
向量内积不等式

虚空若叶睦

2025 年 8 月 19 日

设α1, · · · ,αn为平面向量, 满足 |αi| = 1, i = 1, · · · , n. 证明:

(1)
n∑

i,j=1
⟨αi,αj⟩<π

2

αi ·αj ⩾
n2

4
.

(2) 对任意正整数m ⩾ 2, 有
n∑

i,j=1
⟨αi,αj⟩< π

m

αi ·αj ⩾
n2

2m
+ 2m

{
n

2m

}(
1−

{
n

2m

})
.

(本题来自于 b站UP主@氢溴的阿离)

这是一道颇有难度的, 兼具代数和组合风格的题目. 氢溴的阿离和我为各自为本题提供了
风格不同的解答.

第一问: 夹角小于 π

2
的情形

解法一 (虚空若叶睦)

证明 设αi = (cos θi, sin θi), 其中 θi ∈ S1, i = 1, · · · , n. 定义 x, y ∈ S1的距离 |x− y|为连接
x, y的最短弧长. 容易看出αi ·αj = cos(θi − θj), 其中 i, j = 1, · · · , n. 在之后的所有解答中
均使用相同的记号. 注意到不等式

n∑
i,j=1

cos(θi − θj) =

( n∑
i=1

cos θi
)2

+

( n∑
i=1

sin θi

)2

⩾ 0 (1.1)
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对一切 θ1, · · · , θn ∈ S1成立, 可以得到
n∑

i,j=1
⟨αi,αj⟩<π

2

αi ·αj =
∑

|θi−θj |<π
2

cos(θi − θj) =

n∑
i,j=1

max{cos(θi − θj), 0}

=
1

2

n∑
i,j=1

(
cos(θi − θj) + | cos(θi − θj)|

)
⩾ 1

2

n∑
i,j=1

| cos(θi − θj)|,

因此只需证明:
n∑

i,j=1

| cos(θi − θj)| ⩾
n2

2
. (1.2)

再次利用不等式 (1.1), 即可得到
n∑

i,j=1

| cos(θi − θj)| ⩾
n∑

i,j=1

cos2(θi − θj) =
1

2

n∑
i,j=1

(1 + cos(2θi − 2θj)) ⩾
n2

2
,

即 (1.2)成立. 故原不等式得证. ■

解法二 (氢溴的阿离)

证明 为每一个 θi ∈ S1都指定 θi所正对的四分之一圆弧Ci, 其中Ci的长度为 s(Ci) = π
2 .

下面证明: 对 θi, θj ∈ S1, 它们对应的圆弧满足

cos(θi − θj) ⩾
2

π
s(Ci ∩ Cj), 如果 |θi − θj | <

π

2
. (1.3)

其中, s(Ci ∩ Cj)表示两段圆弧的交的长度. 事实上, 若设两端圆弧的交的长度为 θ, 则容易
看出 |θi − θj | = π

2 − θ, 此时不等式 (1.3)即等价于

cos
(
π

2
− θ

)
= sin θ ⩾ 2

π
θ, θ ∈

[
0,

π

2

]
,

上式显然成立. 接着利用 (1.3)可以将目标函数转化为 S1上的曲线积分:
n∑

i,j=1
|θi−θj |<π

2

cos(θi − θj) ⩾
2

π

n∑
i,j=1

s(Ci ∩ Cj)

=
2

π

n∑
i,j=1

∫ 2π

0
I(t ∈ Ci)I(t ∈ Cj)ds(t)

=
2

π

∫ 2π

0

( n∑
i=1

I(t ∈ Ci)

)2

ds(t).
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再根据Cauchy不等式, 即可得到
n∑

i,j=1
|θi−θj |<π

2

cos(θi − θj) ⩾
2

π

∫ 2π

0

( n∑
i=1

I(t ∈ Ci)

)2

ds(t)

⩾ 1

π2

(∫ 2π

0

n∑
i=1

I(t ∈ Ci)ds(t)
)2

=
1

π2

(
π

2
n

)2

=
n2

4
,

故原命题得证. ■

第二问: 夹角小于 π

m
的情形

解法一 (虚空若叶睦)

证明 将 n个辐角值 θ1, · · · , θn划分成若干个等价类, 其中 θi, θj属于同一个等价类当且仅当

θi − θj是
π

m
的整数倍.

