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摘要

摘要

从高维分布中采样是计算数学与物理学中的核心问题，其应用涵盖分子动力学、

贝叶斯推断以及机器学习等领域。高效且可扩展的采样算法对于探索复杂系统、计算

热力学性质以及解决高维积分问题至关重要。本论文重点研究了两种重要采样方法的

遍历性和长时间行为：路径积分分子动力学（Path Integral Molecular Dynamics, PIMD）
和随机分组方法（Random Batch Method, RBM）。这些方法解决了高维采样中的关键挑
战，包括保持计算效率、确保大系统中的算法收敛性以及在长时间模拟中实现高精度。

路径积分分子动力学是一种广泛用于计算量子热平均值的方法，这些热平均值对

于理解量子系统的平衡性质至关重要。PIMD通过将量子正则系综映射为由 𝑁 个珠子

组成的经典环聚合物系统，使得采样对应的 Boltzmann分布成为可能。然而，确保随
机动力学的遍历性在 𝑁 上保持一致（即收敛速率不依赖于珠子的数量）是一个重大的

理论挑战。本论文严格证明了欠阻尼 Langevin动力学在 PIMD中的遍历性对 𝑁 保持一

致，并以相对熵的形式进行了衡量。该结果不仅填补了 PIMD理论理解中的重要空白，
还利用了广义 Γ演算，为高维随机过程提供了显式的收敛率。

随机分组方法是一种针对相互作用粒子系统的高效计算方法，后者的所有成对相

互作用的计算成本通常随粒子数量平方增长。通过将粒子随机分组为批次，RBM将
计算复杂度降低为线性增长，同时近似保持系统的统计特性。本论文聚焦于随机分组

相互作用粒子系统（Random Batch Interacting Particle System, RB–IPS），证明了其遍
历性在 𝑁 上保持一致，并将其与目标分布的Wasserstein-1误差界定为 𝑂 (

√
ℎ)，其中 ℎ

为时间步长。此外，本论文分析了离散 RB–IPS的长时间行为，证明其长时间误差以
𝑂 (𝑒−𝜆𝑡 +

√
ℎ) 衰减，其中 𝜆为独立于粒子数量的收敛速率。我们还将这些结果扩展到

平均场极限，证明了 RB–IPS在逼近 McKean–Vlasov过程的平衡分布时的稳健性和可
扩展性。

数值实验验证了理论结果，并展示了 PIMD和 RBM在解决高维和大规模采样问
题中的实际效率。这些结果表明，这些方法能够在保持计算可行性的同时，实现高精

度采样，即使在粒子数量庞大或配置维度高的系统中也是如此。这两种方法的遍历性

对 𝑁 保持一致的性质尤为显著，确保了其在实际应用中的可靠性和效率。

总之，本论文在理论和实践上对 PIMD和 RBM的理解做出了重要贡献，提供了
严格的证明、定量的误差分析以及经过验证的数值性能。这些进展为进一步探索可扩

展采样算法及其在计算物理、随机分析和机器学习中的应用奠定了基础。

关键词：路径积分分子动力学，随机分组方法，遍历性，采样，高维系统。
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ABSTRACT

Ergodicity and Long-Time Error of Complicated Stochastic
Processes and Numerical Methods

Xuda Ye (Computational Mathematics)
Directed by Prof. Zhennan Zhou

ABSTRACT

Sampling from high-dimensional distributions is a cornerstone of computational mathe-
matics and physics, with applications spanning molecular dynamics, Bayesian inference, and
machine learning. Efficient and scalable sampling algorithms are indispensable for explor-
ing complex systems, computing thermodynamic properties, and solving high-dimensional
integration problems. This thesis focuses on the ergodicity and long-time behavior of two
prominent sampling methods: Path Integral Molecular Dynamics (PIMD) and the Random
Batch Method (RBM). These methods address critical challenges in high-dimensional sam-
pling, such as maintaining computational efficiency, ensuring convergence of algorithms in
large systems, and achieving high accuracy over long-time simulations.

Path IntegralMolecular Dynamics (PIMD) is a widely used approach for computing quan-
tum thermal averages, which are crucial for understanding the equilibrium properties of quan-
tum systems. By mapping the quantum canonical ensemble to a classical ring-polymer system
with 𝑁 beads, PIMD enables sampling of the corresponding Boltzmann distribution. However,
ensuring that the stochastic dynamics exhibit uniform-in-𝑁 ergodicity—where the convergence
rate is independent of the number of beads—is a significant theoretical challenge. In this the-
sis, we rigorously prove the uniform-in-𝑁 ergodicity of the underdamped Langevin dynamics
in PIMD, measured in terms of relative entropy. This result not only fills an important gap in
the theoretical understanding of PIMD but also leverages the generalized Γ calculus to provide
explicit convergence rates for high-dimensional stochastic processes.

The Random Batch Method (RBM) offers a computationally efficient approach for sim-
ulating interacting particle systems, where the cost of computing all pairwise interactions typ-
ically grows quadratically with the number of particles. By randomly grouping particles into
batches, RBM reduces this computational complexity to linear scaling while approximately
preserving the system’s statistical properties. This thesis focuses on the Random Batch Inter-
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acting Particle System (RB–IPS), establishing its uniform-in-𝑁 ergodicity and bounding the
Wasserstein-1 error from the target distribution by 𝑂 (

√
ℎ), where ℎ is the time step size. Fur-

thermore, we analyze the long-time behavior of the discrete RB–IPS, proving that its long-time
error decays as𝑂 (𝑒−𝜆𝑡 +

√
ℎ), where 𝜆 is a convergence rate independent of the number of par-

ticles. These results are extended to the mean-field limit, where the RB–IPS approximates
the invariant distribution of the McKean–Vlasov process, further demonstrating the method’s
robustness and scalability.

Numerical experiments validate the theoretical findings and highlight the practical ef-
ficiency of PIMD and RBM in addressing high-dimensional and large-scale sampling chal-
lenges. The results demonstrate the ability of these methods to achieve accurate sampling
while maintaining computational feasibility, even in systems with a large number of particles
or high-dimensional configurations. The uniform-in-𝑁 properties of both methods are partic-
ularly noteworthy, as they ensure reliability and efficiency for real-world applications.

In summary, this thesis provides significant contributions to the theoretical and practical
understanding of PIMD and RBM, offering rigorous proofs, quantitative error analysis, and
validated numerical performance. These advancements pave the way for further exploration
of scalable sampling algorithms and their applications in computational physics, stochastic
analysis, and machine learning.

KEY WORDS: Path Integral Molecular Dynamics, Random Batch Method, Ergodicity, Sam-
pling, High-dimensional Systems.
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CHAPTER 1 INTRODUCTION

Chapter 1 Introduction

In a sampling problem, the goal is to draw samples from a target probability distribution
𝜋(𝑥), which is often expressed in the form 𝜋(𝑥) ∝ exp(−𝑉 (𝑥)), where 𝑉 (𝑥) represents a po-
tential function. A sampling algorithm aims to generate a sequence of samples {𝑋𝑘}∞𝑘=0 such
that the statistical properties of 𝜋(𝑥) can be inferred from this sequence.

Sampling is a fundamental problem in both computational physics and mathematics, with
diverse applications in fields such as molecular dynamics, Bayesian inference, and machine
learning. In computational physics, particularly in molecular dynamics, sampling methods are
indispensable for exploring the configuration space of many-body systems and for calculating
thermodynamic averages. The target distribution 𝜋(𝑥) often corresponds to the Boltzmann
distribution, representing the equilibrium state of the system (Frenkel and Smit, 2023; Tuck-
erman, 2023; Leimkuhler and Matthews, 2015). Accurate sampling enables the estimation
of properties such as free energy, entropy, and transport coefficients, which are critical for
understanding the macroscopic behavior of complex systems.

In machine learning, sampling methods generate new data points that are similar to the
training data. They are also used to train generative models, which can generate new data
points that are indistinguishable from real data (Goodfellow et al., 2020). A prominent example
of sampling methods in data science is the diffusion model, which is a generative model that
learns to generate new data points by reversing a gradual noising process (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020; Croitoru et al., 2023). Diffusion models have achieved
state-of-the-art results in image generation, and they can also be used for other tasks such as text
generation and audio generation. However, diffusion models can be computationally expensive
to train, and they can also be prone to generating blurry or unrealistic samples.

Provided the strongly science motivated sampling problems, we require efficient sampling
methods for exploring complex distributions. Some popular samplingmethods includeMarkov
chain Monte Carlo (MCMC) (Metropolis and Ulam, 1949; Hastings, 1970; Neal et al., 2011),
importance sampling (Kong et al., 1994; Neal, 2001; Tokdar and Kass, 2010) and Stochastic
Gradient Langevin Dynamics (SGLD) (Welling and Teh, 2011; Chen et al., 2014). MCMC
methods work by constructing a Markov chain whose stationary distribution is the target dis-
tribution; importance sampling methods work by sampling from a proposal distribution that is
similar to the target distribution; while SGLD is a variant of the Langevin dynamics (Leimkuh-
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ler and Matthews, 2015; Haile, 1992) that uses stochastic gradients to sample from the target
distribution. The choice of the sampling method depends on the specific problem being ad-
dressed, including the dimensionality of the space, the complexity of the distribution, and the
available computational resources.

The importance of samplingmethods becomes evenmore pronounced in high-dimensional
problems, which are common in both molecular dynamics and data science. In molecular dy-
namics, the dimensionality grows rapidly with the number of particles, leading to a vast con-
figuration space that must be efficiently explored to ensure accurate results. Similarly, in data
science, high-dimensional sampling is crucial for tasks such as posterior inference, genera-
tive modeling, and high-dimensional optimization. The curse of dimensionality renders naive
methods infeasible, necessitating the development of scalable and efficient algorithms. Ad-
vances in sampling not only enhance our ability to solve these challenging problems but also
drive progress in related areas such as optimization, statistical physics, and machine learning.

Given the importance of high-dimensional sampling problems, understanding the accu-
racy of sampling algorithms is crucial. The sampling quality of an algorithm can be assessed
in several ways. Let 𝜋(𝑥) be the target distribution in R𝑑, and let {𝑋𝑘}𝑘⩾0 be the sequence of
samples produced by the algorithm. If our goal is to compute the high-dimensional integral
𝜋( 𝑓 ) :=

∫
R𝑑 𝑓 (𝑥)𝜋(𝑥)d𝑥 for a specific test function (or observable function) 𝑓 (𝑥), then the

sampling accuracy can be conveniently determined from the time average error:

time average error at the 𝐾-th step =
1
𝐾

𝐾−1∑
𝑘=0

𝑓 (𝑋𝑘) − 𝜋( 𝑓 ), (1.1)

where the integer 𝐾 signifies the number of steps in the algorithm. Another approach to charac-
terizing sampling accuracy is to compare the distance between distribution laws. Suppose we
have a metric 𝑑 (·, ·) on the probability space P(R𝑑), and let 𝜇𝑘 = Law(𝑋𝑘) be the distribution
law of 𝑋𝑘 at the 𝑘-th step. Then, the distribution law error of the algorithm is given by

distribution law error at the 𝐾-th step = 𝑑 (𝜇𝐾 , 𝜋). (1.2)

In both (1.1) and (1.2), we expect the sampling accuracy to systematically improve as the num-
ber of steps 𝐾 increases. However, verifying such convergence is not trivial, and an essential
theoretical approach—ergodicity—is required to rigorously analyze the sampling accuracy.

In this paper, we study sampling algorithms based on the discretization of Stochastic Dif-
ferential Equations (SDEs). Ergodicity characterizes the rate at which the distribution law of
an SDE converges to the target distribution. On one hand, ergodicity captures the exponential

2
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convergence rate of the distribution law, indicating the time required to obtain an effective
sample point. On the other hand, it ensures the stability of the SDE, facilitating the analysis of
the long-time error in sampling algorithms derived from time discretization.

Various methods exist for proving the ergodicity of a given SDE. In this work, we pri-
marily employ reflection coupling (Eberle, 2011) and the generalized Γ-calculus (Monmarché,
2019). A brief review of popular techniques for establishing ergodicity is provided in Sec-
tion 2.4, where we also introduce the triangle inequality framework. The triangle inequality
framework offers a quantitative estimate of the long-time error in sampling algorithms by lever-
aging both the ergodicity and the finite-time error.

In the following, we aim to rigorously analyze the ergodicity and long-time behavior of
two specific sampling algorithms: Path Integral Molecular Dynamics (PIMD) and Random
Batch Method (RBM).

The PIMD is designed to compute the thermal average of a specific observable within
a quantum canonical ensemble. Quantum thermal averages are vital in describing the ther-
mal properties of complex quantum systems, including chemical reaction rates (Miller, 1993;
Clary, 1998) and phase transitions (Voth, 1993; Sondhi et al., 1997). The PIMD approach is
inspired by Feynman’s path integral formulation (Feynman, 2018), which maps the original
quantum canonical ensemble to a classical Boltzmann distribution of a ring-polymer system
with 𝑁 beads (Schweizer et al., 1981; Marx and Parrinello, 1996; Liu et al., 2016). Accurate
computation of thermal averages requires 𝑁 → ∞, making it essential to investigate whether
the stochastic process used to sample the target Boltzmann distribution exhibits uniform-in-𝑁
ergodicity. This property ensures that the convergence rate of the stochastic process is inde-
pendent of 𝑁 .

The RBM, introduced by Jin et al. (2020), is an efficient sampling algorithm for the inter-
acting particle system (IPS). The IPS is a fundamental model in molecular dynamics, widely
used to describe the collective behavior of particles interacting through pairwise forces. Such
systems are crucial for studying a variety of physical and chemical phenomena, including
molecular simulations (Frenkel and Smit, 2023), plasma dynamics (Nicholson, 1983), and
chemical reaction modeling (Haile, 1992). In these systems, each particle experiences forces
from all others, making the simulation computationally challenging as the number of particles
𝑁 increases. Specifically, the cost of computing all pairwise interactions grows quadratically
with 𝑁 , i.e., 𝑂 (𝑁2), creating a bottleneck for large-scale simulations.

Beyond their role in molecular dynamics, the IPS has a significant mathematical prop-
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erty: their behavior as 𝑁 becomes very large can be approximated by the mean-field limit,
which is described by the McKean–Vlasov process (MVP) (McKean, 1967; Sznitman, 1991;
Chaintron and Diez, 2021, 2022). The MVP is a nonlinear stochastic model that captures the
average effect of all particles in the system, making it a powerful tool in statistical physics,
population dynamics, and emerging areas like machine learning (Carrillo et al., 2018). This
mean-field approximation allows to study macroscopic properties of particle systems without
the computational expense of simulating all individual interactions. However, the accuracy
of this approach relies on the ability to efficiently sample the particle system, particularly for
long-time simulations where statistical averages are critical.

The contributions of this thesis are as follows:
Path Integral Molecular Dynamics (PIMD): We establish a rigorous proof of uniform-

in-𝑁 ergodicity for the underdamped Langevin dynamics associated with the 𝑁-bead ring poly-
mer, quantified via the relative entropy (Theorem 3.2). This result addresses a critical theo-
retical gap by guaranteeing that the convergence rate toward the invariant distribution remains
independent of 𝑁 , even as the dimensionality grows. Such uniform convergence is pivotal
for ensuring the scalability and reliability of PIMD in practical high-dimensional quantum
simulations. Additionally, this finding demonstrates a novel application of the generalized Γ

calculus, allowing explicit derivation of convergence rates for complex stochastic processes,
further broadening its utility in computational mathematics and quantum physics. Our major
proof technique is generalized Γ calculus, which is able to produce explicit convergence rate
for the underdamped Langevin dynamics.

Random Batch Method (RBM): Our focus is on the Random Batch Interacting Particle
System (RB–IPS), a key approximation for large-scale particle simulations. We prove that RB–
IPS achieves uniform-in-𝑁 ergodicity (Theorem 4.1) and demonstrate that the Wasserstein-1
error from the target distribution is bounded by 𝑂 (

√
ℎ), where ℎ denotes the step size (Theo-

rem 4.3). Furthermore, we analyze the long-time behavior of time-discrete RB–IPS, establish-
ing a bound on its long-time error of 𝑂 (𝑒−𝜆𝑡 +

√
ℎ), with 𝜆 as a convergence rate independent

of 𝑁 and ℎ (Theorem 4.5). Leveraging the propagation of chaos, we also derive the long-time
error for discrete RB–IPS in approximating the invariant distribution of the McKean–Vlasov
process (Theorem 4.9). These contributions provide a robust theoretical foundation for the
efficiency and accuracy of RB–IPS in large-scale simulations, reinforcing its potential to sig-
nificantly reduce computational costs while maintaining high fidelity in the statistical proper-
ties of particle systems. Our proof technique is the reflection coupling, which is convenient to
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validate the ergodicity of the IPS with nonconvex potentials.
Collectively, these results advance the theoretical understanding of ergodicity and long-

time error analysis for high-dimensional stochastic processes, with direct implications formolec-
ular dynamics, statistical physics, and computational algorithms in scientific computing.

The thesis is organized as follows. Chapter 1 introduces the background and motivation
for this study, highlighting the importance of high-dimensional sampling algorithms and the
specific challenges addressed in this work. Chapter 2 provides a comprehensive review of
the theoretical and methodological foundations, including Path Integral Molecular Dynamics
(PIMD), the Random Batch Method (RBM), and key analytical tools such as the generalized Γ
calculus and coupling techniques. Chapter 3 focuses on the uniform-in-𝑁 ergodicity of PIMD,
presenting rigorous proofs and illustrating their implications for sampling quantum thermal av-
erages. Chapter 4 addresses the RB–IPS, detailing its uniform-in-𝑁 ergodicity, approximation
error, and long-time behavior, with an extension to the mean-field limit.
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Chapter 2 Background

The background knowledge necessary for this thesis is presented in this section, providing
the theoretical foundation and methodological tools essential for the analysis in later chapters.
We begin by introducing two key concepts—ergodicity and long-time error, which are funda-
mental to understanding the convergence properties of stochastic sampling algorithms. Next,
we provide an overview of Path Integral Molecular Dynamics (PIMD) and the Random Batch
Method (RBM), the two primary sampling methods studied in this work. Their mathematical
formulations and practical relevance are discussed in detail. Additionally, we review theoret-
ical approaches for analyzing ergodicity and long-time behavior, including the generalized Γ

calculus and reflection coupling techniques, which serve as the main analytical tools in the sub-
sequent chapters. These foundations will be directly applied in Chapters 3 and 4 to establish
rigorous results on the ergodicity and error analysis of PIMD and RBM, respectively.

2.1 Basic notions: ergodicity and long-time error
Given the Markov process (𝑥𝑡)𝑡⩾0 in R𝑑, define the Markov semigroup (𝑃𝑡)𝑡⩾0 as:

(𝑃𝑡 𝑓 )(𝑥) = E
[
𝑓 (𝑥𝑡) : 𝑥0 = 𝑥

]
, 𝑥 ∈ R𝑑, (2.1)

where 𝑓 (·) is a test function in 𝐶∞(R𝑑). The dual of (𝑃𝑡)𝑡⩾0 is the dual semigroup (P𝑡)𝑡⩾0,
which acts on probability distributions on R𝑑, which are denoted by the set P(R𝑑) 1 . Specif-
ically, for any initial distribution 𝜈 with the initial state 𝑥0 ∼ 𝜈 of the Markov process, the
notation 𝜈P𝑡 ∈ P(R𝑑) represents the distribution law of 𝑥𝑡 .

If the infinitesimal generator of (𝑥𝑡)𝑡⩾0 is L, then the Markov semigroup (𝑃𝑡)𝑡⩾0 and the
dual semigroup (P𝑡)𝑡⩾0 can be expressed as:

𝑃𝑡 = 𝑒
𝑡L , P𝑡 = 𝑒

𝑡L∗
, 𝑡 ⩾ 0,

where L∗ is the adjoint operator of L in 𝐿2(R𝑑). This operator is also known as the forward
Kolmogorov operator or the Fokker–Planck operator.

Ergodicity characterizes the long-time convergence of stochastic processes. If theMarkov

1 The letter P in the Markov semigroup (𝑃𝑡 )𝑡⩾0, the dual semigroup (P𝑡 )𝑡⩾0 and the probability distribution set P(R𝑑) is
distinguished by the fonts.
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process (𝑥𝑡)𝑡⩾0 has an invariant distribution 𝜋 ∈ P(R𝑑), meaning:

𝜋P𝑡 = 𝜋, ∀𝑡 ⩾ 0, (2.2)

and there exist constants 𝐶, 𝜆, and a metric 𝑑 (·, ·) on probability distributions such that:

𝑑 (𝜈P𝑡 , 𝜋) ⩽ 𝐶𝑒−𝜆𝑡𝑑 (𝜈, 𝜋), ∀𝑡 ⩾ 0, (2.3)

for any probability distribution 𝜈 ∈ P(R𝑑), then (𝑥𝑡)𝑡⩾0 exhibits ergodicity.

Remark 2.1. The metric 𝑑 (·, ·) does not need to be symmetric nor means to be a metric space.
Common choices of 𝑑 (·, ·) include the total variation, the relative entropy (KL divergence), and
the Wasserstein distance.

When 𝑑 (·, ·) is the relative entropy𝐻 (·|·), the ergodicity property (2.3) can be equivalently
expressed as:

Ent𝜋 (P𝑡 𝑓 ) ⩽ 𝐶𝑒−𝜆𝑡Ent𝜋 ( 𝑓 ), ∀𝑡 ⩾ 0, (2.4)

where Ent𝜋 ( 𝑓 ), the entropy of a positive test function 𝑓 , is defined as:

Ent𝜋 ( 𝑓 ) =
∫
R𝑑

𝑓 log 𝑓 d𝜋 −
∫
R𝑑

𝑓 d𝜋 log
∫
R𝑑

𝑓 d𝜋. (2.5)

In particular, by setting 𝑓 = d𝜈
d𝜋 in (2.4), we recover the inequality (2.3).

The stochastic process (𝑥𝑡)𝑡⩾0 must be discretized in the time 𝑡 for implementation on a
computer, and the discretization error depends on the step size ℎ and the order of the numerical
method. As a simple example, consider the stochastic differential equation (SDE):

¤𝑥𝑡 = 𝑏(𝑥𝑡) + 𝜎 ¤𝐵𝑡 , (2.6)

where 𝑏(·) : R𝑑 → R𝑑 is the drift force, 𝜎 > 0 is the diffusion coefficient, and (𝐵𝑡)𝑡⩾0 is the
Brownian motion in R𝑑. Moreover, the Euler–Maruyama integrator provides a straightforward
discretization for the SDE (2.6) with strong order one:

𝑥 (𝑛+1)ℎ = 𝑥𝑛ℎ + 𝑏(𝑥𝑛ℎ)ℎ + 𝜎
√
ℎ𝜉𝑛, 𝜉𝑛 ∼ N(0, 𝐼𝑑). (2.7)

In general, let (𝑥𝑡)𝑡⩾0 be the numerical approximation of (𝑥𝑡)𝑡⩾0, and (P̃𝑡)𝑡⩾0 be its dual
semigroup. If there exists an error function 𝜀(ℎ) such that limℎ→0 𝜀(ℎ) = 0 and

𝑑 (𝜈P̃𝑡 , 𝜋) ⩽ 𝐶𝑒−𝜆𝑡 + 𝜀(ℎ), (2.8)

then the long-time error of (𝑥𝑡)𝑡⩾0 is said to exhibit exponential decay. Specifically, 𝑥𝑡 provides
reliable samples of the target distribution by choosing a sufficiently large evolution time 𝑡 and
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a sufficiently small step size ℎ.
In conclusion, ergodicity describes the long-time behavior of a stochastic process, ensur-

ing convergence to the invariant distribution and effective exploration of the state space. It is a
fundamental property for understanding the stability and convergence of stochastic dynamics.

The long-time error, in contrast, quantifies the accuracy of numerical algorithms in sam-
pling the invariant distribution, accounting for discretization and step size effects. Together,
these concepts provide a framework for evaluating the theoretical and practical efficiency of
stochastic simulation methods, crucial for applications in statistical physics, machine learning,
and computational chemistry.

2.2 Path integral molecular dynamics
Path Integral Molecular Dynamics (PIMD) is a fundamental tool for computing quantum

thermal averages. In this section, we demonstrate how the path integral formulation reformu-
lates the quantum canonical ensemble into the problem of sampling a ring polymer system
composed of 𝑁 beads.

Consider the quantum system in R𝑑 given by the Hamiltonian

𝐻̂ = −Δ
2
+𝑉 (𝑥), (2.9)

whereΔ and 𝑥 are the Laplacian and position operatoes inR𝑑, and𝑉 (·) is a real-valued potential
function in R𝑑. When the quantum system is at a constant temperature 𝑇 = 1/𝛽, the state of
the system is described by the canonical ensemble with the density operator 𝑒−𝛽𝐻̂ , and thus the
partition function isZ = Tr[𝑒−𝛽𝐻̂]. We assume the observable operator𝑂 (𝑥) depends only on
the position operator 𝑥, where 𝑂 (·) is a real-valued function in R𝑑. Then the quantum thermal
average of the system is defined as the canonical average of 𝑂 (𝑥), namely

〈𝑂 (𝑥)〉𝛽 =
1
ZTr[𝑒−𝛽𝐻̂𝑂 (𝑥)] . (2.10)

Here, using the quantum bra-ket notation (Dirac notation), we can also write

〈𝑂 (𝑥)〉𝛽 =
1
Z

∫
R𝑑

𝑂 (𝑥) 〈𝑥 |𝑒−𝛽𝐻̂ |𝑥〉 d𝑥. (2.11)

To compute 〈𝑂 (𝑥)〉𝛽, we only need to sample the probability density proportional to
〈𝑥 |𝑒−𝛽𝐻̂ |𝑥〉. Let 𝑁 ∈ N be an integer and 𝑥1 ∈ R𝑑 be a fixed position. Using the equality

Id =
∫
R𝑑

|𝑥〉 〈𝑥 | d𝑥

9
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and define 𝛽𝑁 = 𝛽/𝑁 , we have the approximation

〈𝑥1 |𝑒−𝛽𝐻̂ |𝑥1〉 =
∫

〈𝑥1 |𝑒−𝛽𝑁 𝐻̂ |𝑥2〉 · · · 〈𝑥𝑁 |𝑒−𝛽𝑁 𝐻̂ |𝑥1〉 d𝑥2 · · · 𝑥𝑁 (2.12)

=
∫ 𝑁∏

𝑗=1

〈
𝑥 𝑗

��𝑒−𝛽𝑁 𝐻̂ ��𝑥 𝑗+1
〉

d𝑥2 · · · d𝑥𝑁

≈
∫ 𝑁∏

𝑗=1

〈
𝑥 𝑗

��𝑒− 𝛽𝑁
2 𝑉𝑒

𝛽𝑁
2 Δ𝑒−

𝛽𝑁
2 𝑉

��𝑥 𝑗+1
〉

d𝑥2 · · · d𝑥𝑁

=
∫

𝑒−𝛽𝑁
∑𝑁

𝑗=1 𝑉 (𝑥 𝑗 )

[
𝑁∏
𝑗=1

〈
𝑥 𝑗

��𝑒 𝛽𝑁
2 Δ

��𝑥 𝑗+1
〉]

d𝑥2 · · · d𝑥𝑁

=
∫

𝑒−𝛽𝑁
∑𝑁

𝑗=1 𝑉 (𝑥 𝑗 )

[
𝑁∏
𝑗=1

1
(2𝜋𝛽𝑁 )

𝑑
2
𝑒
− 1

2𝛽𝑁
|𝑥 𝑗−𝑥 𝑗+1 |2

]
d𝑥2 · · · d𝑥𝑁

=
1

(2𝜋𝛽𝑁 )
𝑑𝑁

2

∫
𝑒−E𝑁 (𝑥1, · · · ,𝑥𝑁 )d𝑥2 · · · d𝑥𝑁 , (2.13)

where the energy function E𝑁 (𝑥1, · · · , 𝑥𝑁 ) is defined by

E𝑁 (𝑥1, · · · , 𝑥𝑁 ) =
1

2𝛽𝑁

𝑁∑
𝑗=1

|𝑥 𝑗 − 𝑥 𝑗+1 |2 + 𝛽𝑁
𝑁∑
𝑗=1

𝑉 (𝑥 𝑗). (2.14)

Here, we admit the periodic boundary condition for {𝑥 𝑗}𝑁𝑗=1, namely, 𝑥𝑁+1 = 𝑥1. Therefore,
the quantum thermal average 〈𝑂 (𝑥)〉𝛽 can be approximated as

〈𝑂 (𝑥)〉𝛽 ≈
∫
R𝑑𝑁

(
1
𝑁

𝑁∑
𝑗=1

𝑂 (𝑥 𝑗)
)
𝜋𝑁 (𝑥1, · · · , 𝑥𝑁 )d𝑥1 · · · d𝑥𝑁 , (2.15)

where 𝜋𝑁 (𝑥1, · · · , 𝑥𝑁 ) ∝ 𝑒−E𝑁 (𝑥1, · · · ,𝑥𝑁 ) is a classical Boltzmann distribution in R𝑑𝑁 .
Note that E𝑁 (𝑥1, · · · , 𝑥𝑁 ) can be viewed as the energy of a ring polymer system of 𝑁

beads, where the adjacent beads (𝑥 𝑗 , 𝑥 𝑗+1) are connected by a spring potential, and each bead
𝑥 𝑗 feels the system potential 𝑉 (𝑥 𝑗). Figure 2.1 shows an example of the ring polymer system
with 10 beads. Moreover, as the number of beads 𝑁 tends to infinity, the energy function
E𝑁 (𝑥1, · · · , 𝑥𝑁 ) has a continuum limit (Lu et al., 2020)

E∞(𝑥(·)) =
1
2

∫ 𝛽

0
|𝑥′(𝜏) |2d𝜏 +

∫ 𝛽

0
𝑉 (𝑥(𝜏))d𝜏, (2.16)

where 𝑥 : [0, 𝛽] → R𝑑 is a parameterized continuous loop in the interval [0, 𝛽].
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𝑥1
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𝑥9

𝑥10

Figure 2.1 Example of a ring polymer with 10 beads.

