
2025 国际大学生数学竞赛题目解析

虚空若叶睦

2025 年 8 月 8 日

1. 设实系数多项式 f ∈ R[x]满足 deg f ⩾ 2. 对每个 x ∈ R, 设 lx ⊂ R2表示 f的图像

在点 (x, f(x))处的切线.

(a) 设 f的次数是奇数. 证明:
∪

x∈R lx = R2.

(b) 是否存在一个偶数次数多项式使得上述等号仍然成立?

纯送, 高中生都会证.

证明 (a) 在点 (x0, f(x0))处的切线方程为

y = f ′(x0)(x− x0) + f(x0). (1)

下面只需证明: 对任意 x, y ∈ R, 方程 (1)关于 x0都有解. 显然, (1)的右端关于 x0是奇数次

多项式, 因此 (1)必有实根, 命题得证.

(b) 不存在. 不妨设P (x)是偶数次多项式, 且首项系数为正. 只需证明 y轴正半轴无法被完

全覆盖. 在 (1)中令 x = 0, 可以得到 x0处的切线与 y轴交点的纵坐标为 f(x0) − f ′(x0)x0.
注意到, 这是一个首项系数为负的偶数次多项式, 因此存在M > 0, 使得

f(x0)− f ′(x0)x0 < 0, ∀|x0| ⩾ M.

此时切线完全不覆盖 y轴的正半轴. 另一方面, 当 x0 ∈ [−M,M ]时, f(x0) − f ′(x0)x0的值

域一定是紧集, 此时切线不能完全覆盖 y轴的正半轴. 符合要求的偶数次多项式不存在. ■
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2. 设 f : [−1, 1] → R二阶连续可微, 且
∫ 1
−1 f(x)dx = 0, f(1) = f(−1) = 1. 证明:∫ 1

−1
(f ′′(x))2dx ⩾ 15,

并确定使等号成立的函数,

看起来很像数学一的考研题. 如果对解题技巧没有经验还是有点难度的.

证明 解题的关键在于构造一个特殊的函数P (x), 使得
∫ 1
−1 f

′′(x)P (x)dx是易于计算的. 接
着使用Cauchy不等式就能得到原题要求的界. 利用分部积分公式,∫ 1

−1
f ′′(x)P (x)dx =

∫ 1

−1
P (x)df ′(x)

=
[
f ′(x)P (x)

]1
−1

−
∫ 1

−1
f ′(x)P ′(x)dx

=
[
f ′(x)P (x)

]1
−1

−
[
f(x)P ′(x)

]1
−1

+

∫ 1

−1
f(x)P ′′(x)dx.

为了让等式的右端容易计算, 需要取P (−1) = P (1) = 0且P ′′(x)为定值. 取P (x) = x2 − 1,
可以得到 ∫ 1

−1
f ′′(x)(x2 − 1)dx = −4.

于是, 根据Cauchy不等式可得

16 ⩽
∫ 1

−1
(f ′′(x))2dx

∫ 1

−1
(x2 − 1)2dx =

16

15

∫ 1

−1
(f ′′(x))2dx,

从而原不等式得证. 等号成立的条件是 f ′′(x)正好和 1− x2成正比, 结合条件可以计算出

f(x) =
1

16
(−5x4 + 30x2 − 9).

于是原命题得证. ■
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3. 设 S表示所有秩为 1, 元素均为−1或+1的 2025× 2025对称方阵构成的集合. 等
可能随机且独立地从 S中选取矩阵A,B. 试求A,B可交换, 即AB = BA的概率.

这是一道简单的线性代数题目, 可以放到考研里.

证明 答案是
1

22024
. 对任意矩阵A ∈ S, 由于A实对称且秩为 1, 其特征值分解为A = cxx⊤,

其中 c ̸= 0且 x ∈ R2025. 此时, 可不妨设 |c| = 1, 因此 S中的矩阵有如下刻画:

S =
{
± xx⊤ : x ∈ R2025, xi ∈ {−1, 1}

}
.

注意到, 对矩阵乘以一个常数不改变其可交换性, 因此只需考察集合

S1 =
{
xx⊤ : x ∈ R2025, xi ∈ {−1, 1}

}
.

由于每个 xi的取值从 {−1, 1}中选取, x的构造方法有 22025种. 但 x和−x对应于同一个矩

阵 xx⊤, 故 S1中的矩阵个数为 |S1| = 22024.

