=4

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣
⩾ |1− z1|+ |1− z2z3|+

n∑
k=4

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣
⩾ |z1|+ min{|z2z3|, 1}

n∏
k=4

min{|zk|, 1} (归纳假设)

⩾ |z1|+ min{|z2|, 1}min{|z3|, 1}
n∏

k=4

min{|zk|, 1}.

于是不等式 (3)成立.

• 若对所有下标 k ∈ {2, · · · , n}都有 |zk| > 1, 则不等式 (3)转化为
n∑

k=1

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ |z1|+ 1. (5)
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利用三角不等式可以得到

n∑
k=1

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ n−1∏
k=1

|1− zk|+
∣∣∣∣zn +

n∏
k=1

zk

∣∣∣∣
⩾

n−1∑
k=1

|1− zk|+
∣∣∣∣1 + n−1∏

k=1

zk

∣∣∣∣ (|zn| ⩾ 1)

⩾ |z1|+
n−1∏
k=2

min{|zk|, 1} (归纳假设)

= |z1|+ 1.

于是 (5)成立, 不等式 (3)得证.

我们实际上得到了一个更强的不等式:
n∑

k=1

|1− zk|+
∣∣∣∣1 + n∏

k=1

zk

∣∣∣∣ ⩾ max
{
2, max

1⩽k⩽n
|zk|+ T

}
,

其中 T =

n∏
k=1

min{|zk|, 1}.
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2. 给定正整数 n. 设P (z) = a0 + a1z + · · · + anz
n是 n次复系数多项式, 且 a0 ∈ R.

若 |ReP (z)| ⩽ 1对任意 |z| ⩽ 1成立, 证明:

|ImP (z)| < 2

π
(logn+ 2) 对任意 |z| ⩽ 1成立.

本题的难度非常之大, 有国家集训队选拔的难度. 这里, a0 ∈ R的条件是关键的, 否则可以
取P (z) = Ai, 其中A > 0是充分大的实数, 此时 ImP (z)无上界. 在解决该问题前, 我们先
介绍一些复变函数理论和三角多项式插值.

I 基础知识: 复变函数理论和三角多项式插值

最大模原理 设 f(z)是C上的全纯函数, 则Re f(z)和 Im f(z)都是调和函数. 调和函数在
有界闭区域D上的最大模一定在边界 ∂D上取到. 特别地, Re f(z)和 Im f(z)在单位圆盘

内的最大模一定在单位圆上取到:

max
|z|⩽1

|Re f(z)| = max
|z|=1

|Re f(z)|, max
|z|⩽1

|Im f(z)| = max
|z|=1

|Im f(z)|.

Schwarz积分公式 设 f(z)是闭单位圆盘上的全纯函数, 则对任意 |z| < 1有

f(z) =
1

2π

∫ 2π

0
Re f(eiϕ)e

iϕ + z

eiϕ − z
dϕ+ i Im f(0).

Schwarz公式说明了 f(z)在圆盘内部的函数值可以被单位圆上的函数值的实部确定. Schwarz
公式可以看作调和函数的Poisson积分公式的复数版本的推广.

三角多项式插值 称函数 f(ϕ) : [0, 2π] → R为 n次三角多项式, 如果

f(ϕ) =
1

2
a0 +

n∑
k=1

(
ak cos(kϕ) + bk sin(kϕ)

)
,

其中 a0, a1, · · · , an, b1, · · · , bn为实数. 由于 f(ϕ)由 2n+1个线性无关的函数组成,因此 f(ϕ)

的插值至少需要 2n+1个节点. 但是由于区间的对称性,一个更方便的选择是在 [0, 2π]上均

匀地选取 2n+ 2个节点:

ϕj =
jπ

n+ 1
, j = 0, 1, · · · , 2n+ 1.

令Lj(ϕ)是 ϕj处的插值基函数, 则Lj(ϕ)应满足如下条件:
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• Lj(ϕ)是 n+ 1次三角多项式;

• Lj(ϕi) = δij , 其中 i = 0, 1, · · · , 2n+ 1.