由于m ⩾ 2是正整数, 可以验证这个等价类具有传递性. 这个等价类的几何含义是: 同一等
价类中的辐角应位于同一个正 2m边形的顶点上.

只有一个等价类: 直接验证不等式成立

如果 θ1, · · · , θn仅有一个等价类, 可以直接验证结论成立. 在这个等价类中的正 2m边形上,
假设每个顶点对应的辐角数分别是 a1, · · · , a2m, 则 ai是非负整数, 且

2m∑
i=1

ai = n, (2.1)

而我们的目标是证明

2m∑
i=1

a2i ⩾
n2

2m
+ 2m

{
n

2m

}(
1−

{
n

2m

})
. (2.2)

设 n = 2mq + r, 其中 0 ⩽ r < 2m. 则 (2.2)可以改写为
2m∑
i=1

a2i ⩾
n2

2m
+ r

(
1− r

2m

)
. (2.3)

由于 ai是非负整数, 故 (2.3)的左侧在 a1, · · · , a2m中恰好有 r个 q + 1和 2m− r个 q时取最

小值; 此时可验证 (2.3)的等号恰好成立. 故 (2.2)得证.
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有多个等价类: 调整以减少等价类的数量

如果 θ1, · · · , θn中有多个等价类,不妨设 {θi}i∈A是其中一个等价类,并定义B = {1, · · · , n}\A.
现在, 将A中的辐角同时增加 t ∈ S1, 而B中的辐角保持不变. 注意到, 当 i, j同时属于A或

B时, 增加A中的辐角不会改变 |θi − θj |的值. 因此, 目标函数值的变化可以表示为

f(t) =
∑

i∈A,j∈B
cos(t+ θi − θj) · I

(
|t+ θi − θj | <

π

m

)
, (2.4)

此处的求和只对 i ∈ A, j ∈ B计算, I(·)为指示函数. 下面证明: f(t)在 t ∈ S1上是下连续
的, 即对任意收敛到 t∗ ∈ S1的序列 {tk}∞k=1 ⊂ S1, 有

f(t∗) ⩽ lim
k→∞

f(tk).

根据 (2.4), 我们只需验证对每个 i ∈ A, j ∈ B, 都有

cos(t∗+θi−θj) ·I
(
|t∗+θi−θj | <

π

m

)
⩽ lim

k→∞
cos(tk+θi−θj) ·I

(
|tk+θi−θj | <

π

m

)
(2.5)

若 |t∗ + θi − θj | ⩾
π

m
, 则 (2.5)显然成立, 因为其右端项恒非负. 若 |t∗ + θi − θj | <

π

m
, 则对

充分大的 k, 总有 |tk + θi − θj | <
π

m
, 因此

lim
k→∞

cos(tk + θi − θj) · I
(
|tk + θi − θj | <

π

m

)
= lim

k→∞
cos(tk + θi − θj) = cos(t∗ + θi − θj),

从而 (2.5)成立. 于是 f(t)是下连续的. 现在, 定义集合

T =

{
t ∈ S1 :存在 i ∈ A, j ∈ B使得 |t+ θi − θj | =

π

m

}
.