Remark 2.2. The approximation used in (2.13) is the symmetric operator splitting (Ames,
2014; Glowinski et al., 2017), and the local approximation error is 𝑂 (𝛽3

𝑁 ). Therefore, the
approximation error in the quantum thermal average in (2.15) is formally 𝑂 (𝑁𝛽3

𝑁 ). However,
a rigorous justification of the approximation error in 𝑁 is still unknown in literature.

Since the accurate calculation of the quantum thermal average must require the number
of beads 𝑁 to be sufficiently large, it is essential to obtain a sampling algorithm for the target
distribution 𝜋𝑁 (𝑥1, · · · , 𝑥𝑁 ) with uniform-in-𝑁 ergodicity, namely, the convergence rate does
not depend on the number of beads 𝑁 .

2.3 Random batch method
Consider a system of 𝑁 particles represented by a collection of position variables 𝒙𝑡 =

{𝑥𝑖𝑡}𝑁𝑖=1, where 𝑥𝑖𝑡 ∈ R𝑑 denotes the position of the 𝑖-th particle. The interacting particle system
(IPS) 𝒙𝑡 evolves according to the overdamped Langevin dynamics:

¤𝑥𝑖𝑡 = 𝑏(𝑥𝑖𝑡) +
1

𝑁 − 1

∑
𝑗≠𝑖

𝐾 (𝑥𝑖𝑡 − 𝑥
𝑗
𝑡 ) + 𝜎 ¤𝐵𝑖𝑡 , 𝑖 = 1, . . . , 𝑁. (2.17)

Here, 𝑏(·) : R𝑑 → R𝑑 represents the drift force, 𝐾 (·) : R𝑑 → R𝑑 is the interaction force,
𝜎 > 0 is a scalar constant, and {𝐵𝑖𝑡}𝑁𝑖=1 are 𝑁 independent standard Brownian motions in R𝑑.

As the number of particles 𝑁 → ∞, the IPS (2.17) formally converges to the nonlinear
McKean–Vlasov process (MVP), defined as:

¤̄𝑥𝑡 = 𝑏(𝑥𝑡) + (𝐾 ∗ 𝜇̄𝑡)(𝑥𝑡) + 𝜎 ¤𝐵𝑡 , (2.18)

where 𝜇̄𝑡 represents the distribution law of 𝑥𝑡 in R𝑑, 𝐵𝑡 is standard Brownian motion, and ∗
denotes the convolution operator, defined as:

(𝐾 ∗ 𝜇) (𝑥) =
∫
R𝑑

𝐾 (𝑥 − 𝑦)𝜇(𝑑𝑦), 𝑥 ∈ R𝑑 . (2.19)
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Under suitable assumptions on the drift force 𝑏(𝑥) and the interaction force 𝐾 (𝑥), the IPS
(2.17) admits a unique invariant distribution 𝜋(𝒙) in R𝑑𝑁 . The primary objective is to sample
𝜋(𝒙) efficiently. For instance, if 𝑏(𝑥) = −∇𝑈 (𝑥) and 𝐾 (𝑥) = −∇𝑉 (𝑥) for some potential
functions𝑈 (𝑥) and 𝑉 (𝑥), with 𝑉 (𝑥) being even and 𝜎 =

√
2, then 𝜋(𝒙) is explicitly given by:

𝜋(𝒙) ∝ exp

(
−

𝑁∑
𝑖=1

𝑈 (𝑥𝑖) − 1
𝑁 − 1

∑
1⩽𝑖< 𝑗⩽𝑁

𝑉 (𝑥𝑖 − 𝑥 𝑗)
)
, 𝒙 ∈ R𝑑𝑁 . (2.20)

To simulate the IPS (2.17) numerically, time discretization is required at each time step.
For an IPS with 𝑁 particles, calculating all interaction forces {𝐾 (𝑥𝑖𝑡 − 𝑥

𝑗
𝑡 )}𝑖≠ 𝑗 involves 𝑂 (𝑁2)

complexity per time step, leading to inefficiency for large 𝑁 . Therefore, it is desirable to employ
approximate simulation methods that can reduce the computational cost while maintaining the
reliability of the samples generated from the invariant distribution 𝜋(𝒙).

The Random Batch Method (RBM) proposed in Jin et al. (2020) is a simple random al-
gorithm to reduce the computational cost per time step from 𝑂 (𝑁2) to 𝑂 (𝑁). Nowadays, the
RBMhas been used to simulate complicated chemical systems (Jin et al., 2021; Li et al., 2020b;
Liang et al., 2021, 2023) and accelerate the particle ensemble methods (Li et al., 2020a; Car-
rillo et al., 2021; Ha et al., 2021), and is also able to combine with the variance reduction
techniques (Pareschi and Zanella, 2024; Xu et al., 2024). In these applications, the RBM is
not only an efficient algorithm for the evolution of the system, it also preserves the invariant
distribution 𝜋(𝒙) in an approximate sense, thus can be used to obtain statistical samples of the
invariant distribution of the IPS (2.17).

The idea of the RBM is illustrated as follows. Let ℎ > 0 be the time step for batch
divisions. For each 𝑛 ⩾ 0, let the index set {1, · · · , 𝑁} be randomly divided into 𝑞 batches
{C1, · · · , C𝑞}, where each batch C has size 𝑝 = 𝑁/𝑞. The IPS (2.17) within the time interval
𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ) is approximated as the particle system {𝑦𝑖𝑡}𝑁𝑖=1 in R𝑑𝑁 , given by the SDE

¤𝑦𝑖𝑡 = 𝑏(𝑦𝑖𝑡) +
1

𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

𝐾 (𝑦𝑖𝑡 − 𝑦
𝑗
𝑡 ) + 𝜎 ¤𝐵𝑖𝑡 , 𝑖 ∈ C, 𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ), (2.21)

where C is the unique batch that contains 𝑖. For the next time interval, the previous division is
discarded and another random division is employed for the dynamics (2.21). In the following,
the dynamical system (2.21) will be referred to as the random batch interacting particle system
(RB–IPS), as a comparison to the IPS (2.17). Note that both (2.17) and (2.21) are exactly
integrated in time, and thus there is no error due to time discretization.

Furthermore, if we employ the Euler–Maruyama integrator to discretize the RB–IPS
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(2.21), then we obtain the following discrete RB–IPS:

𝑌 𝑖𝑛+1 = 𝑌
𝑖
𝑛 +

(
𝑏(𝑌 𝑖𝑛) +

1
𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

𝐾 (𝑌 𝑖𝑛 − 𝑌 𝑗𝑛 )
)
ℎ + 𝜎(𝐵𝑖𝑛(ℎ+1) − 𝐵𝑖𝑛ℎ), 𝑖 ∈ C. (2.22)

The discrete RB–IPS (2.22) requires only𝑂 (𝑁𝑝) complexity to compute the interaction forces
in each time step, which is a significant advance in simulation efficiency compared to the
𝑂 (𝑁2) complexity of the discrete IPS. Specifically, selecting a batch size of 𝑝 = 2 results in a
complexity of 𝑂 (𝑁) per time step.

In this work, we rigorously establish the ergodicity of the RB–IPS (2.21) and quantita-
tively estimate the long-time error of the discrete RB–IPS (2.22). These results highlight the
reliability of the RBM as an efficient sampling approach for IPS. By reducing computational
complexity while preserving key statistical properties, the RBM provides a practical and robust
method for simulating large-scale particle systems in the long time.

2.4 Theoretical approaches for ergodicity and long-time behavior
Ergodicity is a fundamental property of stochastic processes, signifying that the long-time

behavior of the process reflects its statistical equilibrium. Specifically, a stochastic process
is ergodic if time-averaged quantities converge to their ensemble averages, as defined by the
invariant distribution of the process. This property ensures that the dynamics of the system
explore the entire state space sufficiently over time, avoiding being trapped in specific regions.

The concept of ergodicity plays a pivotal role in stochastic analysis for both theoretical
and practical reasons. Theoretically, it provides a rigorous foundation for the convergence of
stochastic processes, allowing for the derivation of key results such as the existence and unique-
ness of invariant measures. Practically, ergodicity underpins the validity of sampling methods,
ensuring that long trajectories of a stochastic process yield reliable statistical estimates of the
target distribution. Without ergodicity, these estimates may be biased or incomplete, particu-
larly in high-dimensional systems where efficient exploration of the state space is crucial.

The theoretical approaches to studying ergodicity can be broadly classified into two cat-
egories: probabilistic approaches and PDE-based approaches.

Among the probabilistic methods, coupling is the most commonly used technique. For
stochastic processes driven by Brownian motions, coupling involves constructing coupled pro-
cesses with shared noise to demonstrate contractivity. Synchronous coupling is frequently
employed for systems with convex potentials (Lindvall and Rogers, 1996; Chen and Li, 1989).
More recently, reflection coupling has gained popularity in addressing non-convex sampling
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problems (Eberle, 2011; Eberle et al., 2019). Reflection coupling is also instrumental in an-
alyzing the contractivity of numerical integrators (Chak and Monmarché, 2023; Schuh and
Whalley, 2024), providing direct insights into the long-time error of numerical methods. An-
other widely used result is Harris’ ergodic theorem (Mattingly et al., 2002; Hairer and Mat-
tingly, 2011; Sanz-Serna and Palencia, 1985), which is also proven using coupling techniques.
Harris’ theorem is particularly valuable as it characterizes the invariant distribution through
Lyapunov conditions, offering a versatile framework for establishing ergodicity in a wide range
of stochastic systems.

For non-degenerate diffusion processes, functional inequalities (Bakry et al., 2014;Wang,
2006) are a widely used PDE-based approach to establish ergodicity. For instance, the Poincaré
inequality and the log-Sobolev inequality lead to exponential convergence in the sense of 𝜒2

divergence and relative entropy (KL divergence), respectively. For degenerate diffusion pro-
cesses, Villani’s hypocoercivity framework (Villani, 2009a) is a prominent method that em-
ploys a modified𝐻1 norm to derive ergodicity by capturing both diffusion and transport effects.
Alternatively, the generalized Γ calculus (Monmarché, 2018, 2019) extends the hypocoerciv-
ity framework by leveraging functional inequalities, offering a versatile tool for analyzing the
ergodicity of degenerate systems.

In this work, we primarily utilize the generalized Γ calculus to analyze PIMD and the re-
flection coupling technique for RBM. Additionally, we introduce the triangle inequality frame-
work to investigate the long-time error of numerical methods.

2.4.1 Generalized Γ calculus

The generalized Γ calculus developed in Monmarché (2018, 2019) is a functional ap-
proach to study the ergodicity of stochastic processes with degenerate diffusions. In particular,
the generalized Γ calculus can be applied on the underdamped Langevin dynamics. The gen-
eralized Γ calculus is based on the functional inequalities (Bakry et al., 2014; Wang, 2006),
and can be viewed as a variant of Villani’s hypocoercivty theory (Villani, 2009a).

The generalized Γ calculus is able to provide explicit convergence rates for complicated
stochastic processes. Except for the PIMD considered in this thesis, we also note the applica-
tions of the generalized Γ calculus in the mean-field interacting particle system (Guillin and
Monmarché, 2021) and the Langevin dynamics with singular potentials (Baudoin et al., 2021).

Standard results in functional inequalities We begin with reviewing the standard results
in the functional inequalities. Let (𝑥𝑡)𝑡⩾0 be a diffusion process (in the sense of Chapter 1.10.1
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of Bakry et al. (2014)) in R𝑑, and (𝑃𝑡)𝑡⩾0 be the correspondingly Markov semigroup. As is
stated in (2.1), this means for any positive test function 𝑓 (𝑥) in 𝐶∞(R𝑑),

(𝑃𝑡 𝑓 )(𝑥) = E
[
𝑓 (𝑥𝑡) : 𝑥0 = 𝑥

]
, 𝑥 ∈ R𝑑 .

Let L be the infinitesimal generator of (𝑥𝑡)𝑡⩾0, and 𝜋 be the invariant distribution. Then L is
a self-adjoint elliptic operator in the Hilbert space 𝐿2(𝜋). To characterize the convergence of
the diffusion process, we employ the relative entropy defined in (2.5):

Ent𝜋 ( 𝑓 ) =
∫
R𝑑

𝑓 log 𝑓 d𝜋 −
∫
R𝑑

𝑓 d𝜋 log
∫
R𝑑

𝑓 d𝜋.

Next, we introduce a crucial notion in the functional inequalities, the Γ operator (also
known as the carré du champ operator, see Chapter 1.4.2 of Bakry et al. (2014)).

Definition 2.1. For a diffusion process with generator L, the Γ1, Γ2 operators are defined by

Γ1( 𝑓 , 𝑔) =
1
2
(L( 𝑓 𝑔) − 𝑔L 𝑓 − 𝑓L𝑔), (2.23)

Γ2( 𝑓 , 𝑔) =
1
2
(LΓ1( 𝑓 , 𝑔) − Γ1( 𝑓 ,L𝑔) − Γ1(𝑔,L 𝑓 )). (2.24)

When the test functions 𝑓 = 𝑔, we simply write Γ1( 𝑓 ) = Γ1( 𝑓 , 𝑓 ). Using the property of the
diffusion operator L, we have the following properties of the Γ1 operator.

Lemma 2.1. For any test function 𝑓 , we have Γ1( 𝑓 ) ⩾ 0, and thus the Cauchy inequality

Γ1( 𝑓 , 𝑔)2 ⩽ Γ1( 𝑓 )Γ1(𝑔). (2.25)

If 𝑎 is a smooth function in R𝑑, then for any test functions 𝑓 , 𝑔,

L(𝑎( 𝑓 )) = 𝑎′( 𝑓 )L 𝑓 + 𝑎′′( 𝑓 )Γ1( 𝑓 ), (2.26)

Γ1(𝑎( 𝑓 ), 𝑔) = 𝑎′( 𝑓 )Γ1( 𝑓 , 𝑔). (2.27)

The related discussions can be found in Chapter 1.4.2 of Bakry et al. (2014) and Lemma 6 of
Monmarché (2019).

We note that the generator L can be conversely determined by the Γ1 operator and the
invariant distribution 𝜋. In fact, for any test functions 𝑓 , 𝑔 we have the equality∫

R𝑑

𝑔L 𝑓 d𝜋 = −
∫
R𝑑

Γ1( 𝑓 , 𝑔)d𝜋. (2.28)

In this case, we say the generator L is determined by the pair (𝜋, Γ1). See the related discus-
sions in Chapter 3.1 of Bakry et al. (2014).
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The inequality relation of Γ1 and Γ2 provides a convenient condition to verify the log-
Sobolev inequality (see Chapter 5 of Bakry et al. (2014) for reference).

Theorem 2.1. For a diffusion process with generator L, if there is a constant 𝜌 > 0 such that

Γ2( 𝑓 ) ⩾ 𝜌Γ1( 𝑓 ), for any test function 𝑓 , (2.29)

then we have the log-Sobolev inequality (denoted as 𝐿𝑆(𝜌))

Ent𝜋 ( 𝑓 ) ⩽
1

2𝜌

∫
R𝑑

Γ1( 𝑓 )
𝑓

d𝜋, for any test function 𝑓 , (2.30)

and thus the exponential decay of the relative entropy

Ent𝜋 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜌𝑡Ent𝜋 ( 𝑓 ), ∀𝑡 ⩾ 0. (2.31)

The proof can be found in Proposition 5.7.1 and Theorem 5.2.1 of Bakry et al. (2014).
A useful property is the bounded perturbation, which provides a convenient criterion to

prove the log-Sobolev inequality beyond directly verifying the inequality (2.29).

Theorem 2.2. Suppose a diffusion process determined by (𝜋, Γ1) satisfies 𝐿𝑆(𝜌) in R𝑑. Let 𝜋′

be a probability distribution in R𝑑 such that

1
𝑀

⩽
d𝜋′

d𝜋
(𝑥) ⩽ 𝑀, ∀𝑥 ∈ R𝑑, (2.32)

then the diffusion process determined by (𝜋′, Γ1) satisfies 𝐿𝑆(𝑀−2𝜌).

The proof can be found in Proposition 5.1.6 of Bakry et al. (2014). This result shows that the
new diffusion process determined by (𝜋′, Γ1) still satisfies the log-Sobolev inequality, however
the convergence rate reduces from 𝜌 to 𝑀−2𝜌.

Another useful property is the tensorization of the log-Sobolev inequalities, allowing to
establish the log-Sobolev inequality in higher dimensions.

Theorem 2.3. Suppose two diffusion processes determined by (𝜋, Γ1) and (𝜋′, Γ′
1) satisfy

𝐿𝑆(𝜌) and 𝐿𝑆(𝜌′) in R𝑑 respectively, then the product diffusion process determined by (𝜋 ⊗
𝜋′, Γ1 ⊕ Γ′

1) satisfies 𝐿𝑆(min{𝜌, 𝜌′}) in R2𝑑.

The proof can be found in Proposition 5.2.7 of Bakry et al. (2014). This result implies the
convergence rate of the product diffusion process is determined by the smaller one in 𝜌 and 𝜌′.

Generalized Γ operator The generalized Γ operator is the central tool in the generalized Γ

calculus, and can be viewed as the generalization of the Γ1 and Γ2 operators.
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Definition 2.2. Let Φ( 𝑓 ) is a local operator on the test functions, namely, Φ( 𝑓 ) only depends
on the value and derivatives of 𝑓 . For a diffusion process with generator L, define the gener-
alized Γ operator by

ΓΦ( 𝑓 ) =
1
2
(LΦ( 𝑓 ) − dΦ( 𝑓 ) · L 𝑓 ), (2.33)

where dΦ( 𝑓 ) · 𝑔 for two test functions 𝑓 , 𝑔 is defined as

dΦ( 𝑓 ) · 𝑔 = lim
𝑠→0

Φ( 𝑓 + 𝑠𝑔) −Φ( 𝑓 )
𝑠

. (2.34)

When Φ( 𝑓 ) is a quadratic form, it is convenient to obtain the expression of ΓΦ( 𝑓 ).

Lemma 2.2. Suppose 𝐶1, 𝐶2 are two linear operators and Φ( 𝑓 ) = 𝐶1 𝑓 · 𝐶2 𝑓 , then

ΓΦ( 𝑓 ) = Γ1(𝐶1 𝑓 , 𝐶2 𝑓 ) +
1
2
𝐶1 𝑓 · [L, 𝐶2] 𝑓 +

1
2
[L, 𝐶1] 𝑓 · 𝐶2 𝑓 , (2.35)

where [·, ·] is the operator commutator.

The following proof is adapted from Lemma 5 of Monmarché (2019).

Proof of Lemma 2.2. Use dΦ( 𝑓 ) · 𝑔 = 𝐶1 𝑓 · 𝐶2𝑔 + 𝐶1𝑔 · 𝐶2 𝑓 from Definition 2.2. ■

Using Lemmas 2.1 & 2.2, it is convenient to derive some useful properties of ΓΦ( 𝑓 ).

Lemma 2.3. If Φ( 𝑓 ) = 𝑓 log 𝑓 , then

ΓΦ( 𝑓 ) = Γ· log( ·) =
Γ1( 𝑓 )

2 𝑓
. (2.36)

If Φ( 𝑓 ) = |𝐶 𝑓 |2 for some linear operator 𝐶, then

ΓΦ( 𝑓 ) = Γ|𝐶 · |2 ( 𝑓 ) ⩾ 𝐶 𝑓 · [L, 𝐶] 𝑓 . (2.37)

If Φ( 𝑓 ) = |𝐶 𝑓 |2/ 𝑓 for some linear operator 𝐶, then

ΓΦ( 𝑓 ) = Γ|𝐶 · |2/· ( 𝑓 ) ⩾
𝐶 𝑓 · [L, 𝐶] 𝑓

𝑓
. (2.38)

The following proof is partially adapted from Lemma 7 of Monmarché (2019).

Proof of Lemma 2.3. To prove (2.36), we use Definition 2.2 and derive

Γ· log( ·) ( 𝑓 ) =
1
2
(
L( 𝑓 log 𝑓 ) − d( 𝑓 log 𝑓 ) · L 𝑓

)
. (2.39)

Using the definition of the Γ1 operator, we have

L( 𝑓 log 𝑓 ) = L 𝑓 · log 𝑓 + 𝑓L(log 𝑓 ) + 2Γ1( 𝑓 , log 𝑓 )

17
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= L 𝑓 · log 𝑓 + 𝑓

(
1
𝑓
L 𝑓 − 1

𝑓 2Γ1( 𝑓 )
)
+ 2
𝑓
Γ1( 𝑓 , 𝑓 )

= (1 + log 𝑓 )L 𝑓 + 1
𝑓
Γ1( 𝑓 ).

On the other hand,
d( 𝑓 log 𝑓 ) · L 𝑓 = (1 + log 𝑓 )L 𝑓 .

Hence from (2.39) we obtain the desired equality (2.36).
To prove (2.37), we only need to choose 𝐶1 = 𝐶2 = 𝐶 in Lemma 2.2, then

Γ|𝐶 · |2 ( 𝑓 ) = Γ1(𝐶 𝑓 ) + 𝐶 𝑓 · [L, 𝐶] 𝑓 ⩾ 𝐶 𝑓 · [L, 𝐶] 𝑓 , (2.40)

which completes the proof.
The proof of (2.38) is a bit more complicated. For the operator |𝐶 · |2/·, we have

L
(
|𝐶 𝑓 |2
𝑓

)
=

1
𝑓
L(|𝐶 𝑓 |2) + |𝐶 𝑓 |2L

(
1
𝑓

)
+ 2Γ1

(
|𝐶 𝑓 |2, 1

𝑓

)
=

1
𝑓
L(|𝐶 𝑓 |2) + |𝐶 𝑓 |2

(
− L 𝑓

𝑓 2 + 2
𝑓 3Γ1( 𝑓 )

)
+ 4𝐶 𝑓 · Γ1(𝐶 𝑓 , 𝑓 )

𝑓 2 , (2.41)

and
d
(
|𝐶 𝑓 |2
𝑓

)
· L 𝑓 =

d(|𝐶 𝑓 |2) · L 𝑓

𝑓 2 − |𝐶 𝑓 |2 𝐿 𝑓
𝑓 2 . (2.42)

Hence from (2.41), (2.42) and Definition 2.2, we obtain

Γ|𝐶 · |2/· ( 𝑓 ) =
1
2

[
L

(
|𝐶 𝑓 |2
𝑓

)
− d

(
|𝐶 𝑓 |2
𝑓

)
· 𝐿 𝑓

]
=

L(|𝐶 𝑓 |2) − d(|𝐶 𝑓 |2) · L 𝑓

2 𝑓
+ |𝐶 𝑓 |2Γ1( 𝑓 )

𝑓 3 + 2𝐶 𝑓 · Γ1(𝐶 𝑓 , 𝑓 )
𝑓 2

=
Γ|𝐶 · |2 ( 𝑓 )

𝑓
+ |𝐶 𝑓 |2Γ1( 𝑓 )

𝑓 3 + 2𝐶 𝑓 · Γ1(𝐶 𝑓 , 𝑓 )
𝑓 2 .

Then using the expression of Γ|𝐶 · |2 ( 𝑓 ) in (2.40) and Cauchy inequality in (2.25),

Γ|𝐶 · |2/· ( 𝑓 ) ⩾
Γ1(𝐶 𝑓 ) + 𝐶 𝑓 · [L, 𝐶] 𝑓

𝑓
+ |𝐶 𝑓 |2Γ1( 𝑓 , 𝑓 )

𝑓 3

− 2

√
|𝐶 𝑓 |2Γ1( 𝑓 , 𝑓 )

𝑓 3

√
Γ1(𝐶 𝑓 )

𝑓
⩾
𝐶 𝑓 · [L, 𝐶] 𝑓

𝑓
.

Hence we obtain the desired inequality (2.38). ■

Next we show that the generalized Γ operator ΓΦ( 𝑓 ) can be related to the time derivative
of the local operator Φ.
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Lemma 2.4. Given the constant 𝑡 > 0, for any 𝑠 ∈ [0, 𝑡], we have the equality

d
d𝑠

[
𝑃𝑠Φ(𝑃𝑡−𝑠 𝑓 ) (𝑥)

]
= 2𝑃𝑠ΓΦ(𝑃𝑡−𝑠 𝑓 ) (𝑥).

As a consequence, for any 𝑡 ⩾ 0,

d
d𝑡

∫
R𝑑

Φ(𝑃𝑡 𝑓 )d𝜋 = −2
∫
R𝑑

ΓΦ(𝑃𝑡 𝑓 )d𝜋.

Proof of Lemma 2.4. Note that theMarkov semigroup 𝑃𝑡 = 𝑒𝑡L . Using the chain rule, we have

d
d𝑠

[
𝑃𝑠Φ(𝑃𝑡−𝑠 𝑓 )

]
= L𝑃𝑠Φ(𝑃𝑡−𝑠 𝑓 ) + 𝑃𝑠

d
d𝑠

[
Φ(𝑃𝑡−𝑠 𝑓 )

]
= L𝑃𝑠Φ(𝑃𝑡−𝑠 𝑓 ) + 𝑃𝑠 lim

𝑟→0

Φ(𝑃𝑡−𝑠−𝑟 𝑓 ) −Φ(𝑃𝑡−𝑠 𝑓 )
𝑟

= L𝑃𝑠Φ(𝑃𝑡−𝑠 𝑓 ) − 𝑃𝑠dΦ(𝑃𝑡−𝑠 𝑓 ) · L𝑃𝑡−𝑠 𝑓

= 𝑃𝑠
(
LΦ𝑡−𝑠 𝑓 − dΦ(𝑃𝑡−𝑠 𝑓 ) · L𝑃𝑡−𝑠 𝑓

)
= 2𝑃𝑠ΓΦ(𝑃𝑡−𝑠 𝑓 ).

Integrating the equality over the distribution 𝜋, we obtain

d
d𝑠

∫
R𝑑

𝑃𝑠Φ(𝑃𝑡−𝑠 𝑓 )d𝜋 = 2
∫
R𝑑

ΓΦ(𝑃𝑡−𝑠 𝑓 )d𝜋. (2.43)

Since 𝜋 is the invariant distribution, replacing 𝑡 − 𝑠 by 𝑠 in (2.43), we obtain

d
d𝑠

∫
R𝑑

Φ(𝑃𝑡 𝑓 )d𝜋 = −2
∫
R𝑑

ΓΦ(𝑃𝑡 𝑓 )d𝜋,

which completes the proof. ■

Convergence in entropy-like functional Nowwe derive themain theorem in the generalized
Γ calculus, which states that the entropy-like functional 𝑊𝜋 ( 𝑓 ) exhibits exponential decay
under specific functional inequalities. This result connects the geometric properties of the
underlying stochastic process with the rate of convergence to equilibrium.

Theorem 2.4. Let (𝑥𝑡)𝑡⩾0 be a diffusion process with the invariant distribution 𝜋. If for two
local operators Φ1( 𝑓 ) and Φ2( 𝑓 ), there hold the functional inequalities

0 ⩽
∫
R𝑑

Φ1( 𝑓 )d𝜋 −Φ1

( ∫
R𝑑

𝑓 d𝜋
)
⩽ 𝑐

∫
R𝑑

Φ2( 𝑓 )d𝜋, (2.44)

ΓΦ2 ( 𝑓 ) ⩾ 𝜌Φ2( 𝑓 ) − 𝑚ΓΦ1 ( 𝑓 ), (2.45)

for some constants 𝑐, 𝜌, 𝑚 > 0, then by defining the entropy-like functional

𝑊𝜋 ( 𝑓 ) = 𝑚
( ∫

R𝑑

Φ1( 𝑓 )d𝜋 −Φ1

( ∫
R𝑑

𝑓 d𝜋
))

+
∫
R𝑑

Φ2( 𝑓 )d𝜋, (2.46)
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we have the exponential decay

𝑊𝜋 (𝑃𝑡 𝑓 ) ⩽ exp
(
− 2𝜌𝑡

1 + 𝑚𝑐

)
𝑊𝜋 ( 𝑓 ), ∀𝑡 ⩾ 0.

The following proof is adapted from Lemma 3 of Monmarché (2019).