这样的基函数Lj(ϕ)有一个简单的显式表达式 (有点像Dirichlet核, 但是分母不一样):

Lj(ϕ) =
sin((n+ 1)(ϕ− ϕj))

(2n+ 2) tan(ϕ−ϕj

2 )
, j = 0, 1, · · · , 2n+ 1. (1)

容易看出, 所有的Lj(ϕ) = L0(ϕ− ϕj)都可以从L0(ϕ)平移得到. 由数学归纳法可以证明:

(2n+ 2)L0(ϕ) =
sin((n+ 1)ϕ)

tan ϕ
2

= 1 + 2

n∑
k=1

cos(kϕ) + cos((n+ 1)ϕ),

因此L0(ϕ)的确是 n+ 1次三角多项式. 于是, 每个 n次三角多项式 f(ϕ)都可以表示为

f(ϕ) =

2n+1∑
j=0

cjL0(ϕ− ϕj), (2)

其中 {cj}2n+1
j=0 为插值系数. 由于选取的节点个数比 f(ϕ)的自由度多一个, 表达式 (2)中的

{cj}2n+1
j=0 并不是线性无关的. 比较 (2)的两侧的Fourier级数中 cos((n+ 1)ϕ)的系数, 有

0 =

2n+1∑
j=0

cj

∫ 2π

0
L0(ϕ− ϕj) cos((n+ 1)ϕ)dϕ

=
2n+1∑
j=0

cj

∫ 2π

0
L0(ϕ) cos

(
(n+ 1)ϕ+ (n+ 1)ϕj

)
dϕ

=

2n+1∑
j=0

cj

∫ 2π

0
L0(ϕ) cos

(
(n+ 1)ϕ+ jπ

)
dϕ

=
2n+1∑
j=0

(−1)jcj

∫ 2π

0
L0(ϕ) cos((n+ 1)ϕ)dϕ.

因此, (2)中的插值系数需要满足额外的线性约束

2n+1∑
j=0

(−1)jcj = 0. (3)

如果在 (2)中比较 sin((n+ 1)ϕ)的系数, 所得到的线性约束也是 (3). 以上结果可总结如下:
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定理 任意次数为 n的三角多项式 f(ϕ)都可以唯一表示为

f(ϕ) =
2n+1∑
j=0

cjL0(ϕ− ϕj),

其中插值基函数L0(ϕ)由 (1)给出, 且插值系数 {cj}j=0满足额外的线性约束

2n+1∑
j=0

(−1)jcj = 0.

II 原问题的等价转化

我们首先利用全纯函数的性质对原问题作一些等价转化. 由于 ImP (z)是调和函数, 所以
|ImP (z)|在 |z| ⩽ 1中的最大值一定在 |z| = 1时取到. 根据旋转对称性, 只需证明:

|ImP (1)| < 2

π
(logn+ 2) (4)

成立. 如果 (4)成立, 则对给定的 n次多项式P (z)和 θ ∈ [0, 2π], 可定义

P̃ (z) = P (eiθz).

于是 P̃ (z)仍然为 n次复数多项式, P̃ (0) ∈ R, 且P (z)和 P̃ (z)的值域完全相同. 由 (4)可得

|Im P̃ (1)| = |ImP (eiθ)| < 2

π
(logn+ 2).

由于 θ ∈ [0, 2π]是任意的, 故在上式中对 θ取最大值可得到

max
|z|⩽1

|ImP (z)| = max
θ∈[0,2π]

|ImP (eiθ)| < 2

π
(logn+ 2),

从而原命题成立. 接下来我们估计 ImP (1). 根据 Schwarz积分公式 (注意P (0) ∈ R),

P (z) =
1

2π

∫ 2π

0
Re (P (eiϕ))

eiϕ + z

eiϕ − z
dϕ (5)

对于 |z| < 1恒成立. 在 (5)中令 z → 1, 可以得到一个类似于Hilbert变换的结果:

P (1) =
1

2π
P.V.

∫ 2π

0
Re (P (eiϕ))

eiϕ + 1

eiϕ − 1
dϕ, (6)
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其中P.V.表示积分主值, 因为上述积分在 ϕ = 0和 ϕ = 2π处奇异. 令U(ϕ) = Re (P (eiϕ)),
则U(ϕ)是 n次三角多项式. 在 (6)的两端取虚部, 可以得到

ImP (1) = − 1

2π
P.V.