下面从 S1中独立地选取矩阵A = xx⊤和B = yy⊤, 则AB = BA的等价条件是

x(x⊤y)y⊤ = y(y⊤x)x⊤ ⇐⇒ xy⊤ = yx⊤ ⇐⇒ xi
yi

=
xj
yj

,

即 x, y两个向量线性相关, 从而一定有A = B. 这就是说, S1中两个矩阵A,B可交换当且

仅当A = B. 因此AB = BA的概率是
1

22024
. ■
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4. 设 a是正偶数. 试求所有实数 x, 使得对所有正整数 n, 都有[
a
√
na + x · na−1

]
= na +

[x
a

]
.

(这里 [x]表示不超过 x的最大整数.)

我觉得这个题的难度是一试填空题.

证明 当 a = 2时, x的取值范围是 [−1, 2) ∪ [3, 4); 当 a ⩾ 4时, x的取值范围是 [−1, a).

首先, 当 n = 1时, 定义域要求 x ⩾ −1. 对一般的 n, 原等式可以等价写为[
na

(
1 +

x

na

) 1
a
]
= na +

[
x

a

]
. (1)

根据Bernoulli不等式, 有

na

(
1 +

x

na

) 1
a

⩽ na

(
1 +

x

ana

)
⩽ na +

x

a
,

因此 (1)成立的充分必要条件是: 对每个 n ∈ N, 都不存在整数 t使得

na

((
1 +

x

na

) 1
a

− 1

)
< t ⩽ x

a
. (2)

• 若 a ⩾ 4, 我们说明 x ⩾ a不符合要求. 当 x ⩾ a时, 一定存在正整数 k使得 ka ⩽ x <

(k + 1)a. 因此可在 (2)中取 t = k. 此时 (2)等价于(
1 +

x

na

) 1
a

< 1 +
k

na
. (3)

特别的, 在 n = 1时, (3)转化为

(1 + (k + 1)a)
1
a ⩽ 1 + k,

这对一切正整数 k和正偶数 a ⩾ 4都成立. 因此 a ⩾ 4且 x ⩾ a不符合要求.

• 若 a = 2, 我们说明 x ⩾ 4不符合要求. 类似于上面的讨论, 设 2k ⩽ x < 2k + 2, 其中
k ⩾ 2. 在 (2)中取 t = k, 则 (2)等价于(

1 +
x

n2

) 1
2

< 1 +
k

n2
. (4)
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特别的, 在 n = 1时, (4)转化为

(2k + 3)
1
2 ⩽ 1 + k,

这对一切正整数 k ⩾ 2成立. 因此 a = 2且 x ⩾ 4不合要求.

• 若 a = 2, 我们说明 2 ⩽ x < 3不符合要求. 类似于上面的讨论, 在 (2)中取 t = 1, 则
(2)等价于 (

1 +
x

n2

) 1
2

< 1 +
1

n2
.

特别地, 在 n = 1时, 恒有
(1 + x)

1
2 < 4

1
2 = 2,

因此 a = 2且 2 ⩽ x < 3不合要求. ■

最后, 对剩下的情况, 可以利用 (2)验证是符合要求的.
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5. 对正整数 n, 设 [n] = {1, 2, · · · , n}. 记Sn是所有从 [n]到 [n]的双射构成的集合,
Tn是所有从 [n]到 [n]的映射构成的集合. 对映射 τ ∈ Tn, 记它的阶 ord(τ)为集合
{id, τ, τ ◦ τ, τ ◦ τ ◦ τ, · · · }中不同的映射个数, 这里 id表示恒等映射, ◦表示复合. 设

g(n) = max
τ∈Sn

ord(τ), f(n) = max
τ∈Tn

ord(τ).

证明: 对充分大的 n, 有 f(n) < g(n) + n0.501.

看一眼就知道就不是初等方法能解决的问题. 这东西能放在大学生数学竞赛?

证明 先介绍一些解析数论的背景知识.

• 素数计数函数 (prime-counting function)

对任意正整数 n, 定义 π(n)为不超过 n的素数个数. 素数定理说明了:

π(n) ∼ n

logn, 当 n → ∞时.

这里∼的含义是渐进等价, 即左右两端的商在 n → ∞时的极限为 1.

• Landau函数 (Landau’s function)

对任意正整数 n, 定义 g(n)是对称群Sn中的元素的最大阶. 等价地说, g(n)是 n的任

意划分的最小公倍数的最大可能值:

g(n) = max
{

lcm(c1, c2, · · · , ck) :
k∑

i=1

ci = n, ci ∈ N
}
.