Proof of Theorem 2.4. Using Lemma 2.4 and (2.45), we have

d
d𝑡
𝑊𝜋 (𝑃𝑡 𝑓 ) =

d
d𝑡

[
𝑚

∫
R𝑑

Φ1(𝑃𝑡 𝑓 )d𝜋 +
∫
R𝑑

Φ2(𝑃𝑡 𝑓 )d𝜋
]

= −2
∫
R𝑑

(
𝑚ΓΦ1 + ΓΦ2

)
(𝑃𝑡 𝑓 )d𝜋 ⩽ −2𝜌

∫
R𝑑

Φ2(𝑃𝑡 𝑓 )d𝜋. (2.47)

Using (2.44) and the definition of𝑊𝜋 ( 𝑓 ), we have

𝑊𝜋 ( 𝑓 ) = 𝑚
( ∫

R𝑑

Φ1( 𝑓 )d𝜋 −Φ1

( ∫
R𝑑

𝑓 d𝜋
))

+
∫
R𝑑

Φ2( 𝑓 )d𝜋 ⩽ (1 + 𝑚𝑐)
∫
R𝑑

Φ2( 𝑓 )d𝜋.

Hence (2.47) implies

d
d𝑡
𝑊𝜋 (𝑃𝑡 𝑓 ) ⩽ − 2𝜌

1 + 𝑚𝑐𝑊𝜋 (𝑃𝑡 𝑓 ), ∀𝑡 ⩾ 0,

yielding the desired result. ■

Example: ergodicity of Langevin dynamics We employ the functional inequalities and the
generalized Γ calculus to study the ergodicity of two specific examples, the overdamped and
underdamped Langevin dynamics. Let𝑉 (𝑥) be the potential function in R𝑑 and 𝜋(𝑥) ∝ 𝑒−𝑉 (𝑥 )

be the target distribution. The assumptions on 𝑉 (𝑥) are provided as follows.

Assumption 2.1. The potential function 𝑉 (𝑥) ∈ 𝐶2(R𝑑) satisfies
(i) 𝑉 (𝑥) can be decomposed as 𝑉 𝑐 (𝑥) +𝑉𝑏 (𝑥), and for some constants 𝑎, 𝑀1 > 0,

∇2𝑉 𝑐 (𝑥) ≽ 𝑎𝐼𝑑, |𝑉𝑏 (𝑥) | ⩽ 𝑀1, ∀𝑥 ∈ R𝑑 .

(ii) For some constant 𝑀2 > 0,

−𝑀2𝐼𝑑 ≼ ∇2𝑉 (𝑥) ≼ 𝑀2𝐼𝑑, ∀𝑥 ∈ R𝑑 .

Here, 𝐼𝑑 donotes the identity matrix of size 𝑑, and ≼,≽ define the Loewner order in symmetric
matrices. Assumption (i) shows that 𝑉 (𝑥) is the sum of a strongly convex potential and a
globally bounded potential, and 𝑉 (𝑥) itself does not require to be globally convex.

The overdamped Langevin dynamics for sampling the distribution 𝜋(𝑥) reads

¤𝑥 = −∇𝑉 (𝑥) +
√

2 ¤𝐵, (2.48)
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where 𝐵 is the standard Brownian motion in R𝑑. The following result states the exponential
convergence of the overdamped Langevin dynamics (2.48) in the sense of the relative entropy.
The proof is based on the functional inequalities.

Theorem 2.5. Assume (i). Let (𝑃𝑡)𝑡⩾0 be the Markov semigroup of the overdamped Langevin
dynamics (2.48), and 𝜋 ∈ P(R𝑑) be the invariant distribution. Then for any test function 𝑓 in
R𝑑,

Ent𝜋 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜆1𝑡Ent𝜋 ( 𝑓 ), ∀𝑡 ⩾ 0, (2.49)

where the convergence rate 𝜆1 = 𝑒−2𝑀1𝑎 > 0.

Proof of Theorem 2.5. We first prove the log-Sobolev inequality for the dynamics

¤𝑥 = −∇𝑉 𝑐 (𝑥) +
√

2 ¤𝐵, (2.50)

where the potential function 𝑉 𝑐 (𝑥) is convex. The invariant distribution of (2.50) is clearly
𝜋𝑐 (𝑥) ∝ 𝑒−𝑉𝑐 (𝑥 ) . By direct calculation, the Γ operators for (2.50) are given by

Γ1( 𝑓 , 𝑔) = ∇ 𝑓 · ∇𝑔,

Γ2( 𝑓 , 𝑔) = ∇2 𝑓 : ∇2𝑔 + ∇ 𝑓 · ∇𝑉 𝑐 (𝑥) · ∇𝑔,

where 𝐴 : 𝐵 =
∑
𝐴𝑖 𝑗𝐵𝑖 𝑗 denotes the double inner product. Since 𝑉 𝑐 (𝑥) is convex, we have

Γ2( 𝑓 ) ⩾ 𝑎Γ1( 𝑓 ), for any test function 𝑓 , (2.51)

which corresponds to the condition in (2.29). Therefore, applying Theorem 2.1, we obtain the
log-Sobolev inequality 𝐿𝑆(𝑎) for the overdamped Langevin dynamics (2.50) determined by
(𝜋𝑐, Γ1). Next, note that the target distribution 𝜋 satisfies the inequality

𝜋(𝑥)
𝜋𝑐 (𝑥) = 𝑒−𝑉

𝑏 (𝑥 ) ∈
[
𝑒−𝑀1 , 𝑒𝑀1

]
, ∀𝑥 ∈ R𝑑,

hence, by using the bounded perturbation property (Theorem 2.2), we conclude that 𝐿𝑆(𝑒−2𝑀1𝑎)
holds for the overdamped Langevin dynamics (2.48) determined by (𝜋, Γ1). ■

The underdamped Langevin dynamics for sampling the distribution 𝜋(𝑥) reads
¤𝑥 = 𝑣,

¤𝑣 = −∇𝑉 (𝑥) − 𝑣 +
√

2 ¤𝐵,
(2.52)

and the invariant distribution is given by

𝜇(𝑥, 𝑣) ∝ exp
(
− |𝑣 |2

2
−𝑉 (𝑥)

)
.
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The following result states the exponential convergence of the underdamped Langevin dynam-
ics (2.52) in the sense of the relative entropy. The proof is based on the generalized Γ calculus.

Theorem 2.6. Assume (i)(ii). Let (𝑃𝑡)𝑡⩾0 be the Markov semigroup of the underdamped Langevin
dynamics (2.52), and 𝜇 ∈ P(R2𝑑) be the invariant distribution. Define the entropy-like func-
tional

𝑊𝜇 ( 𝑓 ) = 2(𝑀2 + 1)2Ent𝜇 ( 𝑓 ) +
∫
R2𝑑

|∇𝑣 𝑓 |2 + |∇𝑣 𝑓 − ∇𝑥 𝑓 |2
𝑓

d𝜇, (2.53)

Then for any test function 𝑓 in R2𝑑,

𝑊𝜇 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜆2𝑡𝑊𝜇 ( 𝑓 ), ∀𝑡 ⩾ 0, (2.54)

where the convergence rate 𝜆2 = 1
14 (𝑀2 + 1)−2 min{𝑒−2𝑀1𝑎, 1}.

Proof of Theorem 2.6. Let 𝜎(𝑣) ∝ 𝑒− |𝑣|2
2 be the target distribution in the 𝑣 variable. Define the

Γ1 operators in the 𝑣 and 𝑥 variables as

Γ𝑣1 ( 𝑓 , 𝑔) = ∇𝑣 𝑓 · ∇𝑣𝑔, Γ𝑥1 ( 𝑓 , 𝑔) = ∇𝑥 𝑓 · ∇𝑥𝑔.

Since the potential function 1
2 |𝑣 |2 is strongly convex in R𝑑, the overdamped Langevin dy-

namics determined by (𝜎, Γ𝑣1) satisfies 𝐿𝑆(1) in R𝑑. According to Theorem 2.5, the over-
dampedLangevin dynamics determined by (𝜋, Γ𝑥1 ) satisfies 𝐿𝑆(𝑒−2𝑀1𝑎) inR𝑑. Using 𝜇(𝑥, 𝑣) =
𝜋(𝑥) ⊗ 𝜎(𝑣) and the tensorization of the log-Sobolev inequalities (Theorem 2.3), we conclude
that the overdamped Langevin dynamics determined by (𝜋, Γ1) satisfies 𝐿𝑆(min{𝑒−2𝑀1𝑎, 1})
in R2𝑑, where the Γ1 operator is defined by

Γ1( 𝑓 , 𝑔) = Γ𝑥1 ( 𝑓 , 𝑔) + Γ𝑣1 ( 𝑓 , 𝑔) = ∇𝑥 𝑓 · ∇𝑥𝑔 + ∇𝑣 𝑓 · ∇𝑣𝑔.

The log-Sobolev inequality 𝐿𝑆(min{𝑒−2𝑀1𝑎, 1}) explicitly reads

min{𝑒−2𝑀1𝑎, 1}Ent𝜇 ( 𝑓 ) ⩽
1
2

∫
R𝑑

|∇𝑥 𝑓 |2 + |∇𝑣 𝑓 |2
𝑓

d𝜇, for any test function 𝑓 . (2.55)

The inequality (2.55) alone cannot establish the convergence of the underdamped Langevin
dynamics (2.52) because it pertains to an overdamped Langevin dynamics.

To address this, we introduce the local operators

Φ1( 𝑓 ) = 𝑓 log 𝑓 , Φ2( 𝑓 ) =
|∇𝑣 𝑓 |2 + |∇𝑣 𝑓 − ∇𝑥 𝑓 |2

𝑓
(2.56)

for the underdamped Langevin dynamics (2.52). The construction of Φ1( 𝑓 ) and Φ2( 𝑓 ) is
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directly inspired by Example 3 of Monmarché (2019). Using the inequality

|∇𝑥 𝑓 |2 + |∇𝑣 𝑓 |2
3 𝑓

⩽
|∇𝑣 𝑓 |2 + |∇𝑣 𝑓 − ∇𝑥 𝑓 |2

𝑓
,

we derive from the log-Sobolev inequality (2.55) that

1
3

min{𝑒−2𝑀1𝑎, 1}
[ ∫

R2𝑑
Φ1( 𝑓 )d𝜇 −Φ1

( ∫
R2𝑑

𝑓 d𝜇
)]

⩽
∫
R2𝑑

Φ2( 𝑓 )d𝜇, (2.57)

hence the inequality (2.44) holds with 𝑐 = 3 max{𝑒2𝑀1𝑎−1, 1}.
Using Lemma 2.3, we deduce

ΓΦ1 ( 𝑓 ) =
|∇𝑣 𝑓 |2

2 𝑓
, ΓΦ2 ( 𝑓 ) ⩾

∇𝑣 𝑓 · [L,∇𝑣] 𝑓 + (∇𝑣 𝑓 − ∇𝑥 𝑓 ) · [L,∇𝑣 − ∇𝑥] 𝑓
𝑓

. (2.58)

Here, L is the infinitesimal generator of the underdamped Langevin dynamics (2.52),

L = 𝑣 · ∇𝑥 − (∇𝑉 (𝑥) + 𝑣) · ∇𝑣 + Δ𝑣.

The operator commutators are given by

[L,∇𝑣] = ∇𝑣 − ∇𝑥 , [L,∇𝑥] = ∇2𝑉 (𝑥) · ∇𝑣.

Using the estimate of ΓΦ2 ( 𝑓 ) in (2.58), we obtain

ΓΦ2 ( 𝑓 ) ⩾
(2∇𝑣 𝑓 − ∇𝑥 𝑓 ) · (∇𝑣 𝑓 − ∇𝑥 𝑓 ) − (∇𝑣 𝑓 − ∇𝑥 𝑓 ) · ∇2𝑉 · ∇𝑣 𝑓

𝑓
. (2.59)

For convenience, let
P = ∇𝑣 𝑓 − ∇𝑥 𝑓 ∈ R𝑑, Q = ∇𝑣 𝑓 ∈ R𝑑,

so that

ΓΦ1 ( 𝑓 ) =
|Q|2
2 𝑓

, Φ2( 𝑓 ) =
|P |2 + |Q|2

𝑓
, ΓΦ2 ( 𝑓 ) ⩾

(P + Q) · P − P · ∇2𝑉 · Q
𝑓

.

Using the boundedness of ∇2𝑉 in Assumption (ii), we derive from (2.59) that

ΓΦ2 ( 𝑓 ) ⩾
|P |2 − (𝑀2 + 1) |P||Q|

𝑓
. (2.60)

Combining (2.58) and (2.60), we obtain the functional inequality

ΓΦ2 ( 𝑓 )−
1
2
Φ2+2(𝑀2+1)2ΓΦ1 ( 𝑓 ) ⩾

1
2 |P |2 − (𝑀2 + 1) |P||Q| + 1

2 (𝑀2 + 1)2 |Q|2

𝑓
⩾ 0, (2.61)

which implies we can take 𝜌 = 1
2 and 𝑚 = 2(𝑀2 + 1)2 in (2.45). According to Theorem 2.4,
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the convergence rate in the entropy-like functional𝑊𝜇 ( 𝑓 ) satisfies

𝜆2 =
𝜌

1 + 𝑚𝑐 ⩾
1
14

(𝑀2 + 1)−2 min{𝑒−2𝑀1𝑎, 1},

which completes the proof. ■

Remark 2.3. It can be observed that the convergence rate obtained in the underdamped Langevin
dynamics (2.52) is smaller than the overdamped Langevin dynamics (2.48). Technically, this is
because the generalized Γ calculus still relies on the functional inequalities on the overdamped
Langevin dynamics. In practice, however, it is believed that underdamped Langevin dynamics
has a faster convergence rate Ma et al. (2021), which has been rigorously justified in Lu and
Wang (2020).

2.4.2 Reflection coupling technique

Overview of reflection coupling Reflection coupling is a probabilistic technique used to es-
tablish the ergodicity of stochastic processes and the contractivity of numerical integrators,
particularly when the potential function is non-convex. While synchronous coupling is typi-
cally applied to strongly convex functions, reflection coupling focuses on coupling the Brow-
nian motions of two copies of a stochastic process and proving contractivity with respect to an
appropriate metric.

Initially, reflection coupling was employed to demonstrate the ergodicity of the over-
damped Langevin dynamics (Eberle, 2011, 2016). With refined coupling schemes, it has also
been used to establish the ergodicity of Andersen dynamics (Bou-Rabee and Eberle, 2022),
Hamiltonian Monte Carlo (Bou-Rabee et al., 2020; Bou-Rabee and Eberle, 2021, 2023), and
underdamped Langevin dynamics (Eberle et al., 2019). More recently, reflection coupling has
been applied to verify the contractivity of numerical integrators, such as generalized Hamilto-
nian Monte Carlo (Gouraud et al., 2022; Chak and Monmarché, 2023) and the UBU integrator
(Schuh and Whalley, 2024). Stochastic gradient integrators have also been analyzed using
similar techniques in Li et al. (2023); Leimkuhler et al. (2024).

Construction of distance function To illustrate the principle of reflection coupling, consider
the following overdamped Langevin dynamics in R𝑑:

¤𝑥𝑡 = 𝑏(𝑥𝑡) + 𝜎 ¤𝐵𝑡 , (2.62)

where 𝑏(·) : R𝑑 → R𝑑 represents the drift force, 𝜎 > 0 is a scalar constant, and (𝐵𝑡)𝑡≥0

denotes standard Brownian motion in R𝑑. The contraction property of the drift force 𝑏(·) is
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described by the following function:

𝜅(𝑟) = inf
{
− 2
𝜎2

(𝑥 − 𝑦) · (𝑏(𝑥) − 𝑏(𝑦))
|𝑥 − 𝑦 |2 : 𝑥, 𝑦 ∈ R𝑑, |𝑥 − 𝑦 | = 𝑟

}
. (2.63)

If 𝑏(𝑥) = −∇𝑈 (𝑥) is in gradient form, 𝜅(𝑟) characterizes the convexity of the potential function
𝑈 (𝑥). Specifically, if ∇2𝑈 (𝑥) is strongly convex outside a finite ball, 𝜅(𝑟) becomes positive
for sufficiently large 𝑟. This leads to the following reasonable assumption about 𝜅(𝑟).

Assumption 2.2. For the drift function 𝑏(𝑥), the function 𝜅(𝑟) defined in (2.63) satisfies
• 𝜅(𝑟) is continuous for 𝑟 ∈ (0,+∞);
• 𝜅(𝑟) has a lower bound for 𝑟 ∈ (0,+∞);
• lim
𝑟→∞

𝜅(𝑟) > 0.

Assumption 2.2 allows to construct a special distance function 𝑓 (𝑟) satisfying a differen-
tial inequality related to Itô calculus.

Lemma 2.5. Under Assumption 2.2, there exists a function 𝑓 (𝑟) in 𝑟 ∈ [0,+∞) satisfying
• 𝑓 (0) = 0, and 𝑓 (𝑟) is concave and strictly increasing in [0,+∞);
• 𝑓 (𝑟) ∈ 𝐶2 [0,+∞) and there exists a constant 𝑐0 > 0 such that

𝑓 ′′(𝑟) − 1
4
𝑟𝜅(𝑟) 𝑓 ′(𝑟) ⩽ −𝑐0

2
𝑓 (𝑟), ∀𝑟 ⩾ 0. (2.64)

• There exists a constant 𝜑0 > 0 such that

𝜑0𝑟 ⩽ 𝑓 (𝑟) ⩽ 𝑟, ∀𝑟 ⩾ 0. (2.65)

The constants 𝑐0, 𝜑0 only depend on the function 𝜅(𝑟).

Proof of Lemma 2.5. Utilizing the positivity of 𝜅(𝑟), define the constants 𝑅0, 𝑅1 ⩾ 0 by

𝑅0 := inf{𝑅 ⩾ 0 : 𝜅(𝑟) ⩾ 0,∀𝑟 ⩾ 𝑅},

𝑅1 := inf{𝑅 ⩾ 𝑅0 : 𝜅(𝑟)𝑅(𝑅 − 𝑅0) ⩾ 16,∀𝑟 ⩾ 𝑅}.

Then we then have 𝜅(𝑟) ⩾ 0 for 𝑟 ⩾ 𝑅0 and 𝜅(𝑟)𝑅1(𝑅1 − 𝑅0) ⩾ 16 for 𝑟 ⩾ 𝑅1. Given the
function 𝜅(𝑟), define the auxiliary functions 𝜑(𝑟),Φ(𝑟), 𝑔(𝑟) by

𝜑(𝑟) = exp
(
− 1

4

∫ 𝑟

0
𝑠𝜅(𝑠)−d𝑠

)
, Φ(𝑟) =

∫ 𝑟

0
𝜑(𝑠)d𝑠,

𝑔(𝑟) =


1 − 1

2

∫ 𝑟

0

Φ(𝑠)
𝜑(𝑠) d𝑠

/ ∫ 𝑅1

0

Φ(𝑠)
𝜑(𝑠) d𝑠, 𝑟 ⩽ 𝑅1,

1
2
− 𝜂(𝑟 − 𝑅1)

1 + 4𝜂(𝑟 − 𝑅1)
, 𝑟 > 𝑅1,
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where 𝑥− = −min{𝑥, 0} is the negative part of 𝑥 ∈ R and the constant 𝜂 > 0 is defined by

𝜂 = −𝑔′(𝑅1) =
1
2
Φ(𝑅1)
𝜑(𝑅1)

/ ∫ 𝑅1

0

Φ(𝑠)
𝜑(𝑠) d𝑠.

Finally, the distance function 𝑓 (𝑟) is defined as

𝑓 (𝑟) =
∫ 𝑟

0
𝜑(𝑠)𝑔(𝑠)d𝑠. (2.66)

The only difference of the construction of above from the original one in Eberle (2011) is the
definition of 𝑔(𝑟) for 𝑟 > 𝑅1. In our choice, 𝑔(𝑟) is differentiable at 𝑟 = 𝑅1 so that 𝑓 (𝑟) ∈ 𝐶2,
while in the original proof 𝑓 (𝑟) ∈ 𝐶1 and 𝑓 ′(𝑟) is absolutely continuous.

It is easy to verify the following properties of the functions 𝑓 (𝑟), 𝜑(𝑟),Φ(𝑟) and 𝑔(𝑟):
1. 0 < 𝜑(𝑟) ⩽ 1, 1

4 ⩽ 𝑔(𝑟) ⩽ 1. 𝜑(0) = 𝑔(0) = 1. Φ(0) = 0.

2. The derivatives of 𝜑 and 𝑔 are given by

𝜑′(𝑟) = −1
4
𝑟𝜅(𝑟)−𝜑(𝑟), 𝑔′(𝑟) = −1

2
Φ(𝑟)
𝜑(𝑟)

/ ∫ 𝑅1

0

Φ(𝑠)
𝜑(𝑠) d𝑠, 0 ⩽ 𝑟 ⩽ 𝑅1.

Hence 𝜑′(0) = 𝑔′(0) = 0 and 𝜑′(𝑟) ⩽ 0, 𝑔′(𝑟) ⩽ 0 for all 𝑟 ⩾ 0.

3. The second derivative of 𝑓 (𝑟) is given by

𝑓 ′′(𝑟) = 𝜑(𝑟)𝑔′(𝑟) + 𝜑′(𝑟)𝑔(𝑟) ⩽ 0, (2.67)

which implies 𝑓 (𝑟) is concave for all 𝑟 ⩾ 0.

4. When 𝑟 > 𝑅0, 𝜑(𝑟) equals to a constant 𝜑1 given by

𝜑(𝑟) ≡ 𝜑1 = exp
(
− 1

4

∫ 𝑅0

0
𝑠𝜅(𝑠)−d𝑠

)
,

Since 𝜑(𝑟) ⩾ 𝜑1 and 𝑔(𝑟) ⩾ 1
4 for all 𝑟 ⩾ 0, we obtain

𝑓 ′(𝑟) = 𝜑(𝑟)𝑔(𝑟) ⩾ 𝜑1

4
=⇒ 𝑓 (𝑟) ⩾ 𝜑1

4
𝑟. (2.68)

Denote the constant 𝜑0 =
𝜑1
4 , then we have 𝑓 (𝑟) ⩾ 𝜑0𝑟 for any 𝑟 ⩾ 0.

5. Since 𝑔(𝑟) ⩽ 1, Φ(𝑟) provides an upper bound of 𝑓 (𝑟):

Φ(𝑟) =
∫ 𝑟

0
𝜑(𝑠)d𝑠 ⩾

∫ 𝑟

0
𝜑(𝑠)𝑔(𝑠)d𝑠 = 𝑓 (𝑟). (2.69)

From Φ′′(𝑟) = 𝜑′(𝑟) ⩽ 0, we conclude Φ(𝑟) is also concave for 𝑟 ∈ [0,+∞).
Now we prove the inequality (2.64) with the constant 𝑐0 defined by

1
𝑐0

=
∫ 𝑅1

0

Φ(𝑠)
𝜑(𝑠) d𝑠. (2.70)
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1. When 𝑟 ⩽ 𝑅1, using the inequality 𝑓 (𝑟) ⩽ Φ(𝑟),

𝑓 ′′(𝑟) = 𝜑′(𝑟)𝑔(𝑟) + 𝜑(𝑟)𝑔′(𝑟)

= −1
4
𝑟𝜅(𝑟)−𝜑(𝑟)𝑔(𝑟) − 1

2
Φ(𝑟)

/ ∫ 𝑅1

0

Φ(𝑠)
𝜑(𝑠) d𝑠

⩽
1
4
𝑟𝜅(𝑟) 𝑓 ′(𝑟) − 1

2
𝑓 (𝑟)

/ ∫ 𝑅1

0

Φ(𝑠)
𝜑(𝑠) d𝑠,

hence (2.64) holds with 𝑐0 defined in (2.70).

2. When 𝑟 > 𝑅1, we have 𝑓 ′(𝑟) ⩾ 𝜑1
4 and 𝑓 ′′(𝑟) ⩽ 0. Hence by the definition of 𝑅1 and

the concavity of Φ(𝑟) with Φ(0) = 0, we obtain the inequality

𝑓 ′′(𝑟) − 1
4
𝑟𝜅(𝑟) 𝑓 ′(𝑟) ⩽ − 1

16
𝑟𝜅(𝑟)𝜑0 ⩽ − 𝜑1

𝑅1 − 𝑅0

𝑟

𝑅1
⩽ − 𝜑1

𝑅1 − 𝑅0

Φ(𝑟)
Φ(𝑅1)

. (2.71)

Since 𝜑(𝑟) ≡ 𝜑1 for 𝑟 ⩾ 𝑅0, the primitive function Φ(𝑟) is linear in 𝑟, i.e.,

Φ(𝑟) = Φ(𝑅0) + (𝑟 − 𝑅0)𝜑1, 𝑟 ⩾ 𝑅0.

In particular, Φ(𝑅1) = Φ(𝑅0) + (𝑅1 − 𝑅0)𝜑1, hence∫ 𝑅1

𝑅0

Φ(𝑠)
𝜑(𝑠) d𝑠 =

Φ(𝑅0)
𝜑1

(𝑅1 − 𝑅0) +
1
2
(𝑅1 − 𝑅0)2 ⩾

1
2
(𝑅1 − 𝑅0)

Φ(𝑅1)
𝜑1

. (2.72)

Combining the inequalities (2.71) and (2.72), we obtain

𝑓 ′′(𝑟) − 1
4
𝑟𝜅(𝑟) 𝑓 ′(𝑟) ⩽ −1

2
Φ(𝑟)

/ ∫ 𝑅1

𝑅0

Φ(𝑠)
𝜑(𝑠) d𝑠 ⩽ −1

2
𝑓 (𝑟)

/ ∫ 𝑅1

0

Φ(𝑠)
𝜑(𝑠) d𝑠, (2.73)

hence (2.64) holds with the constant 𝑐0 defined in (2.70).
Finally, it is easy to see 𝜑0𝑟 ⩽ 𝑓 (𝑟) ⩽ 𝑟 for any 𝑟 ⩾ 0. ■

Coupling to ergodicity To study the ergodicity of the overdampedLangevin dynamics (2.62),
we define two copies (𝑥𝑡)𝑡⩾0 and (𝑥𝑡)𝑡⩾0 of (2.62) in the following Brownian noise reflection
coupling scheme: 

¤𝑥𝑡 = 𝑏(𝑥𝑡) + 𝜎 ¤𝐵𝑡 ,
¤̄𝑥𝑡 = 𝑏(𝑥𝑡) + 𝜎(𝐼𝑑 − 2𝑒𝑡𝑒>𝑡 ) ¤𝐵𝑡 ,

when 𝑡 < 𝑇, (2.74)

where 𝑇 := inf{𝑡 ⩾ 0 : 𝑥𝑡 = 𝑥𝑡} denotes the collision time of the two copies. For 𝑡 ⩾ 𝑇 , the
two copies are defined to be identical, namely, 𝑥𝑡 = 𝑥𝑡 . Moreover, 𝑒𝑡 is the unit vector

𝑒𝑡 =
𝑥𝑡 − 𝑥𝑡
|𝑥𝑡 − 𝑥𝑡 |

∈ R𝑑, (2.75)
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so that 𝐼𝑑 − 2𝑒𝑡𝑒>𝑡 is the Householder transform Householder (1958) of 𝑥𝑡 and 𝑥𝑡 , as shown in
Figure 2.2.

𝑥𝑡 𝑥𝑡

¤𝐵𝑡 (𝐼𝑑 − 2𝑒𝑡𝑒>𝑡 ) ¤𝐵𝑡

Figure 2.2 Graphic illustration of the reflection coupling.

Let 𝑧𝑡 = 𝑥𝑡 − 𝑥𝑡 and 𝑟𝑡 = |𝑧𝑡 |. Then 𝑧𝑡 satisfies the SDE

¤𝑧𝑡 = 𝑏(𝑥𝑡) − 𝑏(𝑥𝑡) + 2𝜎 ¤𝑊𝑡 , (2.76)

where (𝑊𝑡)𝑡⩾0 is a one-dimensional Brownian motion defined by ¤𝑊𝑡 = 𝑒>𝑡 ¤𝐵𝑡 .
Recall the distance function 𝑓 (𝑟) defined in Lemma 2.5. Utilizing Itô calculus, we have

d
d𝑡
𝑓 (𝑟𝑡) =

𝑧𝑡
𝑟𝑡

· (𝑏(𝑥𝑡) − 𝑏(𝑥𝑡)) 𝑓 ′(𝑟𝑡) + 2𝜎2 𝑓 ′′(𝑟𝑡) + 2𝜎 𝑓 ′(𝑟𝑡) ¤𝑊𝑡 . (2.77)

Taking the expectation in both sides, we obtain

d
d𝑡
E[ 𝑓 (𝑟𝑡)] = E

[
𝑧𝑡
𝑟𝑡

· (𝑏(𝑥𝑡) − 𝑏(𝑥𝑡)) 𝑓 ′(𝑟𝑡) + 2𝜎2 𝑓 ′′(𝑟𝑡)
]

⩽ E
[
− 𝜎2

2
𝑟2
𝑡 𝑓

′(𝑟𝑡) + 2𝜎2 𝑓 ′′(𝑟𝑡)
]
⩽ −𝑐0𝜎

2E[ 𝑓 (𝑟𝑡)],

and thus we have the exponential decay of E[ 𝑓 (𝑟𝑡)]:

E[ 𝑓 (𝑟𝑡)] ⩽ 𝑒−𝛽𝑡E[ 𝑓 (𝑟0)], ∀𝑡 ⩾ 0, (2.78)

where the convergence rate 𝛽 = 𝑐0𝜎
2.