∫ 2π

0
U(ϕ) cot

(
ϕ

2

)
dϕ. (7)

根据之前对于三角多项式插值的讨论, U(ϕ)可以表示为

U(ϕ) =
2n+1∑
j=0

cjL0(ϕ− ϕj), (8)

其中 ϕj =
jπ

n+ 1
为插值节点, L0(ϕ)为 (1)中的插值基函数. 由于 |U(ϕ)| ⩽ 1对 ϕ ∈ [0, 2π]

成立, 有
|cj | = |U(ϕj)| ⩽ 1, j = 0, 1, · · · , 2n+ 1.

由 (7)(8)可以得到

ImP (1) = − 1

2π

2n+1∑
j=1

cj · P.V.

∫ 2π

0
L0(ϕ− ϕj) cot

(
ϕ

2

)
dϕ. (9)

为方便起见, 定义wj为基函数L0(ϕ− ϕj)的积分值, 即

wj = (2n+ 2)P.V.

∫ 2π

0
L0(ϕ− ϕj) cot

(
ϕ

2

)
dϕ

= P.V.

∫ 2π

0

sin((n+ 1)ϕ)

tan ϕ
2

cot
(
ϕ+ ϕj

2

)
dϕ. (10)

则从 (9)可以得到

|ImP (1)| ⩽ 1

4π(n+ 1)

2n+1∑
j=0

|cj ||wj | ⩽
1

4π(n+ 1)

2n+1∑
j=0

|wj |. (11)

接下来的任务是计算每一项wj的具体值.

III 计算基函数的积分wj

在正式计算前, 先证明一个有用的引理, 它是 Schwarz积分公式的一个直接应用.

引理 对任何非负整数 k, 有

P.V.

∫ 2π

0
cos(kϕ) cot

(
θ − ϕ

2

)
dϕ = 2π sin(kθ). (12)

8



证明 左侧的积分等于

−P.V.

∫ 2π

0
cos(k(θ + ϕ)) cot

(
ϕ

2

)
dϕ,

在等式 (7)中取多项式P (z) = eikθzk即知 (12)成立. ■

回到原题. 根据 (10)中wj的表达式, 再利用

sin((n+ 1)ϕ)

tan ϕ
2

= 1 + 2
n∑

k=1

cos(kϕ) + cos((n+ 1)ϕ),

可以化简得到:

wj = P.V.

∫ 2π

0

(
1 + 2

n∑
k=1

cos(kϕ) + cos((n+ 1)ϕ)

)
cot

(
ϕ+ ϕj

2

)
dϕ

= 4π
n∑

k=1

sin(kϕj) + 2π sin((n+ 1)ϕj) = 4π

n∑
k=1

sin(kϕj)

= 2π
cos ϕj

2 − cos((n+ 1
2)ϕj)

sin ϕj

2

= 2π
(1− (−1)j) cos ϕj

2

sin ϕj

2

= 2π(1− (−1)j) cot
(

jπ

2n+ 2

)
. (12)

将 (12)的表达式代入 (11)可以得到

|ImP (1)| ⩽ 1

2π(n+ 1)

n∑
j=1

wj =
1

π(n+ 1)

[n+1
2

]∑
k=1

w2k−1

=
2

n+ 1

[n+1
2

]∑
k=1

cot
(
(2k − 1)π

2n+ 2

)

<
2

n+ 1

[n+1
2

]∑
k=1

2n+ 2

(2k − 1)π
(利用 cotx < x−1)

=
4

π

[n+1
2

]∑
k=1

1

2k − 1
⩽ 4

π

(
1 +

1

2
logn

)
=

2

π
(logn+ 2).

故原命题得证.
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3. 设实数 a1, · · · , an满足
n∑

k=1

a2k = 1. 对任意复数 z1, · · · , zn, 证明:

n∑
k=1

|zk|2 +
∣∣∣∣ n∑
k=1

z2k

∣∣∣∣ ⩾ 2

∣∣∣∣ n∑
k=1

akzk

∣∣∣∣2.
本题是 2025年全国高中数学联赛四川预赛试题的推广. 由于 zk是复数, 本题并不能直接应
用Cauchy不等式. 这让我想起了 2014年的中国数学奥林匹克第一题: 若复数 z1, · · · , zn满
足 |zk − 1| ⩽ r, 且 r ∈ (0, 1), 则∣∣∣∣ n∑

k=1

zk

∣∣∣∣∣∣∣∣ n∑
k=1

1

zk

∣∣∣∣ ⩾ n2(1− r2).

