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若 (0,+∞)上的连续函数 f(x)使得 lim
n→∞

f(nh)对一切 h > 0存在且有限, 则

lim
x→+∞

f(x)存在且有限.

这是一个经典的分析问题, 被称为Croft–Kingman引理. 它首次出现于Kingman的论文

• Ergodic properties of continuous-time Markov processes and their discrete skeletons,
Proc. London Math. Soc. (3) 13 (1963), 593–604

中的Theorem 2. 这个问题也出现在 Selected Problems in Real Analysis (Makarov, Goluz-
ina, Lodkin & Podkorytov)和周民强的数学分析习题集上. 问题的一个弱化版本是:

若连续函数 f(x)使得 lim
n→∞

f(nh) = 0对一切 h > 0成立, 则 lim
x→+∞

f(x) = 0.

相关问题也大量出现在Math.StackExchange上:

• https://math.stackexchange.com/questions/63870

• https://math.stackexchange.com/questions/616745

• https://math.stackexchange.com/questions/3109975

在本文档中, 我们介绍该结果的两种证法, 一种是基于纯数学分析的闭区间套定理, 另一种
是基于泛函分析中的Baire纲定理. 最后, 设E是定义在 [1, 2]上的Cantor集. 如果原题条
件弱化为 lim

n→∞
f(nh)只对 h ∈ E成立, 那么结论存在反例.
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闭区间套定理证明

要证明 f(x)的极限存在且有限, 一个自然的想法是反证法: 假设存在M > m, 以及一列闭
区间 (Ik)

∞
k=1使得 f(x)在 Ik上交替地小于m和大于M , 如下图所示.

M
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I2

I3

I4

I5

这样, 我们的任务就变成了找到一个特殊的 h > 0, 使得存在充分大的正整数 k和 n使得

nh ∈ Ik. 不过这样的 h并不容易直接构造出来, 我们需要构造大量形如 [a, b]的区间, 使得
[na, nb] ⊂ Ik, 并用闭区间套定理选出对应的 h. 这便是证明的基本动机.

证明 先来证明下面的引理.

引理 设 (Ik)
∞
k=1是 (0,+∞)中的一列闭区间, 且 Ik的中心点发散到正无穷. 则对任意非空

闭区间 [a, b] ⊂ (0,+∞)和正整数 t, 存在子区间 [a′, b′] ⊂ [a, b], 正整数 n和 k ⩾ t, 使得

[na′, nb′] ⊂ Ik.

引理的证明 令闭区间 Ik = [xk − δk, xk + δk]. 不妨设 δk < b−a
3 对所有 k均成立. 注意到, 存

在M > 0, 使得
∞∪
n=1

[
n(2a+ b)

3
,
n(a+ 2b)

3

]
⊃ [M,+∞),

故任取指标 k使得 xk ⩾ M且 k ⩾ t, 可知存在正整数 n使得

xk ∈
[
n(2a+ b)

3
,
n(a+ 2b)

3

]
,

也即存在某个 c ∈
[
2a+b
3 , a+2b

3

]
使得 xk = nc. 下面取

a′ = c− δk
n
, b′ = c+

δk
n
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即知 [a′, b′] ⊂ [a, b], 且 [na′, nb′] = Ik.

回到原题. 如果结论不成立, 则 lim
x→+∞

f(x) > lim
x→+∞

f(x). 下面取实数m,M满足

lim
x→+∞

f(x) < m < M < lim
x→+∞

f(x).

于是, 可以取一列严格单调递增的正数序列 {xk}∞k=1, 使得

• 当 k为奇数时, f(xk) < m.

• 当 k为偶数时, f(xk) > M .

由于 f(x)的连续性, 可找到 δk ∈ (0,min(xk, 1))使得闭区间 Ik = [xk − δk, xk + δk]满足

• 当 k为奇数时, f(x) ⩽ m, 对任意 x ∈ Ik.

• 当 k为偶数时, f(x) ⩾ M , 对任意 x ∈ Ik.

根据引理, 可以递推地构造一列闭区间
(
[at, bt]

)∞
t=0

, 满足:

1. [a0, b0]可以是 (0,+∞)中的任意闭区间, 例如 [a0, b0] = [1, 2].

2. 对任意正整数 t, [at, bt] ⊂ [at−1, bt−1].

3. 对任意正整数 t, 存在正整数 n ⩾ 1和与 t同奇偶的 k ⩾ t, 使得 [nat, nbt] ⊂ Ik.

根据闭区间套定理, 存在 h ∈
∞∩
t=1

[at, bt], 使得存在正整数列 {nt}∞t=1和 {kt}∞t=1, 满足

1. kt ⩾ t, 且 kt与 t同奇偶.

2. nth ∈ Ikt .

根据区间 Ik的定义, 可以立刻得到:

• 当 t是奇数时, f(nth) ⩽ m.