Remark 2.4. The positivity of 𝜎 is crucial for the validity of the reflection coupling (2.74),
ensuring that the convergence rate 𝛽 is also positive.

The inequality (2.78) is sufficient to show the convergence in the Wasserstein-1 distance.
Before presenting the main theorem, we introduce the Wasserstein- 𝑓 distance corresponding
to the distance function 𝑓 (𝑟):

Definition 2.3. For the distance function 𝑓 (𝑟), define the Wasserstein- 𝑓 distance as

W𝑓 (𝜇, 𝜈) = inf
𝛾∈Π (𝜇,𝜈)

∫
𝑓 ( |𝑥 − 𝑦 |)𝛾(d𝑥d𝑦), (2.79)

28



CHAPTER 2 BACKGROUND

where Π(𝜇, 𝜈) denotes the set of joint distributions in R𝑑 × R𝑑 whose marginal distributions
in the 𝑥, 𝑦 variables are exactly 𝜇, 𝜈.

In particular, if 𝑓 (𝑟) ≡ 𝑟, the corresponding Wasserstein- 𝑓 distance becomes the usual
Wasserstein-1 distance W1(·, ·).

Since the distance function 𝑓 (𝑟) defined in Lemma 2.5 satisfies 𝜑0𝑟 ⩽ 𝑓 (𝑟) ⩽ 𝑟, the corre-
sponding Wasserstein- 𝑓 distance satisfies the inequality

𝜑0W1(𝜇, 𝜈) ⩽ W𝑓 (𝜇, 𝜈) ⩽ W1(𝜇, 𝜈). (2.80)

Remark 2.5. In the field of optimal transport (Villani, 2009b), the joint distribution 𝛾 ∈
Π(𝜇, 𝜈) is commonly referred to as the transport plan between 𝜇 and 𝜈.

Remark 2.6. Since the distance function 𝑓 (𝑟) is concave, W𝑓 (·, ·) does not necessarily satisfy
the triangle inequality and, therefore, does not define a metric space.

Given the initial distributions 𝜇, 𝜈 ∈ P(R𝑑), if the initial random variables 𝑥0 ∼ 𝜇 and
𝑥0 ∼ 𝜈 are chosen such that

E
[
𝑓 (|𝑥0 − 𝑥0 |)

]
= W𝑓 (𝜇, 𝜈),

then we immediately obtain the Wasserstein- 𝑓 contractivity from the inequality (2.78).

Theorem 2.7. Under Assumption 2.2, let (P𝑡)𝑡⩾0 be the dual semigroup of the overdamped
Langevin dynamics (2.62), and 𝑓 (𝑟), 𝑐0, 𝜑0 be defined as in Lemma 2.5. Then for any distri-
butions 𝜇, 𝜈 ∈ P(R𝑑), we have

W𝑓 (𝜇P𝑡 , 𝜈P𝑡) ⩽ 𝑒−𝛽𝑡W𝑓 (𝜇, 𝜈), ∀𝑡 ⩾ 0, (2.81)

where the convergence rate 𝛽 = 𝑐0𝜎
2. As a consequence,

W1(𝜇P𝑡 , 𝜈P𝑡) ⩽
1
𝜑0
𝑒−𝛽𝑡W1(𝜇, 𝜈), ∀𝑡 ⩾ 0. (2.82)

Example: non-convex potential We consider a simple example of a non-convex potential
function and calculate the convergence rate 𝛽 using Lemma 2.5. Let the potential function
𝑈 (𝑥) be defined as

𝑈 (𝑥) = 1
2
𝑥2 + 2 sin 𝑥, 𝑥 ∈ R𝑑, (2.83)

with the corresponding drift force given by 𝑏(𝑥) = −∇𝑈 (𝑥) = −𝑥 − 2 cos 𝑥. Let the diffusion
coefficient 𝜎 =

√
2, and the underlying overdamped Langevin dynamics (2.62) reads

¤𝑥𝑡 = −𝑥𝑡 − 2 cos 𝑥𝑡 +
√

2 ¤𝐵𝑡 . (2.84)
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For real numbers 𝑥, 𝑦 ∈ R𝑑 with 𝑥 − 𝑦 = 𝑟 ⩾ 0, we have

𝑏(𝑥) − 𝑏(𝑦)
𝑥 − 𝑦 = 1 −

4 sin 𝑟
2

𝑟
sin

𝑥 + 𝑦
2

⩾ 1 −
4 sin 𝑟

2

𝑟
,

hence the distance function 𝜅(𝑟) in (2.63) is explicitly given by 𝜅(𝑟) = 1 − 4 sin 𝑟
2

𝑟
.

According to the proof of Lemma 2.5, the constants 𝑅0 ≈ 3.790989 and 𝑅1 ≈ 6.307840.
Furthermore, we plot the functions 𝜅(𝑟), 𝜑(𝑟) and Φ(𝑟) in Figure 2.3.

Figure 2.3 The functions 𝜅(𝑟), 𝜑(𝑟) and Φ(𝑟) in Lemma 2.5. The red and yellow dashed lines
denote the constants 𝑅0 and 𝑅1.

Finally, the convergence rate 𝛽 in Theorem 2.7 is calculated as

𝛽 = 𝑐0𝜎
2 = 2

( ∫ 𝑅1

0

Φ(𝑠)
𝜑(𝑠) d𝑠

)−1

≈ 0.068906. (2.85)

2.4.3 Triangle inequality framework

In general, the long-time error analysis for numerical methods is more challenging than
the finite-time error analysis, and the latter being relatively standard and well-documented
in textbooks, such as Chapter 7.5 of E et al. (2021). However, Shardlow and Stuart (2000);
Mattingly et al. (2002, 2010) introduced a specialized approach—referred to in this paper as
the triangle inequality framework—to address the difficulties of long-time error analysis. This
framework has also been recently reviewed in Schuh and Souttar (2024) for the applications in
the multiscale methods.

The core idea of the triangle inequality framework is straightforward: in addition to lever-
aging the results from finite-time error analysis, one only requires the geometric ergodicity of
the stochastic dynamics to extend the analysis to the long-time regime. The basic idea can be
summarized in the following lemma.

Lemma 2.6. Let (𝑥𝑡)𝑡⩾0 and (𝑥𝑡)𝑡⩾0 be stochastic processes inR𝑑 with dual semigroups (P𝑡)𝑡⩾0

and (P̃𝑡)𝑡⩾0 respectively. Given the metric 𝑑 (·, ·) on P(R𝑑), assume (P𝑡)𝑡⩾0 has an invariant
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distribution 𝜋 ∈ P(R𝑑) and there exist constants 𝐶, 𝛽 > 0 such that

𝑑 (𝜈P𝑡 , 𝜋) ⩽ 𝐶𝑒−𝛽𝑡𝑑 (𝜈, 𝜋), ∀𝜈 ∈ P(R𝑑); (2.86)

and for any 𝑇 > 0, there exists a constant 𝜀(𝑇) such that

sup
0⩽𝑡⩽𝑇

𝑑 (𝜈P𝑡 , 𝜈P̃𝑡) ⩽ 𝜀(𝑇), ∀𝜈 ∈ P(R𝑑). (2.87)

Then there exist constants 𝑇0, 𝜆 > 0 such that

𝑑 (𝜈P̃𝑡 , 𝜋) ⩽ 2𝜀(𝑇0) + 2𝑀0𝑒
−𝜆𝑡 , ∀𝑡 ⩾ 0, (2.88)

where 𝑀0 := sup
𝑠∈[0,𝑇0 ]

𝑑 (𝜈P̃𝑠, 𝜋).

In Lemma 2.6, (𝑥𝑡)𝑡⩾0 is interpreted as an approximation of (𝑥𝑡)𝑡⩾0. For instance, (𝑥𝑡)𝑡⩾0

could represent the solution to a SDE, while (𝑥𝑡)𝑡⩾0 corresponds to its time discretization.
The inequality (2.86) characterizes the ergodicity of (𝑥𝑡)𝑡⩾0, with 𝛽 > 0 denoting the conver-
gence rate. Similarly, the inequality (2.87) measures the distance between the dual semigroups
(P𝑡)𝑡⩾0 and (P̃𝑡)𝑡⩾0 over a finite time period. Typically, this finite-time error is determined
by strong error estimates, where the error term 𝜀(𝑇) usually vanishes as the step size of the
discretization approaches zero.

Finally, the long-time error of (𝑥𝑡)𝑡⩾0 is characterized by the difference between the distri-
butions 𝜈P̃𝑡 and 𝜋. For sufficiently large 𝑡, the choice of 𝑇0 remains constant. Thus, Lemma 2.6
demonstrates that only the ergodicity and finite-time error estimates are needed to deduce the
long-time error.

Proof of Lemma 2.6. For any 𝑇 > 0 and 𝑡 ⩾ 𝑇 , we have the inequality

𝑑 (𝜈P̃𝑡 , 𝜋) ⩽ 𝑑 (𝜈P̃𝑡−𝑇P̃𝑇 , 𝜈P̃𝑡−𝑇P𝑇) + 𝑑 (𝜈P̃𝑡−𝑇P𝑇 , 𝜋P𝑇)

⩽ 𝜀(𝑇) + 𝐶𝑒−𝛽𝑇𝑑 (𝜈P̃𝑡−𝑇 , 𝜋).

By choosing 𝑇 = 𝑇0 such that 𝐶𝑒−𝛽𝑇0 = 1
2 , we have

𝑑 (𝜈P̃𝑡 , 𝜋) ⩽ 𝜀(𝑇0) +
1
2
𝑑 (𝜈P̃𝑡−𝑇0 , 𝜋), ∀𝑡 ⩾ 𝑇0.

By induction on the integer 𝑛 ⩾ 0, we obtain

𝑑 (𝜈P̃𝑡 , 𝜋) ⩽ 2
(
1 − 1

2𝑛

)
𝜀(𝑇0) +

1
2𝑛
𝑑 (𝜈P̃𝑡−𝑛𝑇0 , 𝜋), ∀𝑡 ⩾ 𝑛𝑇0.
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For any 𝑡 ∈ [0,+∞), there exists a unique integer 𝑛 ⩾ 0 such that 𝑡 ∈ [𝑛𝑇0, (𝑛 + 1)𝑇0). Then

𝑑 (𝜈P̃𝑡 , 𝜋) ⩽ 2𝜀(𝑇0) + 21−𝑡/𝑇0 sup
𝑠∈[0,𝑇0 ]

𝑑 (𝜈P̃𝑠, 𝜋),

which implies the long-time error estimate (2.88) with 𝜆 = ln 2/𝑇0. ■

Remark 2.7. In this work, the distance 𝑑 (·, ·) is chosen as the Wasserstein-1 distance, and
estimate of the finite-time error 𝜀(𝑇) comes from the strong error estimate. As a consequence,
we can only obtain half-order convergence in the step size ℎ. In practice, 𝑑 (·, ·) can also be
chosen as the total variation, see Durmus and Moulines (2017) for example.

Finally, we remark that the triangle inequality framework is remotely reminiscent of the
well-known Lax equivalence theorem (Sanz-Serna and Palencia, 1985) in numerical analysis.
Here, the ergodicity (2.86) serves as the stability and it helps translate the finite-time error
estimate (2.87) to the long-time error estimate (2.88) without sacrificing the accuracy order.
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Chapter 3 Dimension-free ergodicity of PIMD

Within the path integral formulation, the calculation of the quantum thermal average
〈𝑂 (𝑥)〉𝛽 is reduced to a sampling problem for a classical Boltzmann distribution

𝜋𝑁 (𝑥1, · · · , 𝑥𝑁 ) ∝ exp
(
− 1

2𝛽𝑁

𝑁∑
𝑗=1

|𝑥 𝑗 − 𝑥 𝑗+1 |2 − 𝛽𝑁
𝑁∑
𝑗=1

𝑉 (𝑥 𝑗)
)
, (3.1)

where 𝛽𝑁 = 𝛽/𝑁 and we adimit the periodic boundary condition 𝑥𝑁+1 = 𝑥1. In this sec-
tion, we first introduce the normal mode coordinates, which diagonalizes the spring poten-
tial

∑𝑁
𝑗=1 |𝑥 𝑗 − 𝑥 𝑗+1 | of the ring polymer. Second, we derive the preconditioned underdamped

Langevin dynamics for sampling 𝜋𝑁 (𝑥1, · · · , 𝑥𝑁 ). Finally, we prove the underlying Langevin
dynamics has uniform-in-𝑁 ergodicity in the sense of the relative entropy.

3.1 Normal mode coordinates
Since the energy function E𝑁 (𝑥1, · · · , 𝑥𝑁 ) has a proper inifinite bead limit, it is natural

to ask whether we can sample the corresponding Boltzmann distribution 𝜋𝑁 (𝑥1, · · · , 𝑥𝑁 ) with
a uniform-in-𝑁 convergence rate. However, the direct simulation of the ring polymer system
is notorious for the stiffness in the ring polymer energy (Marx and Parrinello, 1996; Ceriotti
et al., 2010)—the spring potential

∑𝑁
𝑗=1 |𝑥 𝑗−𝑥 𝑗+1 |2 has highmode frequencies when the number

of beads 𝑁 is large, making it impossible to stably discretize the dynamics with an 𝑂 (1) step
size. In practice, there are three major approaches to resolve the stiffness issue: (i) precondition
the dynamics to slow the time scale of high-frequencies modes (Durlak et al., 2009; Lu et al.,
2020; Bou-Rabee and Eberle, 2021); (ii) apply staging coordinates to decouple the dynamics
(Cao and Martyna, 1996; Liu et al., 2016); (ii) use strongly stable numerical integrators (Korol
et al., 2019, 2020). In the thesis, we employ the preconditioning approach, which requires the
normal mode coordinates to diagonalize the spring potential into different Fourier modes.

In order to diagonalize the spring potential, we note that the eigenvalues and eigenvectors
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of the periodic Laplacian matrix

𝐿 =



2 −1 0 · · · 0 −1

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1

−1 0 0 · · · −1 2


∈ R𝑁×𝑁

are explicitly given by

𝜆𝑘 = 4 sin2
(
𝜋𝑘

𝑁

)
⩾ 0, 𝑣𝑘 =

1
√
𝑁



1

𝑒𝑖
2𝜋𝑘
𝑁

𝑒𝑖
4𝜋𝑘
𝑁

...

𝑒𝑖
2(𝑁−1) 𝜋𝑘

𝑁


∈ R𝑁×1, 𝑘 = 0, 1, · · · , 𝑁 − 1.

As a consequence, we introduce the following definition of the normal mode coordinates.

Definition 3.1. Given the bead positions {𝑥 𝑗}𝑁𝑗=1 in R𝑑, define the normal mode coordinates
{𝜉𝑘}𝑁−1

𝑘=0 in R𝑑 by

𝜉𝑘 = 𝛽𝑁

𝑁∑
𝑗=1

𝑥 𝑗𝑐 𝑗 ,𝑘 , (3.2)

where 𝛽𝑁 = 𝛽/𝑁 , and 𝑐 𝑗 ,𝑘 is the discrete Fourier coefficient defined by the following rule:
• If 𝑁 is odd, then for each 𝑗 = 1, · · · , 𝑁 ,

𝑐 𝑗 ,0 =
1
√
𝛽
,

𝑐 𝑗 ,2𝑘−1 =

√
2
𝛽

sin
(
2𝜋𝑘 𝑗
𝑁

)
, 𝑐 𝑗 ,2𝑘 =

√
2
𝛽

cos
(
2𝜋𝑘 𝑗
𝑁

)
, 𝑘 = 1, · · · , 𝑁 − 1

2
.

• If 𝑁 is even, then for each 𝑗 = 1, · · · , 𝑁 ,

𝑐 𝑗 ,0 =
1
√
𝛽
, 𝑐 𝑗 ,𝑁−1 =

(−1) 𝑗
√
𝛽
,

𝑐 𝑗 ,2𝑘−1 =

√
2
𝛽

sin
(
2𝜋𝑘 𝑗
𝑁

)
, 𝑐 𝑗 ,2𝑘 =

√
2
𝛽

cos
(
2𝜋𝑘 𝑗
𝑁

)
, 𝑘 = 1, · · · , 𝑁

2
− 1.
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It is easy to verify 𝑐 𝑗 ,𝑘 satisfies the orthogonal condition:

𝛽𝑁

𝑁∑
𝑗=1

𝑐 𝑗 ,𝑘𝑐 𝑗 ,𝑘′ = 𝛿(𝑘 − 𝑘 ′) =


1, if 𝑘 = 𝑘 ′,

0, if 𝑘 ≠ 𝑘 ′,
(3.3)

then we obtain the formula for the inverse transform

𝑥 𝑗 =
𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘 , 𝑗 = 1, · · · , 𝑁, (3.4)

and the spring potential can be equivalently written as

1
2𝛽𝑁

𝑁∑
𝑗=1

|𝑥 𝑗 − 𝑥 𝑗+1 |2 =
1
2

𝑁−1∑
𝑘=0

𝜔2
𝑘 |𝜉𝑘 |2. (3.5)

Therefore, in the normal mode coordinates 𝝃 = (𝜉1, · · · , 𝜉𝑁 ) ∈ R𝑑𝑁 , we can equivalently write
the ring polymer energy function E𝑁 (𝑥1, · · · , 𝑥𝑁 ) as

E𝑁 (𝝃) =
1
2

𝑁−1∑
𝑘=0

𝜔2
𝑘 |𝜉𝑘 |2 + 𝛽𝑁

𝑁∑
𝑗=1

𝑉

( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)
, (3.6)

where the normal mode frequencies {𝜔𝑘}𝑁−1
𝑘=0 are given by

𝜔0 = 0, 𝜔2𝑘−1 = 𝜔2𝑘 =
2
𝛽𝑁

sin
(
𝑘𝜋

𝑁

)
, 𝑘 = 1, · · · ,

⌊
𝑁

2

⌋
. (3.7)

The target Boltzmann distribution 𝜋𝑁 (𝑥1, · · · , 𝑥𝑁 ) is now expressed as 𝜋𝑁 (𝝃) ∝ 𝑒−E𝑁 (𝝃 ) , de-
fined in the normal mode coordinates {𝜉𝑘}𝑁−1

𝑘=0 . In Figure 3.1, we plot the Fourier coefficients
𝑐𝑘, 𝑗 for the first five modes, along with the growth curve of the normal mode frequency 𝜔𝑘 .

Figure 3.1 Left: Fourier coefficients 𝑐 𝑗 ,𝑘 in the first five modes. Right: Growth curve of the
normal mode frequency 𝜔𝑘 . The number of beads 𝑁 = 128, and the inverse temperature 𝛽 = 1.

Remark 3.1. The transform from the positions {𝑥 𝑗}𝑁𝑗=1 to the normal mode coordinates {𝜉𝑘}𝑁−1
𝑘=0

is orthogonal, hence the Jacobian matrix has a constant determinant. This means that to com-
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pute the quantum thermal average, sampling 𝜋𝑁 (𝑥1, · · · , 𝑥𝑁 ) in the positions and sampling
𝜋𝑁 (𝜉0, · · · , 𝜉𝑁−1) in the normal mode coordinates are equivalent.

3.2 Preconditioned underdamped Langevin dynamics in PIMD
Wederive the underdampedLangevin dynamics for sampling the target distribution 𝜋𝑁 (𝝃)

in the normal mode coordinates 𝝃 = {𝜉𝑘}𝑁−1
𝑘=0 . The internal frequency of the 𝑘-th mode is

𝜔𝑘 = 2
𝛽𝑁

sin 𝑘 𝜋
𝑁

∼ 2𝑘 𝜋
𝛽

; in particular, the frequency of the first mode is 𝜔0 = 0. Inspired from
Lu et al. (2020); Bou-Rabee and Eberle (2021), we introduce a constant 𝑎 > 0 and define
𝑉 𝑎 (𝑥) = 𝑉 (𝑥) − 𝑎

2 |𝑥 |2, then the energy function E𝑁 (𝝃) can be written as

E𝑁 (𝝃) =
1
2

𝑁−1∑
𝑘=0

(𝜔2
𝑘 + 𝑎) |𝜉𝑘 |2 + 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)
, (3.8)

and the frequency of the first mode becomes 𝑎 > 0.
To construct the underdamped Langevin dynamics sampling 𝜋𝑁 (𝝃) ∝ 𝑒−E𝑁 (𝝃 ) , we intro-

duce the auxiliary momentum variables 𝜼 = {𝜂𝑘}𝑁−1
𝑘=0 and write

¤𝜉𝑘 = 𝜂𝑘 ,

¤𝜂𝑘 = −(𝜔2
𝑘 + 𝑎)𝜉𝑘 − 𝛽𝑁

𝑁∑
𝑗=1

∇𝑉 𝑎 (𝑥 𝑗 (𝝃))𝑐 𝑗 ,𝑘 − 𝜂𝑘 +
√

2 ¤𝐵𝑘 ,
(3.9)

where {𝐵𝑘}𝑁𝑘=1 are independent Brownianmotions inR𝑑. Although the underdamped Langevin
dynamics (3.9) preserves 𝜋𝑁 (𝝃) as the invariant distribution, it appears that (3.9) embeds strong
stiffness due to frequency𝜔𝑘 ∼ 2𝑘 𝜋

𝛽
grows linearly with the mode index 𝑘 . The preconditioning

technique in Lu et al. (2020) modifies (3.9) by adding a scaling coefficient (𝜔2
𝑘 + 𝑎)−1 to the

drift force, namely,
¤𝜉𝑘 = 𝜂𝑘 ,

¤𝜂𝑘 = −𝜉𝑘 −
𝛽𝑁

𝜔2
𝑘 + 𝑎

𝑁∑
𝑗=1

∇𝑉 𝑎 (𝑥 𝑗 (𝝃))𝑐 𝑗 ,𝑘 − 𝜂𝑘 +
√

2
𝜔2
𝑘 + 𝑎

¤𝐵𝑘 ,
(𝑘 = 0, 1, · · · , 𝑁 −1) (3.10)

where {𝑥 𝑗}𝑁𝑗=1 are determined by the normal mode transform (3.4). As 𝑘 grows large, the
dynamics of (𝜉𝑘 , 𝜂𝑘) in the preconditioned underdamped Langevin dynamics (3.10) is close to

¤𝜉𝑘 = 𝜂𝑘 ,

¤𝜂𝑘 = −𝜉𝑘 − 𝜂𝑘 +
√

2
𝜔2
𝑘 + 𝑎

¤𝐵𝑘 ,
(𝑘 = 0, 1, · · · , 𝑁 − 1) (3.11)
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which is a linear stochastic process can be integrated with 𝑂 (1) step size. In this way, the
stiffness embedded in the vanilla underdamped Langevin dynamics (3.9) is resolved.

Remark 3.2. An alternative way to handle the stiffness is to use a strongly stable numerical
integrator, for example the BCOCB integrator introduced in Korol et al. (2019). The BCOCB
integrator directly discretizes the vanilla underdamped Langevin dynamics (3.9), while the
discussion on the numerical stability is subtler compared to the preconditioning technique.

Remark 3.3. The preconditioning technique can also be applied without introducing the ar-
tificial parameter 𝑎 > 0. For example, one may use the scaling coefficient 𝜔−2

𝑘 for each mode
index 𝑘 ⩾ 1, and the resulting preconditioned underdamped Langevin dynamics reads

¤𝜉0 = 𝜂0,

¤𝜂0 = −
√
𝛽

𝑁

𝑁∑
𝑗=1

∇𝑉 (𝑥 𝑗 (𝝃)) − 𝜂0 +
√

2 ¤𝐵0,

¤𝜉𝑘 = 𝜂𝑘 ,

¤𝜂𝑘 = − 𝛽𝑁
𝜔2
𝑘

𝑁∑
𝑗=1

∇𝑉 (𝑥 𝑗 (𝝃))𝑐 𝑗 ,𝑘 − 𝜂𝑘 +
√

2
𝜔𝑘

¤𝐵𝑘 .
(𝑘 = 1, · · · , 𝑁 − 1)

(3.12)

The alternate Langevin dynamics (3.12) can be used when the potential 𝑉 (𝑥) is defined in a
periodic region. However, in this paper, we focus on the Langevin dynamics (3.10), as it is
more convenient for studying ergodicity.

Remark 3.4. In addition to Langevin thermostats, several other options are available for sam-
pling the target Boltzmann distribution. Commonly used alternatives include the Hamiltonian
Monte Carlo (HMC) method Betancourt (2017), the Andersen thermostat E and Li (2008),
and the Nosé–Hoover thermostat Evans and Holian (1985). By comparison, the convergence
analysis of Langevin dynamics is more extensively studied and understood.

3.3 Assumptions and results
In this section, we present the assumptions and results in the ergodicity of the precondi-

tioned underdamped Langevin dynamics (3.10). The invariant distribution of (3.10) is

𝜇𝑁 (𝝃, 𝜼) ∝ exp

{
−1

2

𝑁−1∑
𝑘=0

(𝜔2
𝑘 + 𝑎)( |𝜉𝑘 |2 + |𝜂𝑘 |2) − 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)}
, (3.13)
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whose marginal distribution in 𝝃 is exactly the target distribution

𝜋𝑁 (𝝃) ∝ exp

{
−1

2

𝑁−1∑
𝑘=0

(𝜔2
𝑘 + 𝑎) |𝜉𝑘 |2 − 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)}
, (3.14)

For the convenience of the proof, we also introduce the overdamped form of (3.10):

¤𝜉𝑘 = −𝜉𝑘 −
𝛽𝑁

𝜔2
𝑘 + 𝑎

𝑁∑
𝑗=1

∇𝑉 𝑎 (𝑥 𝑗 (𝝃))𝑐 𝑗 ,𝑘 +
√

2
𝜔2
𝑘 + 𝑎

¤𝐵𝑘 , (𝑘 = 0, 1, · · · , 𝑁 − 1) (3.15)

where {𝐵𝑘}𝑁−1
𝑘=0 are independent Brownian motions in R𝑑. It is clear that the invariant distri-

bution of (3.15) is 𝜋𝑁 (𝝃).

Assumption 3.1. Given the constant 𝑎 > 0, the potential function

𝑉 𝑎 (𝑥) = 𝑉 (𝑥) − 𝑎

2
|𝑥 |2, 𝑥 ∈ R𝑑,

is twice differentiable in R𝑑, and for some constants 𝑀1, 𝑀2 ⩾ 0,
(i) 𝑉 𝑎 (𝑥) can be decomposed as 𝑉 𝑐 (𝑥) +𝑉𝑏 (𝑥), where ∇2𝑉 𝑐 (𝑥) ≽ 𝑂𝑑 and |𝑉𝑏 (𝑥) | ⩽ 𝑀1

for any 𝑥 ∈ R𝑑;
(ii) −𝑀2𝐼𝑑 ≼ ∇2𝑉 𝑎 (𝑥) ≼ 𝑀2𝐼𝑑 for any 𝑥 ∈ R𝑑.

Assumption (i) can be interpreted as: 𝑉 𝑎 (𝑥) is the sum of a globally convex potential 𝑉 𝑐 (𝑥)
and a globally bounded potential 𝑉𝑏 (𝑥).

The ergodicity results of the overdamped and underdamped Langevin dynamics are sum-
marized in Table 3.1.

Dynamics overdamped (3.15) underdamped (3.10)

Assumption (i) ⇒ Theorem 3.1 (i)(ii) ⇒ Theorem 3.2

Distribution 𝜋𝑁 (𝝃) in (3.14) 𝜇𝑁 (𝝃, 𝜼) in (3.13)

Ergodicity Ent𝜋𝑁 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜆1𝑡Ent𝜋𝑁 ( 𝑓 ) 𝑊𝜇𝑁 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜆2𝑡𝑊𝜇𝑁 ( 𝑓 )

Table 3.1 The uniform-in-𝑁 ergodicity of the Langevin dynamics in PIMD.

Here, the convergence rates 𝜆1 and 𝜆2 are explicitly given by

𝜆1 = exp(−4𝛽𝑀1), 𝜆2 =
𝑎2

3𝑀2
2 + 5𝑎2

exp(−4𝛽𝑀1).

We note that 𝜆2 < 𝜆1 is because the generalized Γ calculus—the proof technique for the under-
damped Langevin dynamics (3.10)—is based on the log-Sobolev inequality for the overdamped
Langevin dynamics (3.15). See the related discussions in Remark 2.3.
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Remark 3.5. In principle, the overdamped Langevin dynamics (3.15) can also be used to sam-
ple the target distribution 𝜋𝑁 (𝝃). Nevertheless, the underdamped form (3.10) is preferred in
the physics community because (3.10) is a direct generalization of the Hamiltonian dynamics.
From the mathematical perspective, justifying the ergodicity of the underdamped Langevin dy-
namics is much more difficult than the overdamped case, because the infinitesimal generator
is a hypoelliptic operator rather than a strongly elliptic one (Villani, 2009a).

Remark 3.6. The ergodicity of PIMD has also been established in its preconditioned Hamil-
tonian Monte Carlo (pHMC) formulation, as shown in Theorem 3.5 of Bou-Rabee and Eberle
(2021). However, the time duration restriction imposed on pHMC, as specified in Equa-
tion (3.22), is quite stringent and challenging to verify in practical applications. In contrast,
the underdamped Langevin dynamics (3.10) offers a more straightforward approach, as it can
be directly discretized for computing the quantum thermal average.