证明 设 zk = xk + iyk, k = 1, · · · , n, 则
n∑

k=1

|zk|2 =
n∑

k=1

(x2k + y2k),
n∑

k=1

z2k =
n∑

k=1

(x2k − y2k)+ 2i
n∑

k=1

xkyk,
n∑

k=1

akzk =
n∑

k=1

ak(xk + iyk).

于是原不等式等价于

n∑
k=1

(x2k + y2k) +

√√√√( n∑
k=1

(x2k − y2k)

)2

+ 4

( n∑
k=1

xkyk

)2

⩾ 2

( n∑
k=1

akxk

)2

+ 2

( n∑
k=1

akyk

)2

.

可以观察到这是一个关于 x, y完全对称的不等式. 定义向量

a = (a1, · · · , an), x = (x1, · · · , xn), y = (y1, · · · , yn),

则不等式可以等价写为

|x|2 + |y|2 +
√

(|x|2 − |y|2)2 + 4(x · y)2 ⩾ 2(a · x)2 + 2(a · y)2. (1)

下面证明: 不等式 (1)对所有满足 |a| ⩽ 1的向量a ∈ Rn成立.

这里, 可以不妨设a恰好位于x,y张成的平面中, 否则只需将a替换为a在该平面上的投

影. 于是, 通过适当地选取坐标系, 可不妨设a,x,y都位于R2中. 更进一步, 通过旋转变换
可以假设

a = (1, 0), x = (x1, x2), y = (y1, y2),
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从而不等式 (1)可以等价地写为√
(x21 + x22 − y21 − y22)

2 + 4(x1y1 + x2y2)2 ⩾ x21 − x22 + y21 − y22. (2)

两边平方后, 可以将不等式 (2)转化为

(x21 − y22)(x
2
2 − y21) + (x1y1 + x2y2)

2 ⩾ 0 ⇐⇒ (x1x2 + y1y2)
2 ⩾ 0.

因此不等式 (2)成立, 原命题得证. ■
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4. 对任意正整数 n ⩾ 3和两两互异的复数 z1, · · · , zn, 证明:
n∑

k=1

∣∣∣∣ zk
zk − zk+1

∣∣∣∣2 ⩾ 1,

其中 zn+1 = z1.

右边的下界 1对所有正整数 n ⩾ 3都是紧的. 取 zk = Ak, 其中A > 0是一个实数. 则

n∑
k=1

∣∣∣∣ zk
zk − zk+1

∣∣∣∣2 ⩽ n−1∑
k=1

Ak

Ak+1 −Ak
+ 1 =

n− 1

A− 1
+ 1.

因此取A充分大即可使右端的下确界为 1.

证明 考察复数值函数

f(t) =

n∑
k=1

∣∣∣∣ t+ zk
zk − zk+1

∣∣∣∣2.
接下来求 f(t)的最小值. 注意到, f(t)可以等价地写为

f(t) = A|t|2 + B̄t+Bt̄+ C,

其中系数A,B,C的值为

A =

n∑
k=1

1

|zk − zk+1|2
, B =

n∑
k=1

zk
|zk − zk+1|2

, C =

n∑
k=1

|zk|2

|zk − zk+1|2
.

此时, f(t)的最小值在 t0 = −B/A处取到, 即

f(t) ⩾ f(t0) =
AC − |B|2

A
.

于是接下来只需证明:
AC − |B|2 ⩾ A. (1)

注意, Lagrange恒等式的复数形式为( n∑
k=1

|uk|2
)( n∑

k=1

|vk|2
)
−
∣∣∣∣ n∑
k=1

ukv̄k

∣∣∣∣2 = ∑
1⩽j<k⩽n

|ujvk − ukvj |2,
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在上式中取 uk =
zk

|zk − zk+1|
和 vk =

1

|zk − zk+1|
, 可以得到

AC − |B|2 =
∑

1⩽j<k⩽n

|zj − zk|2

|zj − zj+1|2|zk − zk+1|2

⩾ |zn − z1|2

|zn − z1|2||z1 − z2|2
+

n−1∑
j=1

|zj − zj+1|2

|zj − zj+1|2|zj+1 − zj+2|2

=
1

|z1 − z2|2
+

n−1∑
j=1

1

|zj+1 − zj+2|2
= A.