• 当 t是偶数时, f(nth) ⩾ M .

由于 Ikt的中心点发散到正无穷, 且 Ikt的宽度不超过 2, 故 lim
t→∞

nt = +∞. 但根据条件,
lim
n→∞

f(nh) 应当是固定值, 与上面的结论矛盾! ■
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Baire纲定理证明

Baire纲定理由两个部分组成:

定理 1 设X是完备度量空间且 (An)
∞
n=1是X中稠密的开集. 则

∞∩
n=1

An非空.

定理 2 设X是完备度量空间且 (Bn)
∞
n=1是X中无处稠密的闭集. 则

∞∪
n=1

Bn ̸= X.

无处稠密的闭集的等价说法是: 闭集的内部为空/不包含任何开球. 下面给出原题的证明:

证明 考察闭区间 [1, 2], 它显然是一个完备度量空间. 基于Cauchy收敛定理的形式, 对任意
ε > 0和正整数N , 定义集合

CN (ε) =
{
h ∈ [1, 2] : |f(nh)− f(mh)| ⩽ ε对正整数 n,m ⩾ N恒成立

}
.

对每一个 h ∈ [1, 2], 根据条件 lim
n→∞

f(nh)存在, 故存在正整数N使得 |f(nh) − f(mh)| ⩽ ε

对 n,m ⩾ N恒成立, 从而 h ∈ CN (ε). 因此我们得到

[1, 2] =
∞∪

N=1

CN (ε). (1)

下面证明CN (ε)是闭集. 假设 {hj}∞j=1 ⊂ CN (ε)且 hj → h0, 我们来证明 h0 ∈ CN (ε). 事实
上, 根据CN (ε)的定义可得

|f(nhj)− f(mhj)| ⩽ ε对正整数 n,m ⩾ N恒成立.

由于 f(x)是连续函数, 故令 j → ∞有

|f(nh0)− f(mh0)| ⩽ ε对正整数 n,m ⩾ N恒成立.

从而 h0 ∈ CN (ε), 即CN (ε)是闭集. 应用Baire纲定理, 存在某个CN (ε)包含一段连续的区

间 [a, b]. 由于函数 f(Nh)在 h ∈ [a, b]上是一致连续的, 故存在 δ > 0使得

|hx − hy| ⩽ δ =⇒ |f(Nhx)− f(Nhy)| ⩽ ε. (2)

基于 (2), 任意选择区间 [a0, b0] ⊂ [a, b], 且使得 b0 − a0 ⩽ δ. 于是对任意 h ∈ [a0, b0], 有

|f(nh)− f(mh)| ⩽ ε对正整数 n,m ⩾ N恒成立. (3)
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由于
∪∞

n=N [na0, nb0]一定包含某个区间 [M,+∞), 故对任意 x, y ⩾ M , 一定存在正整数
nx, nx ⩾ N和 hx, hy ∈ [a0, b0]使得

f(x) = f(nxhx), f(y) = f(nyhy). (4)

而另一方面, 根据 (2)(3)可以得到

|f(Nhx)− f(Nhy)| ⩽ ε, |f(nxhx)− f(Nhx)| ⩽ ε, |f(nyhy)− f(Nhy)| ⩽ ε. (5)

于是由 (4)(5)可以得到: 对任意 x, y ⩾ M , 有

|f(x)− f(y)| ⩽ 3ε.

由于 ε可以任意小, 故由Cauchy收敛定理 lim
x→+∞

f(x)存在且有限. 原命题得证. ■

注: 我的原证明的最后一步是有问题的. 感谢 b站用户凤梨老师 e_e的指出.

上述两个证明当中其实都用到了下面这个核心性质: 对任何正数 a < b, 集合
∞∪
n=1

[na, nb] ⊃ [M,+∞)

对某个M > 0成立. 利用完全相同的证法, 可以得到如下结果:

设E ⊂ (0,+∞)是内部非空的闭集. 若 (0,+∞)上的连续函数 f(x)使得 lim
n→∞

f(nh)

对一切 h ∈ E存在且有限, 则

lim
x→+∞

f(x)存在且有限.

不过, 如果集合E去掉了内部非空的条件, 则结果可能不对.

设E是 [1, 2]上的Cantor集. 则存在 (0,+∞)上的连续函数 f(x)使得 lim
n→∞

f(nh) =

0对一切 h ∈ E成立, 但

lim
x→+∞

f(x)不存在.
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证明留给读者作为练习.

(提示: 对任意区间 (n, n+1),只有E, 2E, · · · , nE可能与 (n, n+1)非空. 对每个 kE找一个

更大的集合Fk,使得Fk是一些闭区间的并,且m(Fk) < (n+1)−1. 于是 (n, n+1)\
∪n

k=1 Fk

具有正测度, 并且是一些开区间的并. 在其中一个开区间上定义尖峰即可.)
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