3.4 Uniform-in-𝑁 ergodicity of Langevin dynamics in PIMD
In this section we prove the uniform-in-𝑁 ergodicity of the overdamped Langevin dy-

namics (3.15) and the underdamped Langevin dynamics (3.10). A introduction of the proof
techniques—the functional inequalities and the generalized Γ calculus—can be found in Chap-
ter 2.4.1. In particular, the proofs of Theorem 2.5 and 2.6 provide the blueprints for the proofs
of Theorem 3.1 and 3.2 in this section.

Theorem 3.1 (overdamped). Assume (i). Let (𝑃𝑡)𝑡⩾0 be the Markov semigroup of the over-
damped Langevin dynamics (3.15), then for any test function 𝑓 (𝝃) in R𝑑𝑁 ,

Ent𝜋𝑁 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜆1𝑡Ent𝜋𝑁 ( 𝑓 ), ∀𝑡 ⩾ 0,

where the convergence rate 𝜆1 = exp(−4𝛽𝑀1).

The proof is based on the log-Sobolev inequality for the distribution 𝜋𝑁 (𝝃).

Proof of Theorem 3.1. Introduce the potential function of the ring polymer energy

V𝑎
𝑁 (𝝃) = 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎 (𝑥 𝑗 (𝝃)) = 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)
, (3.16)

then we can simplify the overdamped Langevin dynamics (3.15) as

¤𝜉𝑘 = −𝜉𝑘 −
1

𝜔2
𝑘 + 𝑎

∇𝜉𝑘V𝑎
𝑁 (𝝃) +

√
2

𝜔2
𝑘 + 𝑎

¤𝐵𝑘 . (3.17)
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Similar to the proof of Theorem 2.5, we prove the log-Sobolev inequality for (3.17) by studying
its convex counterpart. The potential function corresponding to 𝑉 𝑐 (𝑥) is given by

V𝑐
𝑁 (𝝃) = 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑐 (𝑥 𝑗 (𝝃)) = 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑐
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)
.

Since𝑉 𝑐 (𝑥) is globally convex in R𝑑, we can deduceV𝑐
𝑁 (𝝃) is globally convex in R𝑑𝑁 . In fact,

for any 𝜽 = (𝜃0, 𝜃1, · · · , 𝜃𝑁−1) ∈ R𝑑𝑁 , we calculate

𝜽 · ∇2V𝑐
𝑁 (𝝃) · 𝜽 =

𝑁−1∑
𝑘,𝑙=0

𝜃𝑘 ·
(
𝛽𝑁

𝑁∑
𝑗=1

∇2𝑉 𝑐 (𝑥 𝑗 (𝝃))𝑐 𝑗 ,𝑘𝑐 𝑗 ,𝑙

)
· 𝜃𝑙

= 𝛽𝑁

𝑁∑
𝑗=1

( 𝑁−1∑
𝑘=0

𝜃𝑘𝑐 𝑗 ,𝑘

)
· ∇2𝑉 (𝑥 𝑗 (𝝃)) ·

( 𝑁−1∑
𝑙=0

𝜃𝑙𝑐 𝑗 ,𝑙

)
⩾ 0.

The overdamped Langevin dynamics driven by the potential V𝑐
𝑁 (𝝃) reads

¤𝜉𝑘 = −𝜉𝑘 −
1

𝜔2
𝑘 + 𝑎

∇𝜉𝑘V𝑐
𝑁 (𝝃) +

√
2

𝜔2
𝑘 + 𝑎

¤𝐵𝑘 , (3.18)

whose infinitesimal generator is given by

L𝑐 =
𝑁−1∑
𝑘=0

(
𝜉𝑘 +

1
𝜔2
𝑘 + 𝑎

∇𝜉𝑘V𝑐
𝑁 (𝝃)

)
· ∇𝜉𝑘 +

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

Δ𝜉𝑘 , (3.19)

and the invariant distribution is

𝜋𝑐𝑁 (𝜉) ∝ exp
{
− 1

2

𝑁−1∑
𝑘=0

(𝜔2
𝑘 + 𝑎) |𝜉𝑘 |2 − 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑐
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘)
)}
. (3.20)

By direct calculation, the Γ operators (see Definition 2.2) corresponding to L𝑐 are given by

Γ1( 𝑓 , 𝑔) =
𝑁−1∑
𝑘=0

∇𝜉𝑘 𝑓 · ∇𝜉𝑘𝑔
𝜔2
𝑘 + 𝑎

,

Γ𝑐2 ( 𝑓 , 𝑔) =
𝑁−1∑
𝑘,𝑙=0

∇2
𝜉𝑘 𝜉𝑙

𝑓 : ∇2
𝜉𝑘 𝜉𝑙

𝑔

(𝜔2
𝑘 + 𝑎)(𝜔2

𝑙 + 𝑎)
+
𝑁−1∑
𝑘=0

∇𝜉𝑘 𝑓 · ∇𝜉𝑘𝑔
𝜔2
𝑘 + 𝑎

+
𝑁−1∑
𝑘,𝑙=0

∇𝜉𝑘 𝑓 · ∇2
𝜉𝑘 𝜉𝑙

V𝑐
𝑁 (𝝃) · ∇𝜉𝑙𝑔

(𝜔2
𝑘 + 𝑎) (𝜔2

𝑙 + 𝑎)
.

Utilizing the convexity of the potential function V𝑐
𝑁 (𝝃), we obtain

Γ𝑐2 ( 𝑓 ) ⩾
𝑁−1∑
𝑘=0

|∇𝜉𝑘 𝑓 |2

𝜔2
𝑘 + 𝑎

+
𝑁−1∑
𝑘, 𝑗=0

∇𝜉𝑘 𝑓 · ∇2
𝜉𝑘 𝜉 𝑗

V𝑐
𝑁 (𝝃) · ∇𝜉 𝑗 𝑓

(𝜔2
𝑘 + 𝑎) (𝜔2

𝑗 + 𝑎)
⩾

𝑁−1∑
𝑘=0

|∇𝜉𝑘 𝑓 |2

𝜔2
𝑘 + 𝑎

= Γ1( 𝑓 ). (3.21)

Hence from Theorem 2.1 we derive the log-Sobolev inequality

Ent𝜋𝑐𝑁 ( 𝑓 ) ⩽
1
2

∫
R𝑑𝑁

Γ1( 𝑓 )
𝑓

d𝜋𝑐𝑁 =
1
2

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R𝑑𝑁

|∇𝜉𝑘 𝑓 |2
𝑓

d𝜋𝑐𝑁 . (3.22)
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In the final step, we apply the bounded perturbation property (Theorem 2.2) to transform
(3.22) to the log-Sobolev inequality for 𝜋𝑁 (𝝃). LetZ𝑁 andZ𝑐

𝑁 be the normalization constants
of the distributions 𝜋𝑁 (𝜉) and 𝜋𝑐𝑁 (𝜉), namely,

Z𝑁 =
∫
R𝑑𝑁

exp
(
− 1

2

𝑁−1∑
𝑘=0

(𝜔2
𝑘 + 𝑎) |𝜉𝑘 |2 − 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎 (𝑥 𝑗 (𝝃))
)
d𝜉,

Z𝑐
𝑁 =

∫
R𝑑𝑁

exp
(
− 1

2

𝑁−1∑
𝑘=0

(𝜔2
𝑘 + 𝑎) |𝜉𝑘 |2 − 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑐 (𝑥 𝑗 (𝝃))
)
d𝜉.

Using the inequality |𝑉 𝑎 (𝑥) −𝑉 𝑐 (𝑥) | = |𝑉𝑏 (𝑥) | ⩽ 𝑀1, we have

|V𝑎
𝑁 (𝜉) − V𝑐

𝑁 (𝜉) | ⩽ 𝛽𝑁

𝑁∑
𝑗=1

|𝑉𝑏 (𝑥 𝑗 (𝝃)) | ⩽ 𝛽𝑀1,

and thus the normalization constants Z𝑁 and Z𝑐
𝑁 satisfy

Z𝑁

Z𝑐
𝑁

∈
[
exp(−𝛽𝑀1), exp(𝛽𝑀1)

]
.

As a result, the density functions 𝜋𝑁 (𝜉) and 𝜋𝑐𝑁 (𝜉) satisfy

𝜋𝑐𝑁 (𝜉)
𝜋𝑁 (𝜉)

=
Z𝑁

Z𝑐
𝑁

exp
(
𝛽𝑁

𝑁∑
𝑗=1

𝑉𝑏 (𝑥 𝑗 (𝝃))
)
∈

[
exp(−2𝛽𝑀1), exp(2𝛽𝑀1)

]
. (3.23)

Using the bounded perturbation (Theorem 2.2), we obtain from (3.22) that

exp(−4𝛽𝑀1)Ent𝜋𝑁 ( 𝑓 ) ⩽
1
2

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R𝑑𝑁

|∇𝜉𝑘 𝑓 |2
𝑓

d𝜋𝑁 . (3.24)

Hence for the rate 𝜆1 = exp(−4𝛽𝑀1), the relative entropy has exponential decay,

Ent𝜋𝑁 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜆1𝑡Ent𝜋𝑁 ( 𝑓 ), ∀𝑡 ⩾ 0,

which completes the proof. ■

Theorem 3.2 (underdamped). Assume (i)(ii). Let (𝑃𝑡)𝑡⩾0 be the Markov semigroup of the
underdamped Langevin dynamics (3.10), and define the entropy-like functional

𝑊𝜇𝑁 ( 𝑓 ) =
(
𝑀2

2

𝑎2 + 1
)
Ent𝜇𝑁 ( 𝑓 ) +

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R2𝑑𝑁

|∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓 |2 + |∇𝜂𝑘 𝑓 |2
𝑓

d𝜇𝑁 . (3.25)

Then for any test function 𝑓 (𝝃, 𝜼) in R2𝑑𝑁 ,

𝑊𝜇𝑁 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜆2𝑡𝑊𝜇𝑁 ( 𝑓 ), ∀𝑡 ⩾ 0,

where the convergence rate 𝜆2 = 𝑎2

3𝑀2
2+5𝑎2 exp(−4𝛽𝑀1).
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The proof is based on the generalized Γ calculus.

Proof of Theorem 3.2. First, we establish the uniform-in-𝑁 log-Sobolev inequality for the dis-
tribution 𝜇𝑁 (𝜉, 𝜂). In Theorem 3.1, we have proved the log-Sobolev inequality 𝜋𝑁 (𝜉):

𝜆1Ent𝜋𝑁 ( 𝑓 ) ⩽
1
2

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R𝑑𝑁

|∇𝜉𝑘 𝑓 |2
𝑓

d𝜋𝑁 , (3.26)

where the convergence rate 𝜆1 = exp(−4𝛽𝑀1). On the other hand, for the Gaussian distribution

𝜎𝑁 (𝜼) ∝ exp

{
−1

2

𝑁−1∑
𝑘=0

(𝜔2
𝑘 + 𝑎) |𝜂𝑘 |2

}
(3.27)

we apply Theorem 3.1 and obtain the log-Sobolev inequality

Ent𝜎𝑁
( 𝑓 ) ⩽ 1

2

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R𝑑𝑁

|∇𝜂𝑘 𝑓 |2
𝑓

d𝜎𝑁 . (3.28)

Since the invariant distribution 𝜇𝑁 (𝝃, 𝜼) = 𝜋𝑁 (𝝃) ⊗ 𝜎𝑁 (𝜼), Theorem 2.3 implies that the
tensorization of (3.26) and (3.28) yields a new log-Sobolev inequality

𝜆1Ent𝜇𝑁 ( 𝑓 ) ⩽
1
2

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R2𝑑𝑁

|∇𝜉𝑘 𝑓 |2 + |∇𝜂𝑘 𝑓 |2
𝑓

d𝜇𝑁 , (3.29)

where the convergence rate is determined by the smaller one of the rates 𝜆1 = exp(−4𝛽𝑀1)
and 1, which is 𝜆1 itself.

We continue using the notation in the proof of Theorem 3.1,

V𝑎
𝑁 (𝝃) = 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)
, 𝝃 ∈ R𝑑𝑁 ,

which denotes the external potential of the ring polymer. Note that the generator of the under-
damped Langevin dynamics (3.10) is given by

L =
𝑁−1∑
𝑘=0

𝜂𝑘 · ∇𝜉𝑘 −
𝑁−1∑
𝑘=0

(
𝜉𝑘 + 𝜂𝑘 +

1
𝜔2
𝑘 + 𝑎

∇𝜉𝑘V𝑎
𝑁 (𝝃)

)
· ∇𝜂𝑘 +

𝑁−1∑
𝑘=0

Δ𝜂𝑘
𝜔2
𝑘 + 𝑎

, (3.30)

then it is easy to derive the expressions of the commutators:

[L,∇𝜉𝑘 ] = ∇𝜂𝑘 +
𝑁−1∑
𝑙=0

1
𝜔2
𝑙 + 𝑎

∇2
𝜉𝑘 𝜉𝑙

V𝑎
𝑁 (𝜉) · ∇𝜂𝑙 , [L,∇𝜂𝑘 ] = ∇𝜂𝑘 − ∇𝜉𝑘 . (3.31)

Inspired from Example 3 of Monmarché (2019), introduce the local operators

Φ1( 𝑓 ) = 𝑓 log 𝑓 , Φ2( 𝑓 ) =
𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

|∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓 |2 + |∇𝜂𝑘 𝑓 |2
𝑓

,
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then from Lemma 2.3 we obtain the generalized Γ operator

ΓΦ1 ( 𝑓 ) =
1
2

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

|∇𝜂𝑘 𝑓 |2
𝑓

.

In order to compute ΓΦ2 ( 𝑓 ), we write Φ2( 𝑓 ) =
∑𝑁−1
𝑘=0

1
𝜔2

𝑘
+𝑎Φ2,𝑘 ( 𝑓 ), where

Φ2,𝑘 ( 𝑓 ) =
|∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓 |2 + |∇𝜂𝑘 𝑓 |2

𝑓
, 𝑘 = 0, 1, · · · , 𝑁 − 1.

Utilizing Lemma 2.3 again, we have the following estimate of ΓΦ2,𝑘 ( 𝑓 ):

𝑓 · ΓΦ2,𝑘 ( 𝑓 ) ⩾ (∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓 ) · [L,∇𝜂𝑘 − ∇𝜉𝑘 ] 𝑓 + ∇𝜂𝑘 𝑓 · [L,∇𝜂𝑘 ] 𝑓

= |∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓 |2 − (∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓 ) ·
𝑁−1∑
𝑙=0

1
𝜔2
𝑙 + 𝑎

∇2
𝜉𝑘 𝜉𝑙

V𝑎
𝑁 (𝝃) · ∇𝜂𝑙 𝑓 .

Taking the summation over 𝑘 = 0, 1, · · · , 𝑁 − 1, we obtain

𝑓 · ΓΦ2 ( 𝑓 ) ⩾
𝑁−1∑
𝑘=0

|∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓 |2

𝜔2
𝑘 + 𝑎

−
𝑁−1∑
𝑘,𝑙=0

∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓
𝜔2
𝑘 + 𝑎

· ∇2
𝜉𝑘 𝜉𝑙

V𝑎
𝑁 (𝝃) ·

∇𝜂𝑙 𝑓
𝜔2
𝑙 + 𝑎

. (3.32)

To further simplify the expression of ΓΦ2 ( 𝑓 ), define the vectors P,Q ∈ R𝑑𝑁 by

P =


∇𝜂𝑘 𝑓 − ∇𝜉𝑘 𝑓√

𝜔2
𝑘 + 𝑎


𝑁−1

𝑘=0

∈ R𝑑𝑁 , Q =


∇𝜂𝑘 𝑓√
𝜔2
𝑘 + 𝑎


𝑁−1

𝑘=0

∈ R𝑑𝑁 , (3.33)

then the inequality (3.32) can be equivalently written as

ΓΦ2 ( 𝑓 ) ⩾
|P |2 − P>𝚺Q

𝑓
, (3.34)

where the symmetric matrix 𝚺 ∈ R𝑑𝑁×𝑑𝑁 is given by

Σ𝑘𝑙 =
1√

(𝜔2
𝑘 + 𝑎) (𝜔2

𝑙 + 𝑎)
∇2
𝜉𝑘 𝜉𝑙

V𝑎
𝑁 (𝝃) ∈ R𝑑×𝑑, 𝑘, 𝑙 = 0, 1, · · · , 𝑁 − 1.

For any 𝜽 = (𝜃0, 𝜃1, · · · , 𝜃𝑁−1) ∈ R𝑑𝑁 , we have

𝜽>𝚺𝜽 =
𝑁−1∑
𝑘,𝑙=0

𝜃𝑘√
𝜔2
𝑘 + 𝑎

· ∇2
𝜉𝑘 𝜉𝑙

V𝑎
𝑁 (𝝃) ·

𝜃𝑙√
𝜔2
𝑙 + 𝑎

= 𝛽𝑁

𝑁∑
𝑗=1

©­­«
𝑁−1∑
𝑘,𝑙=0

𝜃𝑘𝑐 𝑗 ,𝑘√
𝜔2
𝑘 + 𝑎

· ∇2
𝜉𝑘 𝜉𝑙

𝑉 𝑎 (𝑥 𝑗 (𝝃)) ·
𝜃𝑙𝑐 𝑗 ,𝑙√
𝜔2
𝑙 + 𝑎

ª®®¬ ,
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which implies

|𝜽>𝚺𝜽 | ⩽ 𝛽𝑁𝑀2

𝑁∑
𝑗=1

�������
𝑁−1∑
𝑘=0

𝜃𝑘𝑐 𝑗 ,𝑘√
𝜔2
𝑘 + 𝑎

�������
2

⩽
𝛽𝑁𝑀2

𝑎

𝑁−1∑
𝑘=0

|𝜃𝑘 |2
𝑁−1∑
𝑘=0

|𝑐 𝑗 ,𝑘 |2 =
𝑀2

𝑎

𝑁−1∑
𝑘=0

|𝜃𝑘 |2.

Hence we arrive at the inequality

−𝑀2

𝑎
𝐼𝑑𝑁 ≼ Σ ≼

𝑀2

𝑎
𝐼𝑑𝑁 . (3.35)

In conclusion, the local operators Φ1( 𝑓 ), Φ2( 𝑓 ) and their generalized Γ operators satisfy

Φ1( 𝑓 ) = 𝑓 log 𝑓 , Φ2( 𝑓 ) =
|P |2 + |Q|2

𝑓
, (3.36)

ΓΦ1 ( 𝑓 ) =
|Q|2
2 𝑓

, ΓΦ2 ( 𝑓 ) ⩾
|P |2 − 𝑀2

𝑎
|P | |Q|

𝑓
. (3.37)

Finally, we derive the functional inequalities satisfied by Φ1( 𝑓 ) and Φ2( 𝑓 ). The log-
Sobolev inequality (3.29) implies

𝜆1Ent𝜇𝑁 ( 𝑓 ) ⩽
1
2

∫
R2𝑑𝑁

|P + Q|2 + |Q|2
𝑓

d𝜇𝑁 ⩽
3
2

∫
R2𝑑𝑁

|P |2 + |Q|2
𝑓

d𝜇𝑁 ,

hence with the expressions of Φ1( 𝑓 ) and Φ2( 𝑓 ), we can equivalently write

2𝜆1

3

( ∫
R2𝑑𝑁

Φ1( 𝑓 )d𝜇𝑁 −Φ1

( ∫
R2𝑑𝑁

𝑓 d𝜇𝑁
))

⩽
∫
R2𝑑𝑁

Φ2( 𝑓 )d𝜇𝑁 . (3.38)

On the other hand, (3.37) implies

ΓΦ2 ( 𝑓 ) −
1
2
Φ2( 𝑓 ) +

(
𝑀2

2

𝑎2 + 1
)
ΓΦ1 ( 𝑓 ) ⩾

(|P| − 𝑀2
𝑎
|Q|)2

2 𝑓
⩾ 0. (3.39)

Collecting the functional inequalities (3.38) and (3.39), we can directly apply Theorem 2.4
with constants

𝑐 =
3

2𝜆1
, 𝜌 =

1
2
, 𝑚 =

𝑀2
2

𝑎2 + 1

and obtain the convergence rate

𝜆2 =
𝜌

2(1 + 𝑚𝑐) =
𝜆1

2𝜆1 + 3(𝑀
2
2
𝑎2 + 1)

⩽
𝑎2

3𝑀2
2 + 5𝑎2

exp(−4𝛽𝑀1),

which completes the proof. ■

In Theorem 3.2, we established the explicit convergence rate 𝜆2 for the entropy-like quan-
tity 𝑊𝜇𝑁 (𝑃𝑡 𝑓 ). Next, we demonstrate that for a carefully chosen initial distribution 𝜈𝑁 ∈
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P(R2𝑑𝑁 ), the test function
𝑓𝑁 (𝝃, 𝜼) =

𝜈𝑁 (𝝃, 𝜼)
𝜇𝑁 (𝝃, 𝜼)

ensures 𝑊𝜇𝑁 ( 𝑓𝑁 ) remains uniform-in-𝑁 . This uniformity is crucial, as it guarantees that
𝐻 (𝜈𝑁P𝑡 |𝜇𝑁 ) does not diverge as the number of beads 𝑁 → ∞.

We select the initial distribution 𝜈𝑁 (𝝃, 𝜼) = 𝜎𝑁 (𝝃) ⊗𝜎𝑁 (𝜼), where 𝜎𝑁 (·) is the Gaussian
distribution defined in (3.27). Since the target distribution is 𝜇𝑁 (𝝃, 𝜼) = 𝜋𝑁 (𝝃) ⊗ 𝜎𝑁 (𝜼), the
test function 𝑓𝑁 depends only on the 𝝃 variable and is expressed as

𝑓𝑁 (𝝃) =
𝜎𝑁 (𝝃)
𝜋𝑁 (𝝃)

∝ exp

{
𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)}
. (3.40)

Consequently, the entropy-like quantity𝑊𝜇𝑁 ( 𝑓𝑁 ) simplifies to

𝑊𝜇𝑁 ( 𝑓𝑁 ) =
(
𝑀2

2

𝑎2 + 1
)
Ent𝜋𝑁 ( 𝑓𝑁 ) +

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R𝑑𝑁

|∇𝜉𝑘 𝑓𝑁 |2
𝑓𝑁

d𝜋𝑁

⩽ 𝑒4𝛽𝑀1

(
𝑀2

2

𝑎2 + 2
) 𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R𝑑𝑁

|∇𝜉𝑘 𝑓𝑁 |2
𝑓𝑁

d𝜋𝑁 , (3.41)

where the log-Sobolev inequality in (3.24) is applied. Therefore, the task reduces to estimating
the RHS of (3.41). In the following, we assume ∇𝑉 (0) = 0. If this condition is not met, the
global minimum of the potential function 𝑉 (𝑥) can be shifted to the origin without loss of
generality.

Lemma 3.1. Assume (i)(ii) and ∇𝑉 (0) = 0. Let 𝑓𝑁 (𝝃) be the test function in (3.40), then
𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R𝑑𝑁

|∇𝜉𝑘 𝑓𝑁 |2
𝑓𝑁

d𝜋𝑁 ⩽ 𝑀2
2

(
1
𝑎
+ 3𝛽2

)2

. (3.42)

As a consequence, the entropy-like quantity𝑊𝜇𝑁 ( 𝑓𝑁 ) is bounded by

𝑊𝜇𝑁 ( 𝑓𝑁 ) ⩽ 𝑒4𝛽𝑀1𝑀2
2

(
𝑀2

2

𝑎2 + 2
) (

1
𝑎
+ 3𝛽2

)2

. (3.43)

Proof of Lemma 3.1. We begin with the following inequality:
𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

⩽
1
𝑎
+ 3𝛽2. (3.44)

Using the explicit expression of the frequency 𝜔𝑘 in (3.7), we obtain
𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

⩽
∑
|𝑘 |⩽ 𝑁

2

1
𝑎 + 4

𝛽2
𝑁

sin2 𝑘 𝜋
𝑁

⩽
∑
|𝑘 |⩽ 𝑁

2

1
𝑎 + 4

𝛽2
𝑁

( 2
𝜋
𝑘𝜋
𝑁

)2
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⩽
∑
𝑘∈Z

1
𝑎 + 16𝑘2

𝜋2𝛽2

⩽
1
𝑎
+ 𝜋2𝛽2

8

∞∑
𝑘=1

1
𝑘2 =

1
𝑎
+ 𝜋4

48
𝛽2.

Since 𝜋4

48 < 3, we obtain the desired inequality (3.44).
Next we prove (3.42). Using ∇𝑉 (0) = 0 we have ∇𝑉 𝑎 (0) = 0 and thus the inequality

|∇𝑉 𝑎 (𝑥) | ⩽ 𝑀2 |𝑥 |, ∀𝑥 ∈ R𝑑 .

Utilizing the expression 𝑓𝑁 (𝝃) = 𝜎𝑁 (𝝃 )
𝜋𝑁 (𝝃 ) , we have∫

R𝑑𝑁

|∇𝜉𝑘 𝑓𝑁 |2
𝑓𝑁

d𝜋𝑁 =
∫
R𝑑𝑁

|∇𝜉𝑘 𝑓𝑁 |2

𝑓 2
𝑁

d𝜎𝑁 . (3.45)

From (3.40), ∇𝜉𝑘
𝑓𝑁

𝑓𝑁
is explicitly given by

∇𝜉𝑘 𝑓𝑁
𝑓𝑁

= 𝛽𝑁

𝑁∑
𝑗=1

∇𝑉 𝑎 (𝑥 𝑗 (𝝃))𝑐 𝑗 ,𝑘 ,

and hence by Cauchy’s inequality

|∇𝜉𝑘 𝑓𝑁 |2

𝑓 2
𝑁

⩽ 𝛽2
𝑁

𝑁∑
𝑗=1

��∇𝑉 𝑎 (𝑥 𝑗 (𝝃))��2 𝑁∑
𝑗=1

|𝑐 𝑗 ,𝑘 |2

⩽ 𝛽𝑁𝑀
2
2

𝑁∑
𝑗=1

|𝑥 𝑗 (𝝃) |2 = 𝑀2
2

𝑁−1∑
𝑘=0

|𝜉𝑘 |2.

As a consequence, we obtain∫
R𝑑𝑁

|∇𝜉𝑘 𝑓𝑁 |2

𝑓 2
𝑁

d𝜎𝑁 ⩽ 𝑀2
2

∫
R𝑑𝑁

( 𝑁−1∑
𝑘=0

|𝜉2
𝑘 |
)
d𝜎𝑁 = 𝑀2

2

𝑁−1∑
𝑘=0

E
[
|𝜉𝑘 |2 : 𝝃 ∼ 𝜎𝑁

]
= 𝑀2

2

𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

⩽ 𝑀2
2

(
1
𝑎
+ 3𝛽2

)
,

for each 𝑘 = 0, 1, · · · , 𝑁 − 1. Hence we finally obtain
𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

∫
R𝑑𝑁

|∇𝜉𝑘 𝑓𝑁 |2

𝑓 2
𝑁

d𝜎𝑁 ⩽ 𝑀2
2

(
1
𝑎
+ 3𝛽2

) 𝑁−1∑
𝑘=0

1
𝜔2
𝑘 + 𝑎

⩽ 𝑀2
2

(
1
𝑎
+ 3𝛽2

)2

,

which completes the proof. ■

Utilizing Lemma 3.1, we establish the exponential decay of the relative entropy 𝐻 (𝜈𝑁P𝑡 |𝜋𝑁 ),
where both the coefficient and the convergence rate remain independent of the number of beads
𝑁 .

Theorem 3.3. Assume (i)(ii) and ∇𝑉 (0) = 0. Let (P𝑡)𝑡⩾0 be the dual semigroup of the under-
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damped Langevin dynamics (3.10), and choose the initial distribution 𝜈𝑁 ∈ P(R𝑑𝑁 ) as

𝜈𝑁 (𝝃, 𝜼) ∝ exp

{
−1

2

𝑁−1∑
𝑘=0

(𝜔2
𝑘 + 𝑎)( |𝜉𝑘 |2 + |𝜂𝑘 |2)

}
,

then we have the inequality

𝐻 (𝜈𝑁P𝑡 |𝜋𝑁 ) ⩽ 2𝑀2
2

(
1
𝑎
+ 3𝛽2

)2

𝑒4𝛽𝑀1−𝜆2𝑡 , ∀𝑡 ⩾ 0, (3.46)

where the convergence rate 𝜆2 = 𝑎2

3𝑀2
2+5𝑎2 exp(−4𝛽𝑀1).

3.5 Relation to Matsubara mode PIMD
We propose an alternative derivation of the Path Integral Molecular Dynamics (PIMD),

which is based on taking the continuum limit of the ring polymer energy in (2.16), rather than
directly diagonalizing the ring polymer energy in (2.14). This approach leads to a different set
of mode frequencies, denoted as {𝜔̄𝑘}𝑁−1

𝑘=0 , which are referred to as the Matsubara frequencies
(Chandler and Wolynes, 1981; Willatt, 2017; Althorpe, 2024). Consequently, the resulting
method is also known as the Matsubara mode PIMD.