这一等价性成立的原因是: 对称群Sn中的任意置换 τ都可以划分成若干个有向圈, 若
设这些有向圈的长度分别为 c1, c2, · · · , ck, 则 τ的阶 (即使得 τm = id的最小正整数
m)恰好是 lcm(c1, c2, · · · , ck). 显然 g(n)单调递增. Landau在 1902年证明了

log g(n) ∼
√

n logn, 当 n → ∞时.

• 素数Ω函数 (prime Omega function)

对任意正整数 n,令Ω(n)是 n的素因子分解中素数的个数 (计算重数). 即当 n = pα1
1 · · · pαk

k

时, Ω(n) = α1 + · · ·+ αk. 容易看出

Ω(n) ⩽ log2 n ⩽ 2 logn, 对任意正整数 n.
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回到原题. 由条件可知 g(n)是Landau函数, 下面计算 f(n)的值. 对每个从 [n]到 [n]的映

射 τ ∈ Tn, 可以作出一个有 n个顶点的有向图Gn, 其中从 k ∈ [n]到 τ(k) ∈ [n]恰有一条有

向边, k = 1, · · · , n. 此时, Gn可以被划分为一些连通分支, 其中每个连通分支包含一个有
向圈, 和一些指向该圈的树, 如下图所示.

1

2 3

4
5 7

8
9

6

10

图 1: 这是一个 n = 10情形下映射 τ : [n] → [n]的例子. 此时 l = 2, p = 4.

由于序列 {id, τ, τ2, τ3, · · · }最终会变得周期, 设 l是最小的非负整数, 使得存在一个最小的
正整数 p满足 τ l = τ l+p.

• l被称为 τ的尾长, 它是图中任意一点到达一个有向圈的最大长度.

• p被称为 τ的周期, 它是图中所有有向圈的长度的最小公倍数.

根据阶的定义, ord(τ)是集合 {id, τ, τ2, · · · , τ l+p−1}的大小, 因此 ord(τ) = l + p. 如果 τ ∈
Sn, 那么 l = 0, 从而 ord(τ)与Sn置换中的阶的定义等价.

设此时在 τ ∈ Tn中共有m个点形成有向圈, 则有 l ⩽ n−m和 p ⩽ g(m). 因此

ord(τ) = l + p ⩽ n−m+ g(m).

因此, 当 τ ∈ Tn时, ord(τ)的最大可能值是

f(n) = max
1⩽m⩽n

{
n−m+ g(m)

}
. (1)

下面只需证明: 由 (1)定义的函数 f(n)满足 f(n) < g(n) + n0.501对充分大的 n成立, 即:

当 n充分大时, 对任意 0 ⩽ k ⩽ n− 1, 有 k + g(n− k) < g(n) + n0.501. (2)

设 0 ⩽ k0 ⩽ n− 1是使得 k + g(n− k)取最大值的 k, 则 (2)的一个充分条件是

当 n充分大时, k0 < n0.501, 其中 k0使得 k + g(n− k)最大.
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更进一步, 我们只需证明:

当 n充分大时, 对任意 n0.501 ⩽ k ⩽ n− 1, 有 k + g(n− k) < g(n). (3)

利用前面介绍的 π(n)和Ω(n)两个函数, 可以得到: 一方面, 当 k ⩾ n0.501时

π(k) ⩾ c1
k

log k ⩾ c1
n0.501

logn0.501
, (4)

其中 c1是不依赖于 n, k的常数. 另一方面,

Ω(g(n− k)) ⩽ c2 log g(n− k) ⩽ c2 log g(n) ⩽ c2
√
n logn. (5)

结合 (4)(5)可知: 当 n充分大时, 对任意 n0.501 ⩽ k ⩽ n− 1, 都有

π(k) ⩾ c1
n0.501

logn0.501
> c2

√
n logn ⩾ Ω(g(n− k)).

这意味着, 一定存在素数 p ⩽ k, 且 p与 g(n− k)互素. 于是有不等式

g(n) ⩾ lcm
(
g(n− k), p, k − p

)
⩾ lcm(g(n− k), p) = pg(n− k) ⩾ 2g(n− k).

于是从上述可以得到: 当 n0.501 ⩽ k ⩽ n− 1时, 有

k + g(n− k) ⩽ n+
1

2
g(n) < g(n), (6)

其中最后一个不等号成立是因为 g(n) ⩾ ec3
√

n logn对某常数 c3 > 0成立.

