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我们的故事从 2021年 IMO第 2题开始:

对任意实数 x1, x2, · · · , xn, 证明:
n∑

i,j=1

√
|xi − xj | ⩽

n∑
i,j=1

√
|xi + xj |.

两个精妙的推广

赵斌和俞辰捷给出上凸函数版本的推广 (发布在数学新星网):

(推广一) 已知 f是定义在 [0,+∞)上的单调不减的上凸函数, 且 f(0) = 0, 则对任意实数
x1, x2, · · · , xn, 有

n∑
i,j=1

f(|xi − xj |) ⩽
n∑

i,j=1

f(|xi + xj |).

该结果的证明利用调整法和数学归纳法完成.

另一个有趣的推广是通过转化为半正定的二次型完成的.

(推广二) 给定 0 < α < 2, 对任意实数 x1, x2, · · · , xn, 有
n∑

i,j=1

|xi − xj |α ⩽
n∑

i,j=1

|xi + xj |α.

该结果的证明主要利用下面的积分恒等式: 对任意 x ∈ R, 有∫ ∞

0

1− cos(xt)
t1+α

dt = Cα|x|α,
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其中Cα > 0是一个仅依赖于α ∈ (0, 2)的常数. 于是对任意 x, y ∈ R, 有

|x+ y|α − |x− y|α = C−1
α

∫ ∞

0

cos((x− y)t)− cos((x+ y)t)

t1+α
dt

= 2C−1
α

∫ ∞

0

sin(xt) sin(yt)
t1+α

dt.

因此可以得到

n∑
i,j=1

(
|xi + xj |α − |xi − xj |α

)
= 2C−1

α

n∑
i,j=1

∫ ∞

0

sin(xit) sin(xjt)
t1+α

dt

= 2C−1
α

∫ ∞

0

1

t1+α

( n∑
i,j=1

sin(xit)
)2

dt ⩾ 0,

故推广二成立. α = 2的情形可以通过取α → 2−的极限或直接证明来得到. 当α > 2时, 上
述积分在 t = 0附近发散, 因此不能使用相同的方法.

并且, 上述结果在α > 2时也不一定成立. 例如, α = 4时不等式不会成立:
n∑

i,j=1

(
(xi + xj)

4 − (xi − xj)
4
)
= 8

n∑
i,j=1

(xix
3
j + x3ixj) = 16

n∑
i=1

x3i

n∑
i=1

xi,

显然上式的取值可能是负值.

推广二对复数版本 (乃至更高维的向量)的 z1, z2, · · · , zn也都成立. 只需注意到如下结果:
取 v是单位圆周上均匀分布的随机向量, 则对非负实数α和向量 z ∈ R2, 有

Ev

[
|v · z|α

]
=

1

π

∫ π
2

−π
2

| cos θ|α|z|αdθ = Cα|z|α.
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受到上述问题的启发, 我设计了一道原创题目.

对任意非零复数 z1, z2, · · · , zn, 证明:
n∑

i,j=1

|zi + zj |
max(|zi|, |zj |)

⩾ n2.

该不等式在 n为偶数时是可以取等的, 取等条件是±1各取一半; 在 n是奇数时则是非紧的.
在证明之前, 我们首先说明一些有用的结果:

引理 1 设 c1, c2, · · · , cn为非负实数, 则 n× n矩阵 C =
(
min(ci, cj)

)n
i,j=1

是半正定的.

注意到, 对任意 a, b ⩾ 0, 有

min(a, b) =
∫ ∞

0
I(x ⩽ a)I(x ⩽ a)dx,

因此对任意实数 ξ1, ξ2, · · · , ξn, 都有
n∑

i,j=1

min(ci, cj)ξiξj =
n∑

i,j=1

∫ ∞

0
ξiξjI(x ⩽ xi)I(x ⩽ xj)dx

=

∫ ∞

0

( n∑
i=1

ξiI(x ⩽ xi)

)2

dx ⩾ 0,

故C是半正定的.

引理 2 设A,B为 n× n半正定矩阵, 则 tr(AB) ⩾ 0.

不妨假设A是正定的, 否则考虑A+ εI并取 ε充分小. 设A的Cholesky分解为A = LL⊤,

tr(AB) = tr(LL⊤B) = tr(L⊤BL) ⩾ 0.

最后一个不等号成立是因为L⊤BL是半正定的.

3



现在回到原题的证明.

证明 注意到

n∑
i,j=1

|zi + zj |
max(|zi|, |zj |)

+

n∑
i,j=1

|zi − zj |
max(|zi|, |zj |)

=

n∑
i,j=1

|zi + zj |+ |zi − zj |
max(|zi|, |zj |)

⩾ 2n2,

因此我们只需证明:
n∑

i,j=1

|zi + zj | − |zi − zj |
max(|zi|, |zj |)

⩾ 0. (1)

为证明不等式 (1), 定义矩阵A = (Aij)
n
i,j=1和B = (Bi,j)

n
i,j=1, 其中

Ai,j = |zi + zj | − |zi − zj |, Bi,j =
1

max(|zi|, |zj |)
.

于是 (1)等价于 tr(AB) ⩾ 0, 其中 tr是矩阵的迹. 注意到,

Bi,j = min
(

1

|zi|
,

1

|zj |

)
,

所以B是半正定的. 根据引理 2,下面只需证明: A是半正定的,即对任意实数 ξ1, · · · , ξn,有
n∑

i,j=1

ξiξj
(
|zi + zj | − |zi − zj |

)
⩾ 0. (2)

根据复数推广的讨论, 要证明不等式 (2)成立, 只需考察 z1, · · · , zn都是实数的情况. 而在实
数情况下, 不等式 (2)可以立刻从推广二的证明中得到. 故原不等式得证.

使用同样的方法可以证明: 对任意实数 0 < α ⩽ 1, 有
n∑

i,j=1

(
|zi + zj |

max(|zi|, |zj |)

)α

⩾ 2α−1n2,

且在 n为偶数时等号可以取到. ■
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