显然, T 是 S1上的非空的离散点集, 并且 0 ̸∈ T , 因为A,B中的辐角来自不同的等价类. 因
此, 一定存在 S1上的一段开圆弧 (l1, l2), 使得 0 ∈ (l1, l2), 且 l的两个端点 l1, l2 ∈ T . 于是当
t ∈ (l1, l2)时, (2.4)中的指示函数 I(·)均不发生变化, 因此有

f ′′(t) = −
∑

i∈A,j∈B
cos(t+ θi − θj) · I

(
|t+ θi − θj | <

π

m

)
⩽ 0, t ∈ (l1, l2),

从而 f(t)在 (l1, l2)上为上凸函数. 在利用 f(t)在 [l1, l2]上的下连续性, 即可得到

f(0) ⩾ lim
ε→0+

min
{
f(l1 + ε), f(l2 − ε)

}
⩾ min{f(l1), f(l2)}. (2.6)
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不等式 (2.6)意味着, 可以将A中的辐角同时增加 t = l1或 l2, 使得目标函数值不增加. 但
是, t ∈ T 意味着一定存在 i ∈ A, j ∈ B使得 |t + θi − θj | = π/m, 从而 t + θi和 θj属于同一

个等价类. 因此, 原来的等价类A在全部加上辐角 t后被吸收进了B中, 必然使得等价类的
数量减少. 重复如上的操作, 最终会减少到只剩下一个等价类, 故原命题得证. ■

解法二 (氢溴的阿离)

证明 为每一个 θi ∈ S1都指定 θi所正对的圆心角为
π
m圆弧Ci, 则Ci的长度为 s(Ci) = π

m .
下面证明: 对 θi, θj ∈ S1, 它们对应的圆弧满足

cos(θi − θj) ⩾
m

π
s(Ci ∩ Cj), 如果 |θi − θj | <

π

m
. (2.7)

设两端圆弧的交的长度为 θ, 则 |θi − θj | = π
m − θ, 此时不等式 (2.7)等价于

cos
(
π

m
− θ

)
⩾ m

π
θ, θ ∈

[
0,

π

m

]
. (2.8)

由于 cosx为上凸函数, 且 (2.8)对于 θ = 0和 π
m的情形均成立, 故 (2.8)对于 θ ∈ [0, π

m ]恒成

立, 故 (2.7)得证. 于是, 我们可以得到
n∑

i,j=1
|θi−θj |< π

m

cos(θi − θj) ⩾
m

π

n∑
i,j=1

s(Ci ∩ Cj)

从而原问题归结于证明

n∑
i,j=1

s(Ci ∩ Cj) ⩾
(

n2

2m2
+ 2

{
n

2m

}(
1−

{
n

2m

}))
π. (2.9)

现在, 将每一段圆弧Ci想象成在单位圆环上一段长度为
π
m的贴纸, 对 k ⩾ 0, 定义 sk是单位

圆环上恰好被 k层贴纸覆盖的长度. 使用严格的数学定义, 此即

sk = m

(
t ∈ S1 : #

{
1 ⩽ i ⩽ n : t ∈ Ci

}
= k

)
, k = 0, 1, 2, · · · .

于是容易看出,
∞∑
k=0

sk = 2π,

∞∑
k=0

ksk =
nπ

m
. (2.10)
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由于 s(Ci ∩ Cj)计算同时属于Ci和Cj的点的测度, 故

n∑
i,j=1

s(Ci ∩ Cj) =
∞∑
k=0

k2sk.

因此原问题转化为了下面的代数问题: 在 (2.10)的条件下, 证明

∞∑
k=0

k2sk ⩾
(

n2

2m2
+ 2

{
n

2m

}(
1−

{
n

2m

}))
π.

设 n = 2mq + r, 其中 0 ⩽ r < 2m, 则上式可等价写为
∞∑
k=0

k2sk ⩾ 1

m

(
2mq2 + (2q + 1)r

)
π. (2.11)

为证明 (2.11), 注意到 (k − q)(k − q − 1) ⩾ 0对一切非负整数 k成立,
∞∑
k=0

(k − q)(k − q − 1)sk ⩾ 0

因此

∞∑
k=0

k2sk ⩾ (2q + 1)
∞∑
k=0

ksk − q(q + 1)
∞∑
k=0

sk

= (2q + 1)
nπ

m
− 2q(q + 1)π

=
1

m

(
2mq2 + (2q + 1)r

)
π,

故 (2.11)得证. 从而原命题得证.
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