由 (6)即可知 (3)成立, 从而原命题得证. ■
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6. 设 f : (0,+∞) → R是连续可微函数, 实数 b > a > 0满足 f(a) = f(b) = k. 证明:
存在一点 ξ ∈ (a, b)使得

f(ξ)− ξf ′(ξ) = k.

实在太简单了, 数学三都不会出这么简单的.

证明 不妨设 k = 0, 否则可用 f(x)− k代替讨论. 现考察函数

g(x) =
f(x)

x
,

则

g′(x) =
f ′(x)x− f(x)

x2
.

由于 g(a) = g(b) = 0, 根据Lagrange中值定理可知存在 ξ ∈ (a, b)使得 g′(ξ) = 0, 即 f(ξ) −
ξf ′(ξ) = 0. 原命题得证. ■
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7. 设正整数集为N. 试求所有满足如下两个条件的非空子集M ⊂ N:

• 若 x ∈ M , 则 2x ∈ M ;

• 若 x, y ∈ M , x+ y为偶数, 则 x+ y

2
∈ M .

非常有趣的组合题, 难度不大, 可以放在一试第 10题的位置.

证明 所有满足条件的集合为:
{
nt : n ⩾ n0

}
, 其中 n0为正整数, t为正奇数.

对于一个符合条件的集合M , 我们证明M一定具有上面的形式. 设 x, x + t是M中最小的

两个元素, 其中 x, t均为正整数. 若 t为偶数, 则由条件可知

x+
t

2
=

x+ (x+ t)

2
∈ M,

这与 x+ t是M中次小的元素矛盾! 因此 t必为奇数. 由归纳法知, 对任何正整数 n有

nx ∈ M, n(x+ t) ∈ M. (1)

接下来证明: x+ 2t ∈ M . 注意到有如下的引理:

若 x, y为正整数且 (x, y) = 1, 则当 n > xy时, 关于 (a, b)的不定方程

ax+ by = n

一定有正整数解. 由此可知, 一定存在正整数 n, 使得存在正整数 a, b满足

ax+ b(x+ t) = x+ 2nt. (2)

根据 (1), 我们有 ax ∈ M和 b(x+ t) ∈ M . 由条件和 (2)即可知 x+ 2nt ∈ M . 于是有

x+ 2n−1t =
x+ (x+ 2nt)

2
∈ M =⇒ · · · =⇒ x+ 2t =

x+ (x+ 22t)

2
∈ M,

从而 x + 2t ∈ M . 由于 x, x + t, x + 2t构成等差数列, 故根据归纳法可以得到: 对任意非负
整数 n, 都有 x+ nt ∈ M . 下面证明: M中不会有不是 x+ nt形式的元素.

否则, 假设 y是M中最小的, 不是 x + nt形式的元素, 则 y > x + t, 因为 x + t是次小的元

素. 此时, x和 x+ t两个元素之中必有一个与 y同奇偶, 因此一定有

x+ y

2
∈ M 或

x+ y + t

2
∈ M. (3)
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无论 (3)中的哪种情况出现, 都有 x+ y

2
<

x+ y + t

2
< y, 于是根据 y的最小性, x+ y

2
或

x+ y + t

2
一定是形如 x+ nt的元素, 其中 n是正整数. 这样, y本身也是形如 x+ nt的元素,

矛盾! 故M中的元素必有 x+ nt的形式, 其中 n为非负整数.

特别的, 2x ∈ M意味着 2x = x+ nt对某个正整数 n成立, 从而 t|x. 设 x = n0t, 于是

M =
{
nt : n ⩾ n0

}
, 其中 n0为正整数, t为正奇数. ■
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8. 对一个实矩阵A ∈ Mn(R), 记AR为把它逆时针旋转 90◦得到的矩阵. 例如,
1 2 3

4 5 6

7 8 9


R

=


3 6 9

2 5 8

1 4 7

 .

证明: 若A = AR, 则对A的每个特征值 λ, 有Reλ = 0或 Imλ = 0.

很不常规的线性代数题目, 需要一点几何直觉.

证明 先证一个引理: 考虑R2上一个以 0为中心的正方形S, 则S关于 x轴的轴对称图形和

关于 y = −x的轴对称图像完全重合. (这是什么玩意? 难道不是初中生就会证的东西?)

设S上的一个顶点是 z = a+ bi. 它关于 x轴的对称点是 z1 = a− bi, 关于 y = −x的对称点

是 z2 = −b− ai. 注意到 z2 = iz1, 故 z1, z2在同一个正方形上, 命题得证.