Recall that the continuum limit of the ring polymer energy is given by

E∞(𝑥(·)) =
1
2

∫ 𝛽

0
|𝑥′(𝜏) |2 𝑑𝜏 +

∫ 𝛽

0
𝑉 (𝑥(𝜏)) 𝑑𝜏,

where 𝑥(·) is a continuous loop defined over the interval [0, 𝛽]. To diagonalize the kinetic
energy part of E∞(𝑥(·)), we consider the following eigenvalue problemwith periodic boundary
conditions:

−¥𝑐𝑘 (𝜏) = 𝜔̄2
𝑘𝑐𝑘 (𝜏), 𝜏 ∈ [0, 𝛽] . (3.47)

The eigenvalues and eigenfunctions are explicitly given by

𝜔̄0 = 0, 𝑐0(𝜏) =
√

1
𝛽

;

𝜔̄2𝑘−1 =
2𝑘𝜋
𝛽
, 𝑐2𝑘−1(𝜏) =

√
2
𝛽

sin
(
2𝑘𝜋𝜏
𝛽

)
, 𝑘 = 1, 2, · · · ;

𝜔̄2𝑘 =
2𝑘𝜋
𝛽
, 𝑐2𝑘 (𝜏) =

√
2
𝛽

cos
(
2𝑘𝜋𝜏
𝛽

)
, 𝑘 = 1, 2, · · · .

The eigenvalues {𝜔̄𝑘} and eigenfunctions {𝑐𝑘 (·)} are closely related to the normal mode
frequencies {𝜔𝑘} and coefficients {𝑐 𝑗 ,𝑘} as defined in Definition 3.1. Specifically, we have the
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following relationship:

lim
𝑁→∞

𝜔𝑘 = lim
𝑁→∞

2
𝛽𝑁

sin

(
d 𝑘2 e𝜋
𝑁

)
=

2d 𝑘2 e𝜋
𝛽

= 𝜔̄𝑘 , 𝑘 = 0, 1, . . . , (3.48)

and when 𝑁 is odd, 𝑐𝑘 ( 𝑗 𝛽𝑁 ) = 𝑐 𝑗 ,𝑘 for 𝑗 = 1, . . . , 𝑁 . Since 𝜔̄𝑘 represents the infinite-
bead limit of 𝜔𝑘 , {𝜔̄𝑘}∞𝑘=0 are referred to as the Matsubara frequencies, and the corresponding
eigenfunctions {𝑐𝑘 (·)}∞𝑘=0 are known as the Matsubara modes in chemical literature.

Using the Matsubara modes, any continuous loop 𝑥(·) in [0, 𝛽] can be represented as

𝑥(𝜏) =
∞∑
𝑘=0

𝜉𝑘𝑐𝑘 (𝜏), 𝜏 ∈ [0, 𝛽], (3.49)

where {𝜉𝑘}𝑁−1
𝑘=0 are referred to as the Matsubara coordinates. Using the Matsubara coordinates,

we can express the energy function E∞(𝑥(·)) as

E∞(𝝃) =
1
2

∞∑
𝑘=0

𝜔̄2
𝑘 |𝜉𝑘 |2 +

∫ 𝛽

0
𝑉

(
𝑁−1∑
𝑘=0

𝜉𝑘𝑐𝑘 (𝜏)
)
𝑑𝜏. (3.50)

Formally, the preconditioned underdamped Langevin dynamics that samples 𝑒−E∞ (𝝃 ) is
¤𝜉𝑘 = 𝜂𝑘 ,

¤𝜂𝑘 = −𝜉𝑘 −
1

𝜔̄2
𝑘 + 𝑎

∫ 𝛽

0
∇𝑉 𝑎 (𝑥(𝜏))𝑐𝑘 (𝜏) 𝑑𝜏 − 𝜂𝑘 +

√
2

𝜔̄2
𝑘 + 𝑎

¤𝐵𝑘 ,
(3.51)

where {𝐵𝑘}∞𝑘=0 are independent Brownian motions in R𝑑. The infinite-dimensional Langevin
dynamics in (3.51) corresponds exactly to the stochastic partial differential equation (SPDE)
introduced in Equation (21) of Lu et al. (2020).

Although (3.51) does not involve any approximation error, it is infinite-dimensional. There-
fore, we must truncate the number of modes to a finite integer 𝑁 , and the continuous integral
must be approximated numerically. A natural truncation scheme is given by

¤𝜉𝑘 = 𝜂𝑘 ,

¤𝜂𝑘 = −𝜉𝑘 −
𝛽𝑁

𝜔̄2
𝑘 + 𝑎

𝑁∑
𝑗=1

∇𝑉 𝑎 (𝑥 𝑗 (𝝃))𝑐 𝑗 ,𝑘 − 𝜂𝑘 +
√

2
𝜔̄2
𝑘 + 𝑎

¤𝐵𝑘 ,
(3.52)

where the values of {𝑥 𝑗 (𝝃)}𝑁𝑗=1 are given by

𝑥 𝑗 (𝝃) =
𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘 .

The truncated Langevin dynamics in (3.52) is referred to as the Matsubara mode PIMD, which
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differs from the Langevin dynamics in (3.10) in the mode frequencies.
Denote the invariant distribution of the Matsubara mode PIMD (3.52) as

𝜇̄𝑁 (𝝃, 𝜼) ∝ exp

{
−1

2

𝑁−1∑
𝑘=0

(𝜔̄2
𝑘 + 𝑎)( |𝜉𝑘 |2 + |𝜂𝑘 |2) − 𝛽𝑁

𝑁∑
𝑗=1

𝑉 𝑎
( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)}
. (3.53)

Employing the same approach with Theorem 3.2, we can prove the uniform-in-𝑁 ergodicity of
(3.52), and the convergence remains the same.

Theorem 3.4 (Matsubara). Assume (i)(ii). Let (𝑃𝑡)𝑡⩾0 be the Markov semigroup of the Mat-
subara mode PIMD (3.52), then for any test function 𝑓 (𝝃, 𝜼) in R2𝑑𝑁 ,

𝑊𝜇̄𝑁 (𝑃𝑡 𝑓 ) ⩽ 𝑒−2𝜆2𝑡𝑊𝜇̄𝑁 ( 𝑓 ), ∀𝑡 ⩾ 0,

where the convergence rate 𝜆2 = 𝑎2

3𝑀2
2+5𝑎2 exp(−4𝛽𝑀1).

Our results demonstrate that both the standard PIMD (with normal mode frequencies)
and the Matsubara mode PIMD (with Matsubara frequencies) exhibit uniform-in-𝑁 ergodicity.
However, this does not imply that their approximation errors with respect to 𝑁 are similar. As
shown in the numerical tests, the convergence rates of the standard PIMD and the Matsubara
mode PIMD are 𝑂 (1/𝑁2) and 𝑂 (1/𝑁), respectively. This indicates that the standard PIMD
(3.10) is more suitable for accurately calculating the quantum thermal average.

Remark 3.7. In chemical literature, Matsubara frequencies are primarily used in Matsub-
ara dynamics Willatt (2017); Althorpe (2024), which is a computational tool for evaluating
quantum correlation functions (QCT). In this context, errors mainly arise from approximating
the real-time quantum dynamics, and the Matsubara frequencies result from discretizing the
imaginary-time path integral to reflect the periodic boundary conditions in quantum systems.
However, the Matsubara mode PIMD is not a standard technique for calculating quantum ther-
mal averages. Unlike the standard PIMD, which uses normal mode frequencies, the Matsubara
mode PIMD introduces a different formulation and leads to distinct approximation errors.

3.6 Numerical tests
In the numerical tests, we compute the quantum thermal average using both the standard

PIMD (3.10) and theMatsubara mode PIMD (3.52). The primary objectives are to evaluate the
approximation accuracy with respect to the number of beads 𝑁 and to verify the uniform-in-𝑁
ergodicity of the Langevin dynamics. To achieve this, we fix the step size ℎ as a small constant
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while varying the inverse temperature 𝛽 and the number of beads 𝑁 . The numerical examples
include a one-dimensional potential and a three-dimensional spherical potential.

Time average error and autocorrelation function To evaluate the accuracy and efficiency
of the simulation, we introduce two key metrics: the time average error, which quantifies the
error in computing the quantum thermal average, and the autocorrelation function, which mea-
sures the convergence rate. While these concepts are primarily explained using the standard
PIMD (3.10), their definitions for the Matsubara mode PIMD (3.52) are analogous.

The target distribution for the standard PIMD is 𝜋𝑁 (𝝃), as defined in (3.14). Accordingly,
the quantum thermal average 〈𝑂 (𝑞)〉𝛽 is approximated by

〈𝑂 (𝑥)〉𝛽 ≈ 〈𝑂 (𝑥)〉𝛽,𝑁 :=
∫
R𝑑𝑁

[
1
𝑁

𝑁∑
𝑗=1

𝑂

( 𝑁−1∑
𝑘=0

𝜉𝑘𝑐 𝑗 ,𝑘

)]
𝜋𝑁 (𝝃) 𝑑𝝃 . (3.54)

Furthermore, let 𝜉𝑘 (𝑡) and 𝜂𝑘 (𝑡) be solutions of the underdamped Langevin dynamics (3.10).
The accuracy of the quantum thermal average 〈𝑂 (𝑞)〉𝛽 can be characterized by the time average
error,

𝑒(𝛽, 𝑁, 𝑇) :=
1
𝑇

∫ 𝑇

0

[
1
𝑁

𝑁−1∑
𝑗=0

𝑂

( 𝑁−1∑
𝑘=0

𝜉𝑘 (𝑡)𝑐 𝑗 ,𝑘
)]
𝑑𝑡 − 〈𝑂 (𝑥)〉𝛽, (3.55)

which depends on the number of beads 𝑁 and the simulation time 𝑇 .
The autocorrelation function of the normal mode coordinates {𝜉𝑘}𝑁−1

𝑘=0 is defined by

𝐶𝑘 (𝛽, 𝑁,Δ𝑇) :=
〈(𝜉𝑘 (𝑡) − 〈𝜉𝑘〉)(𝜉𝑘 (𝑡 + Δ𝑇)〉 − 〈𝜉𝑘〉)

〈𝜉𝑘 (𝑡) − 〈𝜉𝑘〉〉2 , 𝑘 = 0, 1, . . . , 𝑁 − 1, (3.56)

where 〈 𝑓 (𝑡)〉 := lim𝑇→∞ 𝑇
−1

∫ 𝑇

0 𝑓 (𝑡) 𝑑𝑡 denotes the time average of a function 𝑓 , and Δ𝑇 is the
time interval between successive measurements of 𝜉𝑘 . The exponential decay of 𝐶𝑘 (𝛽, 𝑁,Δ𝑇)
characterizes the convergence behavior of the 𝑘-th mode.

Time discretization: BAOAB integrator The time discretization of the underdamped Langevin
dynamics is performed using the BAOAB integrator (Leimkuhler and Matthews, 2015; Liu
et al., 2016), a widely used numerical scheme in molecular dynamics based on operator split-
ting. In the standard PIMD, (3.10) can be expressed as:

¤𝜉𝑘 = 𝜂𝑘 ,

¤𝜂𝑘 = −𝜉𝑘 −
𝛽𝑁

𝜔2
𝑘 + 𝑎

∇𝜉𝑘V𝑎
𝑁 (𝝃) − 𝜂𝑘 +

√
2

𝜔2
𝑘 + 𝑎

¤𝐵𝑘 ,
(3.57)
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where V𝑎
𝑁 (𝝃) is the potential function defined in (2.14). To construct the integrator, (3.57) is

split into three parts:

A :

¤𝜉𝑘 = 𝜂𝑘 ,

¤𝜂𝑘 = 0,
B :


¤𝜉𝑘 = 0,

¤𝜂𝑘 = −𝜉𝑘 −
𝛽𝑁

𝜔2
𝑘 + 𝑎

∇𝜉𝑘V𝑎
𝑁 (𝝃),

O :


¤𝜉𝑘 = 0,

¤𝜂𝑘 = −𝜂𝑘 +
√

2
𝜔2
𝑘 + 𝑎

¤𝐵𝑘 ,

where A,B, and O have explicit solutions. The solutions for A and B are:

A𝑡 : 𝜉𝑘 (𝑡) = 𝜉𝑘 (0) + 𝜂𝑘 (0)𝑡, (3.58)

B𝑡 : 𝜂𝑘 (𝑡) = −
(
𝜉𝑘 (0) +

𝛽𝑁

𝜔2
𝑘 + 𝑎

∇𝜉𝑘V𝑎
𝑁 (𝝃 (0))

)
𝑡. (3.59)

For O, which represents a linear Ornstein–Uhlenbeck process, the solution is:

O𝑡 : 𝜂𝑘 (𝑡) = 𝑒−𝑡𝜂𝑘 (0) +
√

1 − 𝑒−2𝑡

𝜔2
𝑘 + 𝑎

𝜃𝑘 , (3.60)

where {𝜃𝑘}𝑁−1
𝑘=0 are independent Gaussian random variables sampled from N(0, 𝐼𝑑).

Finally, the BAOAB integrator with step size ℎ is constructed as:

(𝝃𝑚+1, 𝜼𝑚+1) =
(
Bℎ/2 ◦ Aℎ/2 ◦ Oℎ ◦ Aℎ/2 ◦ Bℎ/2

)
(𝝃𝑚, 𝜼𝑚), 𝑚 = 0, 1, . . . . (3.61)

Since the BAOAB integrator is based on symmetric operator splitting, the time discretization
error is 𝑂 (ℎ2) in the weak sense, ensuring both accuracy and efficiency.

Example: 1D potential Let the potential 𝑉 (𝑥) and the observable 𝑂 (𝑥) be defined as:

𝑉 (𝑥) = 1
2
𝑥2 + 𝑥 cos 𝑥, 𝑂 (𝑥) = sin

(𝜋
2
𝑥
)
, 𝑥 ∈ R. (3.62)

The exact quantum thermal average 〈𝑂 (𝑥)〉𝛽 is computed using the spectralmethodwithGauss–
Hermite quadrature. For the simulations, the step size is fixed at ℎ = 1

16 , and the simulation
time is set to 𝑇 = 5 × 106.

The time average error 𝑒(𝛽, 𝑁, 𝑇), as defined in (3.55), is shown in Figure 3.2. The
tests are conducted for inverse temperatures 𝛽 = 1, 2, 4, 8, and the number of modes 𝑁 =

9, 17, 33, 65, 129. The left and right columns of Figure 3.2 illustrate the results for the stan-
dard PIMD and the Matsubara mode PIMD, respectively.
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(𝛽 = 1)

(𝛽 = 2)

(𝛽 = 4)
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(𝛽 = 8)

Figure 3.2 Time average error in computing the quantum thermal average for the 1D potential
(3.62). Left: standard PIMD. Right: Matsubara mode PIMD. Top to bottom: inverse tempera-
tures 𝛽 = 1, 2, 4, 8.

Figure 3.2 demonstrates that the standard PIMD achieves better accuracy than the Matsubara
mode PIMD across all temperatures and requires fewer modes 𝑁 for convergence. The numer-
ical results suggest that the standard PIMD converges with an order of 𝑂 (1/𝑁2), whereas the
Matsubara mode PIMD converges with an order of 𝑂 (1/𝑁).

Next, we compute the autocorrelation functions for the first five mode coordinates {𝜉𝑘}4
𝑘=0

at inverse temperatures 𝛽 = 1, 2, 4, 8 and mode numbers 𝑁 = 9, 17, 33, 65, 129. The autocor-
relation functions 𝐶𝑘 (𝛽, 𝑁,Δ𝑇), as defined in (3.56), are plotted against Δ𝑇 in Figure 3.3.

(𝛽 = 1)
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(𝛽 = 2)

(𝛽 = 4)

(𝛽 = 8)

Figure 3.3 Autocorrelation functions for the 1D potential (3.62). Left: standard PIMD. Right:
Matsubara mode PIMD. Top to bottom: 𝛽 = 1, 2, 4, 8. The first mode 𝜉0 is shown in blue, 𝜉1
and 𝜉2 in red, and 𝜉3 and 𝜉4 in yellow.

Figure 3.3 shows that the correlation functions for various 𝑁 coincide, confirming that both the
standard PIMD and the Matsubara mode PIMD exhibit uniform-in-𝑁 ergodicity. Furthermore,
the separation of correlation functions for different 𝑘-modes highlights that convergence rates
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vary among modes. At lower temperatures (larger 𝛽), high-frequency modes tend to exhibit
longer correlation times.

Example: 3D spherical potential Consider the 3D spherical potential

𝑉 (𝑥) = 1
2
|𝑥 |2 + 1√

|𝑥 |2 + 0.22
, |𝑥 | =

√
𝑥2

1 + 𝑥2
2 + 𝑥2

3, (3.63)

where we aim to capture the probability distribution of |𝑥 |, the Euclidean distance from the
origin in R3. Using the density operator 𝑒−𝛽𝐻̂ , the distribution of |𝑥 | can be expressed through
the density function:

𝜌(𝑟) = 1
Z

∫
R3

〈𝑥 |𝑒−𝛽𝐻̂ |𝑥〉 𝛿( |𝑥 | − 𝑟)d𝑥, 𝑟 ⩾ 0, Z = Tr
[
𝑒−𝛽𝐻̂

]
. (3.64)

This radial distribution 𝜌(𝑟) characterizes observable functions dependent on |𝑥 |.
For the simulation, we set the inverse temperature 𝛽 = 4, the step size ℎ = 1

32 , and the
simulation time 𝑇 = 5 × 106. In Figure 3.4, the density function 𝜌(𝑟) is plotted for varying
numbers of modes 𝑁 = 3, 5, 9, 17, 33.

Figure 3.4 Probability density of |𝑥 | in the simulation of the PIMD. Left: Matsubara mode
PIMD. Right: standard PIMD. Top and bottom graphs use different scales.
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Figure 3.4 shows that as the number of modes 𝑁 increases, the density function transitions
from the classical distribution (black dashed curve) to the quantum limit. Both the standard
PIMD and Matsubara mode PIMD accurately compute the density function 𝜌(𝑟); however, the
standard PIMD exhibits better accuracy than the Matsubara mode PIMD when the number of
modes 𝑁 is small.

3.7 Brief summary
In this work, we have conducted a comprehensive theoretical analysis of Path Integral

Molecular Dynamics (PIMD). A key achievement is our proof of the uniform-in-𝑁 ergodicity
of the underdamped Langevin dynamics within PIMD (Theorem 3.2), where 𝑁 represents the
number of beads. This result marks a significant advancement in the theoretical understanding
of PIMD and demonstrates a novel application of the generalized Γ calculus.

A crucial open question remains: how can the approximation error in terms of 𝑁 be
rigorously quantified? Resolving this would further enhance the theoretical framework and
inform practical simulations. This work lays the groundwork for addressing such challenges,
bridging theoretical insights and practical applications in PIMD.
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Chapter 4 Ergodicity and long-time error of RBM

In this chapter, our primary objective is to establish the ergodicity of the RB–IPS model
(2.21) and to quantify the long-time error of the discrete RB–IPS scheme (2.22). To achieve
this, we utilize the reflection coupling technique presented in Section 2.4.2 for proving ergod-
icity and adopt the triangle inequality framework outlined in Section 2.4.3 for estimating the
long-time error. Notably, we aim to demonstrate that the convergence rate and error coeffi-
cients are independent of both the number of particles 𝑁 and the step size ℎ.

For clarity in the analysis, let (P𝑡)𝑡⩾0 denote the continuous dual semigroup of the IPS
(2.17), (P̄𝑡)𝑡⩾0 the continuous dual semigroup of the MVP (2.17), (Qℎ𝑛)𝑛⩾0 the discrete dual
semigroup of the RB–IPS (2.21), and (Q̃ℎ𝑛)𝑛⩾0 the discrete dual semigroup of the discrete RB–
IPS (2.22). Specifically, for any initial distribution 𝜈 ∈ P(R𝑑𝑁 ), 𝜈P𝑡 represents the distribution
law of the IPS at time 𝑡, while 𝜈Qℎ𝑛 and 𝜈Q̃ℎ𝑛 represent the distribution laws of the RB–IPS and
discrete RB–IPS at the 𝑛-th step, respectively. We also list the related notations and the main
results in Table 4.1.

Dynamics Symbol Semigroup Invariant Ergodicity Long-time error

IPS (2.17) (𝒙𝑡 )𝑡⩾0 (P𝑡 )𝑡⩾0 𝜋 Theorem 4.2 –

MVP (2.18) (𝑥𝑡 )𝑡⩾0 (P̄𝑡 )𝑡⩾0 𝜋̄ Theorem 4.7 Theorem 4.8

RB–IPS (2.21) (𝒚𝑡 )𝑡⩾0 (Qℎ𝑛)𝑛⩾0 𝜋ℎ Theorem 4.1 Theorem 4.3

discrete RB–IPS (2.22) (𝒀𝑛)𝑛⩾0 (Q̃ℎ𝑛)𝑛⩾0 – – Theorem 4.5

Table 4.1 The stochastic processes studied within the RBM, and the corresponding results
on the ergodicity and the long-time error.

4.1 Uniform-in-𝑁 ergodicity of RB–IPS
Basic assumptions Compared to the overdamped Langevin dynamics (2.62) for a single par-
ticle in R𝑑, the RB–IPS model involving 𝑁 particles {𝑦𝑖𝑡}𝑁𝑖=1, defined as

¤𝑦𝑖𝑡 = 𝑏(𝑦𝑖𝑡) +
1

𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

𝐾 (𝑦𝑖𝑡 − 𝑦
𝑗
𝑡 ) + 𝜎 ¤𝐵𝑖𝑡 , 𝑖 ∈ C, 𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ),

includes additional pairwise interaction terms 𝐾 (𝑦𝑖𝑡 − 𝑦
𝑗
𝑡 ). Consequently, in addition to the

contraction condition on the drift force 𝑏(𝑥) stated in Assumption 2.2, we also impose a bound-
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edness condition on the interaction force 𝐾 (·).

Assumption 4.1. For the drift force 𝑏(·) : R𝑑 → R𝑑, there exists a constant 𝐿0 such that

|𝑏(𝑥) | ⩽ 𝐿0(|𝑥 | + 1), |∇𝑏(𝑥) | ⩽ 𝐿0, ∀𝑥 ∈ R𝑑 . (4.1)

For the interaction force 𝐾 (·) : R𝑑 → R𝑑, there exists a constant 𝐿1 such that

max
{
𝐾 (𝑥),∇𝐾 (𝑥),∇2𝐾 (𝑥)

}
⩽ 𝐿1, ∀𝑥 ∈ R𝑑 . (4.2)

For notation convenience, denote the interaction force on the 𝑖-th particle as

𝛾𝑖 (𝒙) = 1
𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

𝐾 (𝑥𝑖 − 𝑥 𝑗), ∀𝒙 = (𝑥1, · · · , 𝑥𝑁 ) ∈ R𝑑𝑁 , (4.3)

where C is the batch which contains 𝑖. Then the RB–IPS (2.21) can be shortly written as

¤𝑦𝑖𝑡 = 𝑏(𝑦𝑖𝑡) + 𝛾𝑖 (𝒚𝑡) + 𝜎 ¤𝐵𝑖𝑡 , 𝑖 = 1, · · · , 𝑁. (4.4)

Due to the Lipschitz condition on 𝐾 (·) in Assumption 4.1, we have the inequality
𝑁∑
𝑖=1

|𝛾𝑖 (𝒙) − 𝛾𝑖 (𝒙̄) | ⩽ 1
𝑝 − 1

𝑁∑
𝑖=1

[ ∑
𝑗≠𝑖, 𝑗∈C

��𝐾 (𝑥𝑖 − 𝑥 𝑗) − 𝐾 (𝑥𝑖 − 𝑥 𝑗)
��]

⩽
1

𝑝 − 1

𝑁∑
𝑖=1

[ ∑
𝑗≠𝑖, 𝑗∈C

𝐿1
(
|𝑥𝑖 − 𝑥𝑖 | + |𝑥 𝑗 − 𝑥 𝑗 |

) ]
= 2𝐿1

𝑁∑
𝑖=1

|𝑥𝑖 − 𝑥𝑖 |.

Hence we obtain the inequality
𝑁∑
𝑖=1

|𝛾𝑖 (𝒙) − 𝛾𝑖 (𝒙̄) | ⩽ 2𝐿1

𝑁∑
𝑖=1

|𝑥𝑖 − 𝑥𝑖 |, ∀𝒙, 𝒙̄ ∈ R𝑑𝑁 . (4.5)

Construction of reflection coupling Let (𝒚𝑡)𝑡⩾0 and ( 𝒚̄𝑡)𝑡⩾0 be two copies of the RB–IPS
(2.21) in R𝑑𝑁 , and we define the reflection coupling scheme as

¤𝑦𝑖𝑡 = 𝑏(𝑦𝑖𝑡) + 𝛾𝑖 (𝒚𝑡) + 𝜎
(
rc(𝑟 𝑖𝑡) ¤𝐵𝑖𝑡 + sc(𝑟 𝑖𝑡) ¤̄𝐵𝑖𝑡

)
,

¤̄𝑦𝑖𝑡 = 𝑏(𝑦̄𝑖𝑡) + 𝛾𝑖 ( 𝒚̄𝑡) + 𝜎
(
rc(𝑟 𝑖𝑡)(𝐼 − 2𝑒𝑖𝑡 (𝑒𝑖𝑡)>) ¤𝐵𝑖𝑡 + sc(𝑟 𝑖𝑡) ¤̄𝐵𝑖𝑡

)
,

(4.6)

where we employ the notations

𝑧𝑖𝑡 = 𝑦
𝑖
𝑡 − 𝑦̄𝑖𝑡 ∈ R𝑑, 𝑟 𝑖𝑡 = |𝑧𝑖𝑡 |, 𝑒𝑖𝑡 =

𝑧𝑖𝑡
𝑟 𝑖𝑡

=
𝑦𝑖𝑡 − 𝑦̄𝑖𝑡
|𝑦𝑖𝑡 − 𝑦̄𝑖𝑡 |

, 𝑖 = 1, · · · , 𝑁, (4.7)
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and {𝐵𝑖𝑡}𝑁𝑖=1 and {𝐵̄𝑖𝑡}𝑁𝑖=1 are two sets of independent Brownian motions in R𝑑. In addition,
rc(𝑟) and sc(𝑟) are two smooth functions in 𝑟 ∈ [0,+∞) satisfying

• rc2(𝑟) + sc2(𝑟) = 1 for any 𝑟 ⩾ 0;
• rc(𝑟) = 0 for 𝑟 ⩽ 𝛿

2 and rc(𝑟) = 1 for 𝑟 ⩾ 𝛿.
Here, 𝛿 > 0 is a flexible parameter in the construction of the coupling. Figure 4.1 provides a
simplified illustration of the coupling scheme described in (4.6).

𝑦𝑖𝑡 𝑦̄𝑖𝑡

𝑧𝑖𝑡 = 𝑦
𝑖
𝑡 − 𝑦𝑖𝑡

𝑒𝑖𝑡 = 𝑧
𝑖
𝑡/|𝑧𝑖𝑡 |

rc(𝑟 𝑖𝑡) ¤𝐵𝑖𝑡 rc(𝑟 𝑖𝑡) (𝐼 − 2𝑒𝑖𝑡 (𝑒𝑖𝑡)>) ¤𝐵𝑖𝑡

sc(𝑟 𝑖𝑡) ¤̄𝐵𝑖𝑡 sc(𝑟 𝑖𝑡) ¤̄𝐵𝑖𝑡

Figure 4.1 The coupling scheme between the two copies 𝒚𝑡 and 𝒚̄𝑡 : blue arrows represent the
synchronous coupling, while red arrows represent the reflection coupling.

Remark 4.1. The key distinction between the coupling scheme (4.6) for the RB–IPS and the
coupling scheme (2.74) for the overdamped Langevin dynamics is the inclusion of the auxiliary
functions rc(𝑟) and sc(𝑟). These functions facilitate a smooth transition between synchronous
coupling (sc(𝑟) ≡ 1) and reflection coupling (rc(𝑟) ≡ 1), preventing particles from becoming
stuck together. The importance of this smooth transition lies in the need to define the coupling
dynamics consistently for all 𝑁 particles, as detailed in Section 6 of Eberle et al. (2019).

Remark 4.2. By Lévy’s characterization (Lévy, 1940), the normalizing condition rc2(𝑟) +
sc2(𝑟) = 1 ensures that both copies (𝒚𝑡)𝑡⩾0 and ( 𝒚̄𝑡)𝑡⩾0 are driven by standard Brownian
motions in the coupled dynamics (4.6).

Remark 4.3. The random divisions at each time step lead to a different definition of 𝛾𝑖 (·) at
each step. However, the batch divisions for (𝒚𝑡)𝑡⩾0 and ( 𝒚̄𝑡)𝑡⩾0 remain consistent and identical
at every time step.

