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给定整数 t ̸= 0. 设 {an}, {bn}是严格单调递增的正整数列. 证明: 存在无穷多个素数
p, 使得存在正整数 i, j, 满足 p | aibj + t.

这是一个非常典型的用抽屉原理解决的数论问题. 问题的关键在于当 aibj + t的素因子有限

时, 适当地做差来构造充分大的最大公约数.

证明 反证法. 设 {aibj + t}∞i,j=1只有有限多个素因子, 设这些素因子的集合为

P = {p1, p2, ..., pk}.

对任意下标 i1, i2, j, 取正整数 d = gcd(ai1bj + t, ai2bj + t). 则

d | (ai1 − ai2)bj =⇒ d|(ai1 − ai2) gcd(bj , d) =⇒ d|(ai1 − ai2) gcd(bj , t).

于是当 i1 ̸= i2时, 有不等式 d ⩽ |ai1 − ai2 ||t|, 即

|ai1 − ai2 | ⩾
d

|t|
, 对任意 i1 ̸= i2. (∗)

记 vp(x)为整数 x中素数 p的幂次. 取集合 J0 = N为正整数集. 由于当 j ∈ J0时, a1bj + t

的素因子都在集合P = {p1, p2, · · · , pk}中, 所以 a1bj + t的最大的素因子次数发散, 即

lim
J0∋j→∞

max
1⩽l⩽k

vpl(a1bj + t) = +∞.

根据抽屉原理, 存在无穷集合 J1 ⊂ J0及 1 ⩽ l1 ⩽ k使得

lim
J1∋j→∞

vpl1 (a1bj + t) = +∞.
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把上面的推导继续下去, 存在无穷集合 J2 ⊂ J1及 1 ⩽ l2 ⩽ k使得

lim
J2∋j→∞

vpl2 (a2bj + t) = +∞

· · ·

lim
Jk∋j→∞

vplk (akbj + t) = +∞

lim
Jk+1∋j→∞

vplk+1
(ak+1bj + t) = +∞.

这里, Jk+1 ⊂ Jk ⊂ · · · J1 ⊂ J0 = N均为无穷集. 由于 1 ⩽ l1, · · · , lk, lk+1 ⩽ k, 故由抽屉原
理, 存在 1 ⩽ m < n ⩽ k + 1使得 plm和 pln等于同一个素数 q. 此时

lim
Jk+1∋j→∞

vq(ambj + t) = lim
Jk+1∋j→∞

vq(anbj + t) = +∞.

故对任意正整数α, 存在 j ∈ Jk+1使得 vq(ambj + t)和 vq(anbj + t)均不小于α, 从而

qα | gcd(ambj + t, anbj + t). (∗∗)

由 (∗)(∗∗)知 an − am ⩾ qα

|t|
. 但α可以充分大, 矛盾! 故原命题得证. ■

使用同样的方法, 不难证明:

给定整数 t ∈ Z. 令 {an}, {bn}是严格单调递增的正整数列. 证明: 存在无穷多个素数
p, 使得存在正整数 i, j, 满足 p | ai + bj + t.

证明留给读者作为练习. 还有一个类似但是证明不同的题目 (浙江 2023预赛):

设 f(x)为整系数多项式, 令P = {p | p为素数且对某个j ∈ N, p | f(2023j)}. 已知P 为

有限集, 求 f(x).
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设 {an}∞n=1是严格单调递增的正整数列. 证明: 存在无穷多个素数 p, 使得存在正整
数 n满足 p | a2n + 1.

这个问题虽然看起来和前面的 aibj +1问题非常相似, 但其证明需要用到更加深入的数论结
果. 我们首先叙述有关本原素因子 (primitive prime divisor)的Zsigmondy定理.

定理 1 (Zsigmondy, 1892) 设 a > b > 0为互素整数, 并定义数列Sn = an − bn. 一个素
数 p称为Sn的本原素因子, 如果 p |Sn, 但对于所有 1 ⩽ k < n, p ∤ Sk.