回到原题, 定义矩阵

J =



0 0 · · · 0 1

0 0 · · · 1 0
...

... . . . ...
...

0 1 · · · 0 0

1 0 · · · 0 0


∈ Mn(R).

由于A = AR = ARR = ARRR, 故有
JA = A⊤. (1)

前者的作用是把A的所有行沿着 x轴作对称, 后者的作用是把A沿着 y = −x作对称. 根据
引理, 它们应该相等. 于是根据 (1)有

A = JA⊤ =⇒ A2 = AJA⊤,

从而A2为实对称矩阵, 于是A2的特征值全部为实数. 因此, A的特征值 λ必然满足Reλ =

0或 Imλ = 0. ■
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9. 设 n是正整数. 考虑如下的随机过程, 它会生成 n个不同的正整数:

首先, 选取X1, 它的选取服从对所有正整数 i, P(X1 = i) = 2−i. 对 1 ⩽ j ⩽ n − 1,
若X1, · · · , Xj已选定, 将剩余的正整数按剩下排列成 n1 < n2 < · · · , 然后选取Xj+1,
它的选取服从对所有正整数 i, P(Xj+1 = ni) = 2−i.

记 Yn = max{X1, · · · , Xn}. 证明:

E[Yn] =
n∑

i=1

2i

2i − 1
.

这是一道难度中等的概率题, 兼具了概率思想和计算技巧. 可以作为概率论期末考试的压
轴题. 如果在每步完成以后直接考察正整数列 n1, n2, · · · 的排列, 将会非常复杂. 更好的做
法是固定所有正整数 1, 2, · · · 的位置: 每当正整数 k被取走, 那么 k处的概率值变为 0, k之
后的所有正整数被取走的概率翻倍.

证明 将所有正整数 1, 2, · · · 写成一列, 其中正整数 i上的标签为 2−i, 表示它被选择的初始
概率. 每当一个正整数 k被选中时, 将 k上的标签改为 0, 将比 k大的所有正整数上的标签

改为原来的两倍. 这样进行 n步后取中的随机变量X1, · · · , Xn恰好就是条件中所描述的随

机变量. 下面来计算 Yn = max{X1, · · · , Xn}的分布.

取定正整数 k, 我们来计算 ak = P(Yn ⩽ k). 由于X1, · · · , Xn是互不相同的正整数, 故当
k ⩽ n− 1时, 总有 ak = 0. 当 k ⩾ n时, Yn ⩽ k, 要求X1, · · · , Xn都不超过 k, 即前 n步选择

的数都不超过 k. 注意到, 在第 j次选取Xj后, 比Xj大的正整数的标签上的概率都会翻倍,
因此第 j步选择的Xj不超过 k的概率为

1− 2j−1

(
1

2k+1
+

1

2k+2
+ · · ·

)
= 1− 1

2k−j+1
.

于是前 n次选中的数都不超过 k的概率为

ak = P(Yn ⩽ k) =

n∏
j=1

(
1− 1

2k−j+1

)
=

n−1∏
j=0

(
1− 1

2k−j

)
.

于是

E[Yn] = 1 +
∞∑
k=1

(1− ak) = n+
∞∑
k=n

(1− ak).
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要证明原等式, 接下来只需证明
∞∑
k=n

(1− ak) =
n∑

i=1

1

2i − 1

⇐⇒
∞∑
k=n

(
1−

n−1∏
j=0

(
1− 1

2k−j

))
=

n∑
i=1

1

2i − 1

⇐⇒
∞∑
k=1

(
1−

n−1∏
j=0

(
1− 1

2k+n−1−j

))
=

n∑
i=1

1

2i − 1

⇐⇒
∞∑
k=1

(
1−

n−1∏
j=0

(
1− 1

2k+j

))
=

n∑
i=1

1

2i − 1
. (1)

对 n使用数学归纳法, 只需证明 (1)在 n和 n+ 1时作差的结果相等即可:

∞∑
k=1

1

2k+n

n−1∏
j=0

(
1− 1

2k+j

)
=

1

2n+1 − 1
. (2)

等式 (2)直接用裂项相消即可证明. 事实上, (2)等价于

∞∑
k=1

(
2n+1 − 1

2k+n

n−1∏
j=0

(
1− 1

2k+j

))
= 1

⇐⇒
∞∑
k=1

((
1

2k−1
− 1

2k+n

) n−1∏
j=0

(
1− 1

2k+j

))
= 1

⇐⇒
∞∑
k=1

(
n∏

j=0

(
1− 1

2k+j

)
−

n−1∏
j=−1

(
1− 1

2k+j

))
= 1

⇐⇒
∞∑
k=1

(
n∏

j=0

(
1− 1

2k+j

)
−

n∏
j=0

(
1− 1

2k−1+j

))
= 1

⇐⇒ lim
k→∞

n∏
j=0

(
1− 1

2k+j

)
= 1.