因此不等式 (1)得证. 并且, (1)在 n = 3时为恒等式, 在 n ⩾ 4时不能取等. ■
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5. 设复数 a, b, c满足

|a+ b+ c| = |ab+ bc+ ca| = |abc| = 1,

证明: |a| ⩽ 3|b|.

本题的其它解答也可以在BV11weEzYESC和ForeverHaibara(豪神)的知乎回答上找到. 特
别的, ForeverHaibara给出了问题的一个强化版本: 若 |abc| = 1, 则

9|b|2 − |a|2 + 3

2
(|ab+ bc+ ca|2 − 1) +

1

2
|a|2(|a+ b+ c|2 − 1) ⩾ 0.

本文档中的解答是由茶话会的群友暖 igf给出. 取等条件是 a = 1+
√
2i, b = 1−

√
2i

3 , c = −1.

证明 不妨设 abc = −1, 则 c = − 1
ab . 于是条件可化简为∣∣∣∣a+ b− 1

ab

∣∣∣∣ = ∣∣∣∣1a +
1

b
− ab

∣∣∣∣ = 1. (1)

下面取复数 s, t使得 a = st, b = s
t , 则条件 (1)可改写为∣∣∣∣s(t+ 1

t

)
− 1

s2

∣∣∣∣ = ∣∣∣∣1s
(
t+

1

t

)
− s2

∣∣∣∣ = 1. (2)

在 (2)的条件下, 我们的证明目标是 |t| ⩽
√
3. 令复数 z = t + 1

t . 根据对称性, 可不妨假设
Re (z) ⩾ 0, 因为对任何满足 (2)的复数 (s, t), 有 (−s,−t)也满足 (2). 于是我们得到

Re (z) ⩾ 0,

∣∣∣∣z − 1

s3

∣∣∣∣ = 1

|s|
, |z − s3| = |s|. (3)

进一步, 将 (3)中的等式平方后得到
(
z − 1

s3

)(
z̄ − 1

s̄3

)
=

1

|s|2(
z − s3

)(
z̄ − s̄3

)
= |s|2

=⇒

|s|6zz̄ − s3z − s̄3z̄ + 1 = |s|4

zz̄ − s̄3z − s3z̄ + |s|6 = |s|2

将上面的两个不等式相加, 即有

(|s|6 + 1)zz̄ − (s3 + s̄3)(z + z̄) +
(
|s|6 − |s|4 − |s|2 + 1

)
= 0. (4)

基于等式 (4)和条件 z + z̄ = 2Re (z) ⩾ 0, 我们来证明 |z − 1| ⩽ 1. 如若不然, 有

|z − 1| > 1 =⇒ (z − 1)(z̄ − 1) > 1 =⇒ zz̄ > z + z̄.
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因此由 (4)可以得到

0 = (|s|6 + 1)zz̄ − (s3 + s̄3)(z + z̄) +
(
|s|6 − |s|4 − |s|2 + 1

)
> (|s|6 − s3 − s̄3 + 1)(z + z̄) +

(
|s|6 − |s|4 − |s|2 + 1

)
⩾ (|s|3 − 1)2(z + z̄) + (|s|2 − 1)2(|s|2 + 1),

矛盾! 故由 (4)一定可以得到 |z − 1| ⩽ 1, 即∣∣∣∣t+ 1

t
− 1

∣∣∣∣ ⩽ 1. (5)

下面我们从 (5)出发证明 |t| ⩽
√
3. 事实上, 设 t = r(cos θ + i sin θ), 则 (5)两边平方后可得(

r2 +
1

r2

)
+ 2 cos 2θ − 2r cos θ − 2 cos θ

r
⩽ 0,

再利用二倍角公式 cos 2θ = 2 cos2 θ − 1即有

4 cos2 θ − 2

(
r +

1

r

)
cos θ +

(
r − 1

r

)2

⩽ 0. (6)

不等式 (6)的左边是一个关于 cos θ的一个开口向上的二次函数, 故其判别式∆ ⩾ 0, 即

∆ = 4

(
r +

1

r

)2

− 16

(
r − 1

r

)2

⩾ 0 =⇒ 3r4 − 10r2 + 3 ⩽ 0 =⇒ 1

3
⩽ r2 ⩽ 3,

故 |t|2 ⩽ 3. 原不等式得证. ■
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