对所有正整数 n, Sn几乎都会包含一个本原素因子, 但以下情况除外:

• n = 1, 且 a− b = 1. 此时 a1 − b1 = 1无素因子.

• n = 2, 且 a+ b是 2的幂. 此时 a2 − b2 = (a− b)(a+ b)不包含任何新的奇素因子.

• n = 6, a = 2, b = 1. 此时 26 − 16 = 63, 其中 3出现在 22 − 12中, 7出现在 23 − 13中.

接着, 我们来定义Lucas序列, 它定义了一类更广泛的形如 αn − βn

α− β
的整数.

定义 1 给定互素的整数P,Q. Lucas序列 {Un(P,Q)}∞n=0可由下面的线性递推公式定义:

U0 = 0, U1 = 1, Un = P · Un−1 −Q · Un−2.

当判别式D = P 2 − 4Q ̸= 0时, Un可以表示为

Un =
αn − βn

α− β
,

其中α, β是特征方程 x2 = Px−Q的两个不等实根或共轭复根. 特别的,当 (P,Q) = (1,−1)

时, Un就是Fibonacci数列, 其中α, β =
1±

√
5

2
.

Lucas序列是一个强整除序列, 这意味着对任何非负整数m,n, 有

gcd(Um, Un) =
∣∣Ugcd(m,n)

∣∣.
可以证明, Lucas序列满足如下的广义Fermat小定理:

定理 2 设 p是奇素数, 且 p不整除Q. 令
(
D
p

)
为Legendre符号, 则有

Up−(D
p
) ≡ 0 (mod p).
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最后我们来叙述Carmichael定理, 它把Zsigmondy定理推广到了Lucas序列的情形.

定理 3 (Carmichael, 1913) 给定互素的整数P,Q, 设Lucas序列Un(P,Q)的判别式∆ =

P 2 − 4Q > 0. 对所有正整数 n, Un几乎都会包含一个本原素因子, 但需排除下列情况:

• n = 1, 2, 6.

• n = 12, (P,Q) = (±1,−1). 此时F12 = 144.

Carmichael定理实际上是Zsigmondy定理在二次数域Q(
√
D)中的推广. 回到原题的证明.

证明 使用反证法, 假设 {a2n + 1}∞n=1的素因子集是有限的, 且素因子集为

P = {p1, p2, · · · , pk}.

对每个正整数 n,都可以唯一地把 a2n+1分解为Dn ·b2n的形式,其中Dn是无平方因子数, bn
是正整数. 于是Dn只能是P 中若干个不同素数的乘积, 因此其取值是有限的. 根据抽屉原
理, 存在无穷个正整数 n使得Dn取同一个值. 不妨设无平方因子数D使得

a2n + 1 = D · b2n, 对任意正整数 n成立. (1)

此时, 一定有D ̸= 1, 否则由 (1)可得 bn > an和 1 = (bn − an)(bn + an) ⩾ 2, 矛盾! 于是,
(an, bn)一定是Pell方程 x2−Dy2 = −1的非平凡解. 由于 (1)已经有解, 故设Pell方程的基
本解是 (X1, Y1), 其中X1, Y1是正整数, 则对每个正整数 n, 存在正奇数 k(n)使得

an +
√
Dbn = (X1 +

√
DY1)

k(n), (2)

并且 k(n)是严格单调递增的. 由于 a2n + 1的素因子集是有限的, 故由 (1)可得 bn的素因子

集是有限的. 令α = X1 +
√
DY1, β = X1 −

√
DY1, 并定义Lucas序列

Uk =
αk − βk

α− β
, k = 0, 1, 2, · · · . (3)

注意到由Pell方程 (2)可得 an −
√
Dbn = (X1 −

√
DY1)

k(n), 从而

bn =
(X1 +

√
DY1)

k(n) − (X1 −
√
DY1)

k(n)

2
√
D

= Y1Uk(n).

由于 bn的素因子集是有限的, Uk(n)的素因子集也是有限的. 但根据Carmichael定理, 当
k(n)充分大时, Uk(n)中一定包含新的素因子, 矛盾! 故原命题得证. ■
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