对于给定的 n, 上面的极限显然成立. 因此原命题得证. ■
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10. 对正整数N ,定义SN 为使得 (a2+a)(b2+b)是完全平方数的正整数 1 ⩽ a, b ⩽ N

的对数. 证明: 极限
lim

N→∞

SN

N

存在, 并求其值.

证明 先介绍Pell方程的背景知识. 当 d是非完全平方的正整数时, 整数方程

x2 − dy2 = 1

称为Pell方程. 除了平凡解 (x, y) = (±1, 0)外, Pell方程存在唯一的最小正整数解 (x1, y1),
称为基本解. Pell方程的第 j个正整数解由表达式

xj +
√
dyj =

(
x1 +

√
dy1
)j

给出. 下面假设 d是 4的倍数, 那么 x1一定是奇数. 并且对任意正整数 j, 有

xj ⩾ xj1 ⩾ 3j .

回到原题. 对任意正整数 n, 定义 σ(n)是其非完全平方的部分:

σ(n) = p1 · · · pk, 其中 p1, · · · , pk是所有使得 vp(n)为奇数的素数 p.

于是, (a2+a)(b2+b)是完全平方数当且仅当 σ(a2+a) = σ(b2+b). 这启发我们根据 σ(n2+n)

的值对所有正整数进行等价类的划分. 给定正整数N和非完全平方正整数 k, 定义

Ck(N) = {1 ⩽ n ⩽ N : σ(n2 + n) = k}, ck(N) = #Ck(N). (1)

于是, {1, · · · , N} =
∪

k Ck(N), 从而有

N =
∑
k

ck(N), SN =
∑
k

c2k(N). (2)

在这里, 对 k求和的范围是所有非完全平方的正整数. 如果 n ∈ Ck(N), 那么由 (1)有

σ(n2 + n) = k,

进而存在正整数m, 使得 n2 + n = km2, 从而得到

(2n+ 1)2 − 4km2 = 1, (3)

因此 (2n+ 1,m)是Pell方程 x2 − 4ky2 = 1的正整数解. 接下来证明两个引理:
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引理 1 对任意 k, 有 ck(N) ⩽ logN + 1.

设 (xj , yj)
∞
j=1是Pell方程 x2 − 4ky2 = 1的所有正整数解, 则易知 xj ⩾ 3j . 此时 ck(N)计算

x2 − 4ky2 = 1的满足 1 < x ⩽ 2N + 1的正整数解的数量, 因此

ck(N) =
∑

j:xj⩽2n+1

1 ⩽
∑

j:3j⩽2n+1

1 ⩽ log3(2N + 1) ⩽ log3(3N) ⩽ logN + 1.

引理 2 给定正整数N , 使得 ck(N) > 1的 k不超过
√
N个.

若 ck(N) > 1, 则Pell方程 (3)至少存在两组正整数解 (n1,m1) < (n2,m2), 且 n1, n2 ⩽ N .
不妨设这两组解就是最小的两组解, 从而有

(2n1 + 1)2 ⩽ 2n2 + 1 ⩽ 2N + 1 =⇒ n1 ⩽
√
2N + 1− 1

2
⩽

√
N.

因此我们构造了一个映射: 如果某个 k使得 ck(N) > 1, 就能找到Pell方程 (3)的最小解
(n1,m1),且 n1 ⩽

√
N . 不仅如此,这样的从 k到 n1的映射一定是单射,因为 σ(n2

1+n1) = k.
于是, 使得 ck(N) > 1的 k一定不超过

√
N个.

利用引理 1和引理 2, 我们可以给出

SN =
∑
k

c2k(N)

=
∑

k:ck(N)=1

c2k(N) +
∑

k:ck(N)>1

c2k(N)

⩽
∑

k:ck(N)=1

1 + (logN + 1)2
∑

k:ck(N)>1

1

⩽ N +
√
N(logN + 1)2.

由于SN ⩾ N , 故SN/N的极限为 1. ■
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