From the coupled dynamics (4.6), the position displacement 𝑧𝑖𝑡 = 𝑦𝑖𝑡 − 𝑦̄𝑖𝑡 satisfies the SDE

¤𝑧𝑖𝑡 = 𝑏(𝑦𝑖𝑡) − 𝑏(𝑦̄𝑖𝑡) + 𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 ( 𝒚̄𝑡) + 2𝜎rc(𝑟 𝑖𝑡)
𝑧𝑖𝑡
𝑟 𝑖𝑡

¤𝑊 𝑖
𝑡 , (4.8)
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where 𝑊 𝑖
𝑡 is the one-dimensional Brownian motion defined by ¤𝑊 𝑖

𝑡 = (𝑒𝑖𝑡)> ¤𝐵𝑖𝑡 . Note that the
synchronous coupling part vanishes in (4.8), and the diffusion coefficient𝜎rc(𝑍 𝑖𝑡 ) solely comes
from the reflection coupling. Furthermore, we can verify that 𝑟 𝑖𝑡 = |𝑧𝑖𝑡 | satisfies the SDE

¤𝑟 𝑖𝑡 =
𝑧𝑖𝑡
𝑟 𝑖𝑡

·
(
𝑏(𝑦𝑖𝑡) − 𝑏(𝑦̄𝑖𝑡) + 𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 ( 𝒚̄𝑡)

)
+ 2𝜎rc(𝑟 𝑖𝑡) ¤𝑊 𝑖

𝑡 . (4.9)

With the distance function 𝑓 (𝑟) introduced in Lemma 2.5, we apply Itô calculus and obtain

d
d𝑡
𝑓 (𝑟 𝑖𝑡) =

𝑧𝑖𝑡
𝑟 𝑖𝑡

·
(
𝑏(𝑦𝑖𝑡) − 𝑏(𝑦̄𝑖𝑡) + 𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 ( 𝒚̄𝑡)

)
𝑓 ′(𝑟 𝑖𝑡)

+ 2𝜎2rc2(𝑟 𝑖𝑡) 𝑓 ′′(𝑟 𝑖𝑡) + 2𝜎rc(𝑟 𝑖𝑡) 𝑓 ′(𝑟 𝑖𝑡) ¤𝐵𝑖𝑡 ,
(4.10)

which is an analogue to (2.77) in the proof for the overdamped Langevin dynamics (2.62).
Taking the expectation in both sides of (4.10), we obtain the changing rate of E[ 𝑓 (𝑟 𝑖𝑡)]:

d
d𝑡
E[ 𝑓 (𝑟 𝑖𝑡)] = E

[
𝑧𝑖𝑡
𝑟 𝑖𝑡

·
(
𝑏(𝑦𝑖𝑡) − 𝑏(𝑦̄𝑖𝑡) + 𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 ( 𝒚̄𝑡)

)
𝑓 ′(𝑟 𝑖𝑡) + 2𝜎2rc2(𝑟 𝑖𝑡) 𝑓 ′′(𝑟 𝑖𝑡)

]
. (4.11)

We note that the interaction force 𝛾𝑖 (·) in (4.10) is a random function, as it depends on the
choice of the batch division. Consequently, the expectation in (4.11) involves the random se-
lection of the batch division.

Estimate of changing rates We need to estimate the RHS of (4.11) to prove the ergodicity.
The following inequality is essential in estimating the changing rate of E[ 𝑓 (𝑟𝑡)].

Lemma 4.1. Under Assumptions 2.2 & 4.1, let 𝑓 (𝑟), 𝑐0, 𝜑0 be defined as in Lemma 2.5. Given
𝛿 > 0, let rc(𝑧) be a smooth continuous function with |rc(𝑧) | ⩽ 1 and rc(𝑧) = 1 for |𝑧 | ⩾ 𝛿. If
the constant 𝐿1 in Assumption 4.1 satisfies

𝐿1 ⩽
1
4
𝑐0𝜑0𝜎

2,

then the following inequality holds with 𝛽 = 1
2𝑐0𝜎

2:
𝑁∑
𝑖=1

(
𝑧𝑖

𝑟 𝑖
·
(
𝑏(𝑦𝑖) − 𝑏(𝑦̄𝑖) + 𝛾𝑖 (𝒚) − 𝛾𝑖 ( 𝒚̄)

)
𝑓 ′(𝑟 𝑖)

+ 2𝜎2rc2(𝑟 𝑖) 𝑓 ′′(𝑟 𝑖)
)
⩽ 𝑁𝑚(𝛿) − 𝛽

𝑁∑
𝑖=1

𝑓 (𝑟 𝑖),
(4.12)

where 𝒚, 𝒚̄ ∈ R𝑑𝑁 , 𝒛 = 𝒚 − 𝒚̄, 𝑟 𝑖 = |𝑧𝑖 | and 𝑚(𝛿) is defined by

𝑚(𝛿) = 𝜎2

2
sup
𝑟<𝛿

(
𝑟𝜅(𝑟)−

)
+ 𝑐0𝜎

2𝛿. (4.13)

Here 𝑥− = −min{𝑥, 0} denotes the negative part of 𝑥 ∈ R.
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Proof of Lemma 4.1. The LHS of (4.12) can be written as 𝐼 = 𝐼1 + 𝐼2 + 𝐼3,

𝐼1 =
𝑁∑
𝑖=1

𝑧𝑖

𝑟 𝑖
· (𝑏(𝑦𝑖) − 𝑏(𝑦̄𝑖)) 𝑓 ′(𝑟 𝑖),

𝐼2 =
𝑁∑
𝑖=1

𝑧𝑖

𝑟 𝑖
· (𝛾𝑖 (𝒚) − 𝛾𝑖 ( 𝒚̄)) 𝑓 ′(𝑟 𝑖),

𝐼3 = 2𝜎2
𝑁∑
𝑖=1

rc2(𝑟 𝑖) 𝑓 ′′(𝑟 𝑖).

Next we estimate 𝐼1, 𝐼2, 𝐼3 respectively. By the definition of 𝜅(𝑟) in (2.63), we obtain

𝐼1 ⩽ −𝜎
2

2

𝑁∑
𝑖=1

𝑟 𝑖𝜅(𝑟 𝑖) 𝑓 ′(𝑟 𝑖). (4.14)

Using the Lipschitz condition in 4.5 and 𝑓 (𝑟) ⩾ 𝜑0𝑟,

𝐼2 ⩽
𝑁∑
𝑖=1

|𝛾𝑖 (𝒚) − 𝛾𝑖 ( 𝒚̄) | ⩽ 2𝐿1

𝑁∑
𝑖=1

𝑟 𝑖 ⩽
2𝐿1

𝜑0

𝑁∑
𝑖=1

𝑓 (𝑟 𝑖). (4.15)

Applying the estimate of 𝑓 ′′(𝑟) in Lemma 2.5, we have

𝐼3 ⩽
𝜎2

2

𝑁∑
𝑖=1

𝑟 𝑖𝜅(𝑟 𝑖)rc2(𝑟 𝑖) 𝑓 ′(𝑟 𝑖) − 𝑐0𝜎
2
𝑁∑
𝑖=1

rc2(𝑟 𝑖) 𝑓 (𝑟 𝑖)

=
𝜎2

2

𝑁∑
𝑖=1

𝑟 𝑖𝜅(𝑟 𝑖) 𝑓 ′(𝑟 𝑖) − 𝑐0𝜎
2
𝑁∑
𝑖=1

𝑓 (𝑟 𝑖)

−𝜎
2

2

𝑁∑
𝑖=1

𝑟 𝑖𝜅(𝑟 𝑖)(1 − rc2(𝑟 𝑖)) 𝑓 ′(𝑟 𝑖)︸                                        ︷︷                                        ︸
𝐼31

+ 𝑐0𝜎
2
𝑁∑
𝑖=1

(1 − rc2(𝑟 𝑖)) 𝑓 (𝑟 𝑖)︸                             ︷︷                             ︸
𝐼32

. (4.16)

Then we estimate 𝐼31 and 𝐼32 in (4.16). Note that 1 − rc2(𝑟 𝑖) = 0 if 𝑟𝑖 ⩾ 𝛿, we have

𝐼31 = −𝜎
2

2

𝑁∑
𝑖=1

𝑟 𝑖𝜅(𝑟 𝑖)(1 − rc2(𝑟 𝑖)) 𝑓 ′(𝑟 𝑖)

⩽
𝜎2

2

∑
𝑖:𝑟 𝑖<𝛿

𝑟 𝑖𝜅(𝑟 𝑖)− 𝑓 ′(𝑟 𝑖) ⩽ 𝜎2

2

∑
𝑖:𝑟 𝑖<𝛿

𝑟 𝑖𝜅(𝑟 𝑖)− ⩽
𝑁𝜎2

2
sup
𝑟<𝛿

(
𝑟𝜅(𝑟)−

)
.

In a similar way, using 𝑓 (𝑟) ⩽ 𝑟 we obtain

𝐼32 = 𝑐0𝜎
2
𝑁∑
𝑖=1

(1 − rc2(𝑟 𝑖)) 𝑓 (𝑟 𝑖) ⩽ 𝑐0𝜎
2

∑
𝑖:𝑟 𝑖<𝛿

𝑓 (𝑟 𝑖) ⩽ 𝑐0𝑁𝜎
2𝛿.
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From the definition of 𝑚(𝛿) in (4.13), we obtain the estimate of 𝐼3:

𝐼3 ⩽
𝜎2

2

𝑁∑
𝑖=1

𝑟 𝑖𝜅(𝑟 𝑖) 𝑓 ′(𝑟 𝑖) − 𝑐0𝜎
2
𝑁∑
𝑖=1

𝑓 (𝑟 𝑖) + 𝑁𝑚(𝛿). (4.17)

Summation over the inequalities (4.14), (4.15) and (4.17) for 𝐼1, 𝐼2, 𝐼3 gives

𝐼 ⩽ −
(
𝑐0𝜎

2 − 2𝐿1

𝜑0

) 𝑁∑
𝑖=1

𝑓 (𝑟 𝑖) + 𝑁𝑚(𝛿).

When the Lipschitz constant 𝐿1 ⩽ 1
4𝑐0𝜑0𝜎

2, we obtain

𝐼 ⩽ −1
2
𝑐0𝜎

2
𝑁∑
𝑖=1

𝑓 (𝑟 𝑖) + 𝑁𝑚(𝛿) = 𝑁𝑚(𝛿) − 𝛽
𝑁∑
𝑖=1

𝑓 (𝑟 𝑖),

which is exactly the result we need. ■

Note that the distance function 𝑓 (𝑟), the upper bound of 𝐿1 and the contraction rate 𝛽 are all
independent of parameter 𝛿, thus we may pass 𝛿 to the limit 0 without changing the value of 𝛽.

Using Lemma 4.1, it is convenient to obtain the contractivity of the coupled dynamics
(4.6). Denote the distance between the two sets of particles 𝒚, 𝒚̄ ∈ R𝑑𝑁 by

𝜌(𝒚, 𝒚̄) = 1
𝑁

𝑁∑
𝑖=1

𝑓 (|𝑦𝑖 − 𝑦̄𝑖 |), (4.18)

then we have the following result on the contractivity of the RB–IPS (2.21).

Lemma 4.2. Under Assumptions 2.2 & 4.1, let 𝑓 (𝑟), 𝑐0, 𝜑0 be defined as in Lemma 2.5. If the
constant 𝐿1 in Assumption 4.1 satisfies

𝐿1 ⩽
1
4
𝑐0𝜑0𝜎

2,

then for (𝒚𝑡)𝑡⩾0 and ( 𝒚̄𝑡)𝑡⩾0 evolved by the coupled RB–IPS (4.6), we have

d
d𝑡
E
[
𝜌(𝒚𝑡 , 𝒚̄𝑡)

]
⩽ 𝑚(𝛿) − 𝛽 · E

[
𝜌(𝒚𝑡 , 𝒚̄𝑡)

]
, (4.19)

where 𝛽 = 1
2𝑐0𝜑0𝜎

2 and 𝑚(𝛿) is defined in (4.13).

Proof of Lemma 4.2. Using 𝜌(𝒚𝑡 , 𝒚̄𝑡) = 1
𝑁

∑𝑁
𝑖=1 𝑓 (𝑟 𝑖𝑡), according to the equality (4.11) we have

d
d𝑡
E
[
𝜌(𝒚𝑡 , 𝒚̄𝑡)

]
=

1
𝑁

𝑁∑
𝑖=1

E
[
𝑧𝑖𝑡
𝑟 𝑖𝑡

·
(
𝑏(𝑦𝑖𝑡) − 𝑏(𝑦̄𝑖𝑡) + 𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 ( 𝒚̄𝑡)

)
𝑓 ′(𝑟 𝑖𝑡) + 2𝜎2rc2(𝑟 𝑖𝑡) 𝑓 ′′(𝑟 𝑖𝑡)

]
.

Applying the estimate in Lemma 4.1, we immediately obtain

d
d𝑡
E
[
𝜌(𝒚𝑡 , 𝒚̄𝑡)

]
⩽ 𝑚(𝛿) − 𝛽 · E

[
𝜌(𝒚𝑡 , 𝒚̄𝑡)

]
,
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which completes the proof. ■

Main theorem: ergodicity of RB–IPS Similar toDefinition 2.3 for the overdampedLangevin
dynamics, we introduce the normalized Wasserstein distances for distributions in R𝑑𝑁 .

Definition 4.1. For the distance function 𝑓 (𝑟), define the normalized Wasserstein- 𝑓 distance
as

W𝑓 (𝜇, 𝜈) = inf
𝛾∈Π (𝜇,𝜈)

∫
R𝑑𝑁×R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

𝑓 ( |𝑥𝑖 − 𝑦𝑖 |)
)
𝛾(d𝒙d𝒚), (4.20)

where Π(𝜇, 𝜈) denotes the set of joint distributions in R𝑑 × R𝑑 whose marginal distributions
in the 𝒙, 𝒚 variables are exactly 𝜇, 𝜈.

In particular, if 𝑓 (𝑟) ≡ 𝑟, the corresponding normalized Wasserstein- 𝑓 distance becomes
the normalized Wasserstein-1 distance

W1(𝜇, 𝜈) = inf
𝛾∈Π (𝜇,𝜈)

∫
R𝑑𝑁×R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |
)
𝛾(d𝒙d𝒚). (4.21)

The normalization factor 𝑁−1 in Definition 4.1 ensures that the distance between two distribu-
tions in R𝑑𝑁 is still 𝑂 (1) for sufficiently large 𝑁 . According to Lemma 2.5, we have

𝜑0W1(𝜇, 𝜈) ⩽ W𝑓 (𝜇, 𝜈) ⩽ W1(𝜇, 𝜈) (4.22)

for any distributions 𝜇, 𝜈 in R𝑑𝑁 .
We have the following theorem on the ergodicity of the RB–IPS (2.21).

Theorem 4.1 (ergodicity of RB–IPS). Under Assumptions 2.2 & 4.1, let 𝑓 (𝑟), 𝑐0, 𝜑0 be defined
as in Lemma 2.5. Let (Qℎ𝑛)𝑛⩾0 be the dual semigroup of the RB–IPS (2.21). If the constant 𝐿1

in Assumption 4.1 satisfies
𝐿1 ⩽

1
4
𝑐0𝜑0𝜎

2,

then for any probability distributions 𝜇, 𝜈 in R𝑑𝑁 , we have

W𝑓 (𝜇Qℎ𝑛, 𝜈Qℎ𝑛) ⩽ 𝑒−𝛽𝑛ℎW𝑓 (𝜇, 𝜈), ∀𝑛 ⩾ 0, (4.23)

where 𝛽 = 1
2𝑐0𝜑0𝜎

2. As a consequence, in the normalized Wasserstein-1 distance we have

W1(𝜇Qℎ𝑛, 𝜈Qℎ𝑛) ⩽
1
𝜑0
𝑒−𝛽𝑛ℎW1(𝜇, 𝜈), ∀𝑛 ⩾ 0. (4.24)

Proof of Theorem 4.1. For given distributions 𝜇, 𝜈 in R𝑑𝑁 , let 𝛾 ∈ Π(𝜇, 𝜈) satisfies∫
R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

𝑓 (|𝑥𝑖 − 𝑦𝑖 |)
)
𝛾(d𝒙d𝒚) ⩽ W𝑓 (𝜇, 𝜈) + 𝜀, (4.25)
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where 𝜀 > 0 is an arbitrary small constant. Let (𝒚𝑡)𝑡⩾0 and ( 𝒚̄𝑡)𝑡⩾0 be evolved by the coupled
RB–IPS (4.6) with the initial value (𝒚0, 𝒚̄0) ∼ 𝛾, then we have 𝒚𝑛ℎ ∼ 𝜇Qℎ𝑛 and 𝒚̄𝑛ℎ ∼ 𝜈Qℎ𝑛.

Recall in Lemma 4.2 the following inequality holds for 𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ):
d
d𝑡
E
[
𝜌(𝒚𝑡 , 𝒚̄𝑡)

]
⩽ 𝑚(𝛿) − 𝛽 · E

[
𝜌(𝒚𝑡 , 𝒚̄𝑡)

]
, (4.26)

Integrating the inequality (4.26) for 𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ) yields

E
[
𝜌(𝒚(𝑛+1)ℎ, 𝒚̄(𝑛+1)ℎ)

]
⩽ 𝑒−𝛽ℎE

[
𝜌(𝒚𝑛ℎ, 𝒚̄𝑛ℎ)

]
+ 𝑚(𝛿) (1 − 𝑒−𝛽ℎ)

𝛽
. (4.27)

Repeating the inequality (4.27), we obtain for any 𝑛 ⩾ 0,

E
[
𝜌(𝒚𝑛ℎ, 𝒚̄𝑛ℎ)

]
⩽ 𝑒−𝛽𝑛ℎE

[
𝜌(𝒚0, 𝒚̄0)

]
+ 𝑚(𝛿)(1 − 𝑒−𝛽𝑛ℎ)

𝛽

⩽ 𝑒−𝛽𝑛ℎW𝑓 (𝒚0, 𝒚̄0) +
𝑚(𝛿) (1 − 𝑒−𝛽𝑛ℎ)

𝛽
+ 𝜀.

Using the definition of the normalized Wasserstein- 𝑓 distance in Definition 4.1, we have

W𝑓 (𝜇Qℎ𝑛, 𝜈Qℎ𝑛) ⩽ 𝑒−𝛽𝑛ℎW𝑓 (𝜇, 𝜈) +
𝑚(𝛿) (1 − 𝑒−𝛽𝑛ℎ)

𝛽
+ 𝜀. (4.28)

Note that the evolution of 𝜇𝑄ℎ𝑛 and 𝜈𝑄ℎ
𝑛 does not depend on the coupling scheme, we can

directly pass 𝛿 and 𝜀 to 0 in (4.28) and obtain

W𝑓 (𝜇Qℎ𝑛, 𝜈Qℎ𝑛) ⩽ 𝑒−𝛽𝑛ℎW𝑓 (𝜇, 𝜈),

which completes the proof. ■

Since the IPS (2.17) is a special case of the RB–IPS (2.21) with batch size 𝑝 = 𝑁 , the ergodicity
of the IPS follows directly from Theorem 4.1, thereby recovering Corollary 9 of Eberle et al.
(2019).

Theorem 4.2 (ergodicity of IPS). Under Assumptions 2.2 & 4.1, let 𝑓 (𝑟), 𝑐0, 𝜑0 be defined
as in Lemma 2.5. Let (P𝑡)𝑡⩾0 be the dual semigroup of the IPS (2.21). If the constant 𝐿1 in
Assumption 4.1 satisfies

𝐿1 ⩽
1
4
𝑐0𝜑0𝜎

2,

then for any probability distributions 𝜇, 𝜈 in R𝑑𝑁 , we have

W𝑓 (𝜇P𝑡 , 𝜈P𝑡) ⩽ 𝑒−𝛽𝑡W𝑓 (𝜇, 𝜈), ∀𝑛 ⩾ 0, (4.29)
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where 𝛽 = 1
2𝑐0𝜑0𝜎

2. As a consequence, in the normalized Wasserstein-1 distance we have

W1(𝜇P𝑡 , 𝜈P𝑡) ⩽
1
𝜑0
𝑒−𝛽𝑡W1(𝜇, 𝜈), ∀𝑛 ⩾ 0. (4.30)

It is crucial that all constants in Theorem 4.1, including 𝑐0, 𝜑0, 𝛽, are independent of both
the number of particles 𝑁 and the step size ℎ. This dimension-free property provides a solid
theoretical foundation for studying the mean-field behavior of the RB–IPS (2.21). It is also
worth noting that the condition requiring 𝐿1 to be sufficiently small is essential for ensuring
dimension-free ergodicity. Without this condition, when the mean-field McKean–Vlasov pro-
cess admits multiple invariant distributions, the convergence rate can degenerate to zero as
𝑁 → ∞. See, for example, Durmus et al. (2020).

4.2 Approximation error of RB–IPS
In Chapter 4.1, we established the uniform-in-𝑁 ergodicity of the RB–IPS (2.21), demon-

strating its effectiveness as an approximate sampling method for the target distribution 𝜋(𝒙)
in R𝑑𝑁 . However, to fully understand the sampling error of the RB–IPS, it is essential to
evaluate the bias of its invariant distribution. Specifically, we need to quantitatively estimate
W1(𝜋, 𝜋ℎ), where 𝜋ℎ denotes the invariant distribution of the RB–IPS.

Existence and uniqueness of invariant distribution Leveraging the ergodicity results es-
tablished in Theorems 4.1 and 4.2, we can readily confirm the existence and uniqueness of the
invariant distribution using the Banach fixed point theorem, even when the drift force 𝑏(·) and
the interaction force 𝐾 (·) are not in gradient form.

Lemma 4.3. Under Assumptions 2.2 & 4.1, let 𝑓 (𝑟), 𝑐0, 𝜑0 be defined as in Lemma 2.5. If the
constant 𝐿1 in Assumption 4.1 satisfies

𝐿1 ⩽
1
4
𝑐0𝜑0𝜎

2,

then we have the following:
1. The IPS (𝒙𝑡)𝑡⩾0 defined in (2.17) as a (continuous) Markov process has a unique in-

variant distribution 𝜋 ∈ P(R𝑑𝑁 );
2. The RB–IPS (𝒚𝑛ℎ)𝑛⩾0 defined in (2.21) as a (discrete) Markov chain has a unique in-

variant distribution 𝜋ℎ ∈ P(R𝑑𝑁 ).

The following proof is inspired from Corollary 3 of Ref. Eberle et al. (2019).
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Proof of Lemma 4.3. Let P1(R𝑑𝑁 ) be the set of the probability distributions in R𝑑𝑁 with finite
first moments, namely,

P1(R𝑑𝑁 ) :=

{
𝜇 ∈ P(R𝑑𝑁 ) :

∫
R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 |
)
𝜇(d𝒙) < +∞

}
, (4.31)

then (P1(R𝑑𝑁 ),W1) forms a completemetric space, whereW1(·, ·) is the normalizedWasserstein-
1 distance in Definition 4.1.

In Theorem 4.2, we have proved for any distributions 𝜇, 𝜈 in R𝑑𝑁 ,

W1(𝜇P𝑡 , 𝜈P𝑡) ⩽
1
𝜑0
𝑒−𝛽𝑡W1(𝜇, 𝜈), ∀𝑡 ⩾ 0.

By picking a constant 𝑇 > 0 such that 1
𝜑0
𝑒−𝛽𝑇 = 1

2 , we obtain the inequality

W1(𝜇P𝑇 , 𝜈P𝑇) ⩽
1
2
W1(𝜇, 𝜈). (4.32)

Hence the mapping 𝜈 ↦→ 𝜈𝑃𝑇 is contractive in (P1(R𝑑𝑁 ),W1). From the Banach fixed point
theorem (see Chapter 5.1 of Kreyszig (1991) for reference), this mapping has a fixed point
𝜋0 ∈ P1(R𝑑𝑁 ), i.e.,

𝜋0 = 𝜋0P𝑇 .

Define the probability measure in R𝑑𝑁 by

𝜋 =
1
𝑇

∫ 𝑇

0
𝜋0P𝑠d𝑠,

then from the semigroup property of (P𝑡)𝑡⩾0, for any 𝑡 ⩾ 0 we have

𝜋P𝑡 =
1
𝑇

∫ 𝑇

0
(𝜋0P𝑠)P𝑡d𝑠 =

1
𝑇

∫ 𝑇

0
𝜋0P𝑠+𝑡d𝑠. (4.33)

Since the family of distributions {𝜋0P𝑡}𝑡⩾0 has the period 𝑇 , from (4.33) we have

𝜋P𝑡 =
1
𝑇

∫ 𝑇

0
𝜋0P𝑠+𝑡d𝑠 =

1
𝑇

∫ 𝑇

0
𝜋0P𝑠d𝑠 = 𝜋. (4.34)

Therefore, 𝜋 is the invariant distribution of the IPS (𝒙𝑡)𝑡⩾0. The uniqueness of 𝜋 follows from
the ergodicity of the IPS proved in Theorem 4.2.

For the RB–IPS, the proof is similar. Given ℎ > 0, from Theorem 4.1 we have

W1(𝜇Qℎ𝑛, 𝜈Qℎ𝑛) ⩽
1
𝜑0
𝑒−𝛽𝑛ℎW1(𝜇, 𝜈).

Then we choose an integer 𝑀 ∈ N such that 1
𝜑0
𝑒−𝛽𝑀ℎ ⩽ 1

2 , and thus

W1(𝜇Qℎ𝑀 , 𝜈Qℎ𝑀) ⩽
1
2
W1(𝜇, 𝜈), (4.35)
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hence the mapping 𝜈 ↦→ 𝜈Qℎ𝑀 is contractive. From the Banach fixed point theorem, this map-
ping has a fixed point 𝜋ℎ0 ∈ P1(R𝑑𝑁 ), i.e.,

𝜋ℎ0 = 𝜋ℎ0Q
ℎ
𝑀 . (4.36)

Define the probability distribution in R𝑑𝑁 by

𝜋ℎ =
1
𝑀

𝑀−1∑
𝑘=0

𝜋ℎ0Q
ℎ
𝑘 , (4.37)

then from the semigroup property of (Qℎ𝑛)𝑛⩾0, for any 𝑛 ⩾ 0 we have

𝜋ℎQℎ𝑛 =
1
𝑀

𝑀−1∑
𝑘=0

(𝜋0Q
ℎ
𝑘)Qℎ𝑛 =

1
𝑀

𝑀−1∑
𝑘=0

𝜋ℎ0Q
ℎ
𝑘 = 𝜋

ℎ. (4.38)

Therefore, 𝜋ℎ is the invariant distribution of the RB–IPS (𝒚𝑛ℎ)𝑛⩾0. The uniqueness of 𝜋ℎ

follows from the contractivity in Theorem 4.1. ■

Strong error of RB–IPS in finite time We establish the uniform-in-time moments for both
the IPS (2.17) and the RB–IPS (2.21). In particular, the fourth moment estimate is crucial, as
it is needed for the strong error estimate.

Lemma 4.4. Under Assumptions 2.2 & 4.1, if the initial distribution 𝜈 ∈ P(R𝑑𝑁 ) satisfies

max
1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |4𝜈(d𝒙) ⩽ 𝑀,

for some constant 𝑀 , then there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0, 𝐿1, 𝑀) such that the
fourth moments of the IPS (2.17) and the RB–IPS (2.21) are bounded by

sup
𝑡⩾0

E
[
|𝑥𝑖𝑡 |4

]
⩽ 𝐶, sup

𝑡⩾0
E
[
|𝑦𝑖𝑡 |4

]
⩽ 𝐶, 𝑖 = 1, · · · , 𝑁.

The following proof is inspired from Lemma 3.3 of Jin et al. (2020).

Proof of Lemma 4.4. We only prove the moment bound for the RB–IPS, because the IPS can
be viewed as a special case of the RB–IPS when the batch size 𝑝 = 𝑁 . We aim to prove the
following inequality:

d
d𝑡
E|𝑦𝑖𝑡 |4 ⩽ −𝛽 · E|𝑦𝑖𝑡 |4 + 𝐶, 𝑖 = 1, · · · , 𝑁 (4.39)

for some positive constants 𝛽, 𝐶 > 0. By Itô calculus, we have

d
d𝑡
E|𝑦𝑖𝑡 |4 = 4E

{
|𝑦𝑖𝑡 |2

(
𝑦𝑖𝑡 · 𝑏(𝑦𝑖𝑡) + 𝑦𝑖𝑡 · 𝛾𝑖 (𝒚𝑡)

)}
+ 2(𝑑 + 2)𝜎2E|𝑦𝑖𝑡 |2, (4.40)

where the interaction force 𝛾𝑖 (𝑥) is given by (4.3).
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On the one hand, the definition of 𝜅(𝑟) yields the inequality

−𝑥 · (𝑏(𝑥) − 𝑏(0)) ⩾ 𝜎2

2
𝜅( |𝑥 |) |𝑥 |2, ∀𝑥 ∈ R𝑑 .

Hence the drift force part in (4.40) is bounded by

|𝑦𝑖𝑡 |2𝑦𝑖𝑡 · 𝑏(𝑦𝑖𝑡) ⩽ 𝐶 |𝑦𝑖𝑡 |3 −
𝜎2

2
𝜅(|𝑦𝑖𝑡 |) |𝑦𝑖𝑡 |2. (4.41)

On the other hand, |𝛾𝑖 (𝒙) | ⩽ 𝐿1 implies the interaction force part in (4.40) is bounded by

|𝑦𝑖𝑡 |2𝑦𝑖𝑡 · 𝛾𝑖 (𝒚𝑡) ⩽ 𝐶 |𝑦𝑖𝑡 |3. (4.42)

Combining the inequalities (4.41) and (4.42), from (4.40) we deduce

d
d𝑡
E|𝑦𝑖𝑡 |4 ⩽ −2𝜎2E

(
𝜅( |𝑦𝑖𝑡 |) |𝑦𝑖𝑡 |2

)
+ 𝐶

(
E|𝑦𝑖𝑡 |3 + E|𝑦𝑖𝑡 |2

)
. (4.43)

According to Assumption 2.2, there exist constants 𝛿, 𝑅 > 0 such that 𝜅(𝑟) ⩾ 𝛿 for 𝑟 ⩾ 𝑅.
Also 𝜅(𝑟) has a uniform lower bound for 𝑟 > 0. Hence we have the inequality

−𝜅(𝑟)𝑟4 = (𝛿 − 𝜅(𝑟))𝑟4 − 𝛿𝑟4 ⩽ 𝐶 − 𝛿𝑟4, ∀𝑟 ⩾ 0,

and thus
−E

(
𝜅( |𝑦𝑖𝑡 |) |𝑦𝑖𝑡 |4

)
⩽ 𝐶 − 𝛿 · E|𝑦𝑖𝑡 |4. (4.44)

Hence from (4.43) and (4.44) we obtain

d
d𝑡
E|𝑦𝑖𝑡 |4 ⩽ −2𝜎2𝛿 · E|𝑦𝑖𝑡 |4 + 𝐶 (E|𝑦𝑖𝑡 |3 + E|𝑦𝑖𝑡 |2 + 1). (4.45)

Using the interpolation inequality, E|𝑦𝑖𝑡 |3 and E|𝑦𝑖𝑡 |2 can be bounded by E|𝑦𝑖𝑡 |4 plus constant.
Therefore, (4.45) implies

d
d𝑡
E|𝑦𝑖𝑡 |4 ⩽ −𝜎2𝛿 · E|𝑦𝑖𝑡 |4 + 𝐶 (4.46)

for some constant 𝐶, which is exactly the inequality (4.39). Finally, it is easy to deduce

sup
𝑡⩾0

E
[
|𝑦𝑖𝑡 |4

]
⩽ 𝐶,

which completes the proof. ■

We now present the strong error analysis between the IPS (2.17) and the RB–IPS (2.21).
As is typical in strong error analysis, we assume that the Brownian motions {𝐵𝑖𝑡}𝑁𝑖=1 in both
the IPS and RB–IPS are identical. Therefore, the difference between the IPS and the RB–IPS
arises solely from the interaction forces.

68



CHAPTER 4 ERGODICITY AND LONG-TIME ERROR OF RBM

Lemma 4.5. Under Assumptions 2.2 & 4.1, if the initial distribution 𝜈 ∈ P(R𝑑𝑁 ) satisfies

max
1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |4𝜈(d𝒙) ⩽ 𝑀,

for some constant𝑀 , then for any𝑇 > 0, there exists a constant𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0, 𝐿1, 𝑀, 𝑇)
such that the IPS (2.17) and the RB–IPS (2.21) satisfy

sup
0⩽𝑡⩽𝑇

E
(

1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖𝑡 − 𝑦𝑖𝑡 |2
)
⩽ 𝐶

(
ℎ

𝑝 − 1
+ ℎ2

)
. (4.47)

As a consequence, we have the inequality

sup
0⩽𝑛⩽𝑇/ℎ

W1(𝜈P𝑛ℎ, 𝜈Qℎ𝑛) ⩽ 𝐶
√

ℎ

𝑝 − 1
+ ℎ2. (4.48)

The proof can be found in Theorem 3.1 of Jin et al. (2020). When the batch size 𝑝 is small,√
ℎ/(𝑝 − 1) dominates the Wasserstein error W1(𝜈P𝑛ℎ, 𝜈Qℎ𝑛). In this sense, the Wasserstein

error W1(𝜈P𝑛ℎ, 𝜈Qℎ𝑛) has at least half-order convergence with respect to the time step ℎ.

Main theorem: estimate of W1(𝜋, 𝜋ℎ) We are now prepared to estimate the approxima-
tion error of the RB–IPS (2.21), specifically the difference between the invariant distribu-
tions W1(𝜋, 𝜋ℎ). In particular, we utilize the triangle inequality framework to transition from
W1(𝜈P𝑛ℎ, 𝜈Qℎ𝑛) over finite time to W1(𝜋, 𝜋ℎ) in the long-time limit.

Theorem 4.3. Under Assumptions 2.2 & 4.1, let 𝑐0, 𝜑0 be defined as in Lemma 2.5, and Let 𝜋
and 𝜋ℎ be the invariant distributions of the IPS (2.17) and the RB–IPS (2.21) respectively. If
the constant 𝐿1 in Assumption 4.1 satisfies

𝐿1 ⩽
1
4
𝑐0𝜑0𝜎

2,

then there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0) such that

W1(𝜋, 𝜋ℎ) ⩽ 𝐶
√

ℎ

𝑝 − 1
+ ℎ2. (4.49)

Proof of Theorem 4.3. Let 𝜈0 be the distribution inR𝑑𝑁 with all the 𝑁 particles frozen at origin,
then using Lemma 4.4 we have the uniform-in-time moment estimates

sup
𝑡⩾0

{
max

1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |4(𝜈0P𝑡)(d𝒙)
}
⩽ 𝐶1, sup

𝑛⩾0

{
max

1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |4(𝜈0Q
ℎ
𝑛) (d𝒙)

}
⩽ 𝐶1, (4.50)

where the constant𝐶1 = 𝐶1(𝑑, 𝜎, 𝜅(·), 𝐿0, 𝐿1). Since 𝜋 and 𝜋ℎ are the long-time limits of 𝜈0P𝑡

and 𝜈0Q
ℎ
𝑛 in the metric space (P1(R𝑑𝑁 ),W1) respectively, from the moment estimate (4.50)
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we have ∫
R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 |
)
𝜋(d𝒙) ⩽ 𝐶,

∫
R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 |
)
𝜋ℎ (d𝒙) ⩽ 𝐶1.

Hence the Wasserstein error W1(𝜋, 𝜋ℎ) is bounded by

W1(𝜋, 𝜋ℎ) ⩽
∫
R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 |
)
𝜋(d𝒙) +

∫
R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 |
)
𝜋ℎ (d𝒙) ⩽ 𝐶1.

In the following, we may assume the step size ℎ ⩽ 𝐶1. Instead of directly measuring the
Wasserstein error W1(𝜋, 𝜋ℎ), we fix a constant 𝑇 > 0 and study the quantity W1(𝜈0P𝑇 , 𝜋

ℎ).
By Theorem 4.1, for any integer 𝑛 ⩾ 0 we have the inequality

W1(𝜈0P𝑇 , 𝜋
ℎ) = W1(𝜈0P𝑇 , 𝜋

ℎQℎ𝑛)

⩽ W1(𝜈0P𝑇Q
ℎ
𝑛, 𝜋

ℎQℎ𝑛) +W1(𝜈0P𝑇 , 𝜈0P𝑇Q
ℎ
𝑛)

⩽
1
𝜑0
𝑒−𝛽𝑛ℎW1(𝜈0P𝑇 , 𝜋

ℎ) +W1(𝜈0P𝑇 , 𝜈0P𝑇Q
ℎ
𝑛).

Since the step size ℎ ⩽ 𝐶1, we can choose the integer 𝑛 as

𝑛 =

⌈
log(2/𝜑0)

𝛽ℎ

⌉
,

then we have the inequalities 1
𝜑0
𝑒−𝛽𝑛ℎ ⩽ 1

2 and

𝑛ℎ ⩽
(
log(2/𝜑0)

𝛽ℎ
+ 1

)
ℎ ⩽

log(2/𝜑0)
𝛽

+ 𝐶1,

which implies 𝑛ℎ has an upper bound uniform in 𝑁 and ℎ. For this chosen 𝑛 we have

W1(𝜈0P𝑇 , 𝜋
ℎ) ⩽ 2 · W1(𝜈0P𝑇 , 𝜈0P𝑇Q

ℎ
𝑛)

⩽ 2 · W1(𝜈0P𝑇 , 𝜈0P𝑇P𝑛ℎ) + 2 · W1(𝜈0P𝑇P𝑛ℎ, 𝜈0P𝑇Q
ℎ
𝑛)

⩽
1
𝜑0
𝑒−𝛽𝑇W1(𝜈0, 𝜈0P𝑛ℎ) + 2 · W1(𝜈0P𝑇P𝑛ℎ, 𝜈0P𝑇Q

ℎ
𝑛).

Fixing the integer 𝑛 ⩾ 0, we pass to the limit 𝑇 → ∞ and obtain

W1(𝜋, 𝜋ℎ) ⩽ 2 lim
𝑇→∞

W1(𝜈0P𝑇P𝑛ℎ, 𝜈0P𝑇Q
ℎ
𝑛). (4.51)

Since 𝜈0P𝑇 always has finite fourth moments as in (4.50), using Lemma 4.5 we have

W1(𝜈0P𝑇P𝑛ℎ, 𝜈0P𝑇Q
ℎ
𝑛) ⩽ 𝐶

√
ℎ

𝑝 − 1
+ ℎ2, ∀𝑇 > 0, (4.52)

where the constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0, 𝐿1). Combining (4.51) and (4.52) we finally obtain
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the estimate of the Wasserstein-1 error W1(𝜋, 𝜋ℎ):

W1(𝜋, 𝜋ℎ) ⩽ 𝐶
√

ℎ

𝑝 − 1
+ ℎ2,

which completes the proof. ■

We stress that the constant 𝐶 in Theorem 4.3 does not depend on the number of particles 𝑁 ,
the batch size 𝑝 and the step size ℎ.

Remark 4.4. When the batch size 𝑝 = 𝑁 , there is RB–IPS (2.21) coincides with the IPS (2.17).
However, this consistency property is not reflected in the expression for W1(𝜋, 𝜋ℎ) because the
strong error analysis was used to derive W1(𝜋, 𝜋ℎ). Additionally, the strong error analysis
only achieves half-order convergence with respect to the step size ℎ. For a more refined result,
we refer to the recent work (Huang et al., 2024), which establishes first-order convergence
using the entropy method.

4.3 Long-time error of discrete RB–IPS
In this section, we analyze the long-time error of the discrete RB–IPS (2.22). Given the

established ergodicity of both the IPS (2.17) and the RB–IPS (2.21), our focus shifts to esti-
mating the strong error of the discrete RB–IPS. By applying the triangle inequality framework
from Section 2.4.3, we can effectively study its long-time behavior.

Strong error of discrete RB–IPS Since the strong error between the IPS and the RB–IPS is
already established in Lemma 4.5, it remains to estimate the strong error between the RB–IPS
and the discrete RB–IPS,

sup
0⩽𝑛⩽𝑇/ℎ

E
(

1
𝑁

𝑁∑
𝑖=1

|𝑦𝑖𝑛ℎ − 𝑌 𝑖𝑛 |2
)
,

which accounts solely for the discretization error. We first prove the following result:

Lemma 4.6. Under Assumption 4.1, if the initial distribution 𝜈 ∈ P(R𝑑𝑁 ) satisfies

max
1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |2𝜈(d𝒙) ⩽ 𝑀,

then for any 𝑇 > 0, there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝐿0, 𝐿1, 𝑀, 𝑇) such that the RB–IPS
(2.21) satisfies

sup
0⩽𝑡⩽𝑇

E|𝑦𝑖𝑡 |2 ⩽ 𝐶, sup
𝑡∈[𝑛ℎ, (𝑛+1)ℎ∧𝑇 )

E|𝑦𝑖𝑡 − 𝑦𝑖𝑛ℎ |2 ⩽ 𝐶ℎ. (4.53)
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Proof of Lemma 4.6. By Itô calculus, we have

d
d𝑡
|𝑦𝑖𝑡 |2 = 2𝑦𝑖𝑡 · (𝑏(𝑦𝑖𝑡) + 𝛾𝑖 (𝒚𝑡) + 𝜎 ¤𝐵𝑖𝑡) + 𝑑𝜎2,

where 𝛾𝑖 (·) is the interaction force defined in (4.3). Taking the expectation, we have

E|𝑦𝑖𝑡 |2 = E|𝑦𝑖0 |2 + 2
∫ 𝑡

0
𝑦𝑖𝑠 ·

(
𝑏(𝑦𝑖𝑠) + 𝛾𝑖 (𝒚𝑠)

)
d𝑠 + 𝑑𝜎2𝑡. (4.54)

On the one hand, 𝛾𝑖 (·) is uniformly bounded by 𝐿1, hence

2
∫ 𝑡

0
𝑦𝑖𝑠 · 𝛾𝑖 (𝒚𝑠)d𝑠 ⩽ 2𝐿1

∫ 𝑡

0
|𝑦𝑖𝑠 |d𝑠 ⩽ 𝐿1

∫ 𝑡

0
|𝑦𝑖𝑠 |2d𝑠 + 𝐿1𝑡. (4.55)

On the other hand, using |𝑏(𝑥) | ⩽ 𝐿0(|𝑥 | + 1) we have

2
∫ 𝑡

0
𝑦𝑖𝑠 · 𝑏(𝑦𝑖𝑠)d𝑠 ⩽ 2𝐿0

∫ 𝑡

0
(|𝑦𝑖𝑠 |2 + |𝑦𝑖𝑠 |)d𝑠

⩽ 𝐿0

∫ 𝑡

0
(3|𝑦𝑖𝑠 |2 + 1)d𝑠 ⩽ 3𝐿0

∫ 𝑡

0
|𝑦𝑖𝑠 |2 + 𝐿0𝑡. (4.56)

Using the inequalities (4.54), (4.55) and (4.56), we obtain

2
∫ 𝑡

0
𝑦𝑖𝑠 ·

(
𝑏(𝑦𝑖𝑠) + 𝛾𝑖 (𝒚𝑠)

)
d𝑠 ⩽ (3𝐿0 + 𝐿1)

∫ 𝑡

0
|𝑦𝑖𝑠 |2d𝑠 + (𝐿0 + 𝐿1)𝑡. (4.57)

Let 𝐿 := 3𝐿0 + 𝐿1 + 𝑑𝜎2, then for any 𝑡 ∈ [0, 𝑇], we have

E|𝑦𝑖𝑡 |2 ⩽ E |𝑦𝑖0 |2 + 𝐿
∫ 𝑡

0
|𝑦𝑖𝑠 |2d𝑠 + 𝐿𝑡 ⩽ 𝑀 + 𝐿𝑇 + 𝐿

∫ 𝑡

0
|𝑦𝑖𝑠 |2d𝑠. (4.58)

Using the Gronwall inequality (Lemma 7.21 of E et al. (2021)), we obtain from (4.58)

E|𝑦𝑖𝑡 |2 ⩽ (𝑀 + 𝐿𝑇) exp(𝐿𝑇), 𝑡 ∈ [0, 𝑇],

which yields the first inequality of Lemma 4.6. For the second inequality, we note that

𝑦𝑖𝑡 − 𝑦𝑖𝑛ℎ =
∫ 𝑡

𝑛ℎ

(
𝑏(𝑦𝑖𝑠) + 𝛾𝑖 (𝒚𝑠)

)
d𝑠 + 𝜎(𝑊 𝑖

𝑡 −𝑊 𝑖
𝑛ℎ). (4.59)

Hence using Cauchy inequality, we obtain

E|𝑦𝑖𝑡 − 𝑦𝑖𝑛ℎ |2 ⩽ 2ℎ
∫ 𝑡

𝑛ℎ

E
��𝑏(𝑦𝑖𝑠) + 𝛾𝑖 (𝒚𝑠)��2d𝑠 + 2𝑑𝜎2ℎ. (4.60)

Using the inequality |𝑏(𝑥𝑖) + 𝛾𝑖 (𝒙) | ⩽ 𝐿 ( |𝑥𝑖 | + 1), we obtain

E|𝑦𝑖𝑡 − 𝑦𝑖𝑡𝑛 |
2 ⩽ 4𝐿2ℎ

∫ 𝑡

𝑛ℎ

(
E|𝑦𝑖𝑠 |2 + 1

)
d𝑠 + 2𝑑𝜎2ℎ ⩽ 4𝐿2𝑇𝐶ℎ + 2𝑑𝜎2ℎ = 𝐶ℎ, (4.61)

which produces the desired result. ■

Subsequently, we can derive the strong error between the RB–IPS and the discrete RB–IPS.
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Lemma 4.7. Under Assumption 4.1, if the initial distribution 𝜈 ∈ P(R𝑑𝑁 ) satisfies

max
1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |2𝜈(d𝒙) ⩽ 𝑀,

then for any 𝑇 > 0, there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝐿0, 𝐿1, 𝑀, 𝑇) such that the RB–IPS
(2.21) and the discrete RB–IPS (2.22) satisfy

sup
0⩽𝑛⩽𝑇/ℎ

E
(

1
𝑁

𝑁∑
𝑖=1

|𝑦𝑖𝑛ℎ − 𝑌 𝑖𝑛 |2
)
⩽ 𝐶ℎ. (4.62)

Proof of Lemma 4.7. Let the step size ℎ ⩽ 𝑇 . Define the trajectory difference 𝑒𝑖𝑛 = 𝑦𝑖𝑛ℎ − 𝑌 𝑖𝑛,
and let 𝐹 𝑖 (𝒙) be th total force on the 𝑖-th particle, namely,

𝐹 𝑖 (𝒙) = 𝑏(𝑥𝑖) + 𝛾𝑖 (𝒙), 𝒙 ∈ R𝑑𝑁 .

Then we can write the RB–IPS (2.21) and the discrete RB–IPS (2.22) as

𝑦𝑖(𝑛+1)ℎ = 𝑦
𝑖
𝑛ℎ +

∫ (𝑛+1)ℎ

𝑛ℎ

𝐹 𝑖 (𝒚𝑡)d𝑡 + 𝜎Δ𝐵𝑖𝑛, (4.63)

𝑌 𝑖𝑛+1 = 𝑌
𝑖
𝑛 +

∫ (𝑛+1)ℎ

𝑛ℎ

𝐹 𝑖 (𝒀𝑛)d𝑡 + 𝜎Δ𝐵𝑖𝑛, (4.64)

where Δ𝐵𝑖𝑛 := 𝑊 𝑖
(𝑛+1)ℎ −𝑊 𝑖

𝑛ℎ ∼ N(0, ℎ). Then 𝑒𝑖𝑛 satisfies the recurrence relation

𝑒𝑖𝑛+1 = 𝑒
𝑖
𝑛 +

∫ (𝑛+1)ℎ

𝑛ℎ

(𝐹 𝑖 (𝒚𝑡) − 𝐹 𝑖 (𝒀𝑛))d𝑡. (4.65)

Squaring both sides of (4.65) and applying Cauchy inequality, we obtain

|𝑒𝑖𝑛+1 |2 ⩽ (1 + ℎ) |𝑒𝑖𝑛 |2 +
(
1 + 1

ℎ

) ( ∫ (𝑛+1)ℎ

𝑛ℎ

(𝐹 𝑖 (𝒚𝑡) − 𝐹 𝑖 (𝒀𝑛))d𝑡
)2

⩽ (1 + ℎ) |𝑒𝑖𝑛 |2 + (1 + ℎ)
∫ (𝑛+1)ℎ

𝑛ℎ

|𝐹 𝑖 (𝒚𝑡) − 𝐹 𝑖 (𝒀𝑛) |2d𝑡

⩽ (1 + ℎ) |𝑒𝑖𝑛 |2 + 2(1 + ℎ)
∫ (𝑛+1)ℎ

𝑛ℎ

|𝑏(𝑦𝑖𝑡) − 𝑏(𝑌 𝑖𝑛) |2d𝑡

+ 2(1 + ℎ)
∫ (𝑛+1)ℎ

𝑛ℎ

|𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 (𝒀𝑛) |2d𝑡. (4.66)

On the one hand, the Lipschitz condition on the drift force 𝑏(·) implies∫ (𝑛+1)ℎ

𝑛ℎ

|𝑏(𝑦𝑖𝑡) − 𝑏(𝑌 𝑖𝑛) |2 ⩽ 𝐿2
0

∫ (𝑛+1)ℎ

𝑛ℎ

|𝑦𝑖𝑡 − 𝑌 𝑖𝑛 |2d𝑡. (4.67)

On the other hand, the Lipschitz condition on the interaction force 𝛾𝑖 implies

|𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 (𝒀𝑛) | ⩽ 𝐿1 |𝑦𝑖𝑡 − 𝑌 𝑖𝑛 | +
𝐿1

𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

|𝑦 𝑗𝑡 − 𝑌 𝑗𝑛 |,
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where C is the batch which contains 𝑖, and 𝑝 is the batch size. By Cauchy inequality, we have

|𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 (𝒀𝑛) |2 ⩽ 2𝐿2
1 |𝑦𝑖𝑡 − 𝑌 𝑖𝑛 |2 + 2𝐿2

1

(
1

𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

|𝑦 𝑗𝑡 − 𝑌 𝑗𝑛 |
)2

⩽ 2𝐿2
1 |𝑦𝑖𝑡 − 𝑌 𝑖𝑛 |2 +

2𝐿2
1

𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

|𝑦 𝑗𝑡 − 𝑌 𝑗𝑛 |2.

Hence we obtain the inequality∫ (𝑛+1)ℎ

𝑛ℎ

|𝛾𝑖 (𝒚𝑡) − 𝛾𝑖 (𝒀𝑛) |2d𝑡 ⩽ 2𝐿2
1

∫ (𝑛+1)ℎ

𝑛ℎ

|𝑦𝑖𝑡 − 𝑌 𝑖𝑛 |2d𝑡 +
2𝐿2

1

𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

∫ (𝑛+1)ℎ

𝑛ℎ

|𝑦 𝑗𝑡 − 𝑌 𝑗𝑛 |2d𝑡.

(4.68)

Combining the inequalities (4.66), (4.67) and (4.68), 𝑒𝑖𝑛+1 can be bounded by

|𝑒𝑖𝑛+1 |2 ⩽ (1 + ℎ) |𝑒𝑖𝑛 |2 + (1 + ℎ) (2𝐿2
0 + 4𝐿2

1)
∫ (𝑛+1)ℎ

𝑛ℎ

|𝑦𝑖𝑡 − 𝑌 𝑖𝑛 |2d𝑡

+ (1 + ℎ)
4𝐿2

1

𝑝 − 1

∑
𝑗≠𝑖, 𝑗∈C

∫ (𝑛+1)ℎ

𝑛ℎ

|𝑦 𝑗𝑡 − 𝑌 𝑗𝑛 |2d𝑡.

Summation over 𝑖 gives
𝑁∑
𝑖=1

|𝑒𝑖𝑛+1 |2 ⩽ (1 + ℎ)
𝑁∑
𝑖=1

|𝑒𝑖𝑛 |2 + (1 + ℎ) (2𝐿2
0 + 8𝐿2

1)
𝑁∑
𝑖=1

∫ (𝑛+1)ℎ

𝑛ℎ

|𝑦𝑖𝑡 − 𝑌 𝑖𝑛 |2d𝑡. (4.69)

Note that from Lemma 4.6

E|𝑦𝑖𝑡 − 𝑌 𝑖𝑛 |2 ⩽ 2E|𝑦𝑖𝑡 − 𝑦𝑖𝑛ℎ |2 + 2E|𝑦𝑖𝑛ℎ − 𝑌 𝑖𝑛 |2 ⩽ 𝐶ℎ + 2E|𝑒𝑖𝑛 |2,

hence integrating in the time interval [𝑛ℎ, (𝑛 + 1)ℎ) gives∫ (𝑛+1)ℎ

𝑛ℎ

E|𝑦𝑖𝑡 − 𝑌 𝑖𝑛 |2d𝑡 ⩽ 𝐶ℎ2 + 2ℎE|𝑒𝑖𝑛 |2.

Taking the expectation in (4.69), we obtain
𝑁∑
𝑖=1

E|𝑒𝑖𝑛+1 |2 ⩽ (1 + ℎ)
𝑁∑
𝑖=1

E|𝑒𝑖𝑛 |2 + 𝐶 (1 + ℎ)
(
𝑁ℎ2 + ℎ

𝑁∑
𝑖=1

E|𝑒𝑖𝑛 |2
)

⩽ (1 + 𝐶ℎ)
𝑁∑
𝑖=1

E|𝑒𝑖𝑛 |2 + 𝐶𝑁ℎ2. (4.70)

Note that 𝑒𝑖0 ≡ 0, the discrete Gronwall inequality applying on (4.70) gives

1
𝑁

𝑁∑
𝑖=1

E|𝑒𝑖𝑛 |2 ⩽ ℎ
(
(1 + 𝐶ℎ)𝑛 − 1

)
⩽ 𝑒𝐶𝑛ℎℎ ⩽ 𝐶ℎ,

which implies the strong error is bounded by 𝐶ℎ for 0 ⩽ 𝑛 ⩽ 𝑇/ℎ. ■
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Combining the results in Lemma 4.5 and Lemma 4.7, we obtain the strong error of the discrete
RB–IPS (2.22) in a finite time.

Lemma 4.8. Under Assumption 4.1, if the initial distribution 𝜈 ∈ P(R𝑑𝑁 ) satisfies

max
1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |4𝜈(d𝒙) ⩽ 𝑀,

then for any 𝑇 > 0, there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝐿0, 𝐿1, 𝑀, 𝑇) such that the IPS (2.17)
and the discrete RB–IPS (2.22) satisfy

sup
0⩽𝑛⩽𝑇/ℎ

E
(

1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖𝑛ℎ − 𝑌 𝑖𝑛 |2
)
⩽ 𝐶ℎ. (4.71)

As a consequence, we have the inequality

sup
0⩽𝑛⩽𝑇/ℎ

W1(𝜈P𝑛ℎ, 𝜈Q̃ℎ𝑛) ⩽ 𝐶
√
ℎ. (4.72)

Note that the requirement on the moment of the initial distribution 𝜈 increases to fourth-order,
as stipulated in Lemma 4.5.

Uniform-in-time moment estimate To analyze the long-time behavior of the discrete RB–
IPS (2.22), it is necessary to establish that the discrete RB–IPS maintains uniform-in-time
fourth moments. The proof differs slightly from Lemma 4.4 due to the involvement of time
discretization in the discrete RB–IPS.

Lemma 4.9. Under Assumptions 2.2, there exists a constant 𝛼0 = 𝛼0(𝜎, 𝜅(·)) > 0 such that

sup
𝑥∈R𝑑

(
𝑥 · 𝑏(𝑥) + 𝛼0 |𝑥 |2

)
< +∞. (4.73)

Proof of Lemma 4.9. Using the definition of the function 𝜅(𝑟) in (2.63), we have

−𝑥 · (𝑏(𝑥) − 𝑏(0))|𝑥 |2 ⩾
𝜎2

2
𝜅( |𝑥 |), ∀𝑥 ∈ R𝑑,

which can be written as

−𝑥 · 𝑏(𝑥)|𝑥 |2 ⩾
𝜎2

2
𝜅( |𝑥 |) − 𝑥 · 𝑏(0)|𝑥 |2 , ∀𝑥 ∈ R𝑑 . (4.74)

Since 𝜅(𝑟) has asymptotic positivity, we can choose the constant 𝛼0 as

𝛼0 =
𝜎2

4
lim
𝑟→∞

𝜅(𝑟) > 0.

Taking the limit inferior in (4.74) as |𝑥 | → ∞, we obtain

lim
|𝑥 |→∞

(
− 𝑥 · 𝑏(𝑥)|𝑥 |2

)
⩾ 2𝛼0 > 0.
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Then there exists a constant 𝑅 such that when |𝑥 | ⩾ 𝑅, there holds the inequality

−𝑥 · 𝑏(𝑥) ⩾ 𝛼0 |𝑥 |2, ∀|𝑥 | ⩾ 𝑅.

Hence 𝑥 · 𝑏(𝑥) + 𝛼0 |𝑥 |2 ⩽ 0 when |𝑥 | ⩾ 𝑅. Since the drift function 𝑏(𝑥) is continuous, we
conclude that 𝑥 · 𝑏(𝑥) + 𝛼0 |𝑥 |2 is globally bounded in R𝑑. ■

Next, we require the following general result to bound the fourth moments.

Lemma 4.10. Under Assumptions 2.2 & 4.1, let 𝛼0 be defined as in Lemma 4.9 and define

ℎ0(𝜎, 𝜅(·), 𝐿0) =
1
2

min
{
𝛼0

𝐿2
0
,

1
𝛼0

}
. (4.75)

Then there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0, 𝐿1) such that for any step size 0 ⩽ ℎ ⩽ ℎ0

and 𝛾 ∈ R𝑑 with |𝛾 | ⩽ 𝐿1, there holds the inequality

|𝑥 + 𝑏(𝑥)ℎ + 𝛾ℎ |4 ⩽
(
1 − 𝛼ℎ

2

)
|𝑥 |4 + 𝐶ℎ. (4.76)

Proof of Lemma 4.10. Using Lemma 4.9, there exists 𝐶0 = 𝐶0(𝑑, 𝜎, 𝜅(·), 𝐿0) such that

−𝑥 · 𝑏(𝑥) ⩾ 𝛼0 |𝑥 |2 − 𝐶0, ∀𝑥 ∈ R𝑑 .

Hence we have the following estimate of |𝑥 + 𝑏(𝑥)ℎ|2:

|𝑥 + 𝑏(𝑥)ℎ|2 = |𝑥 |2 + 2𝑥 · 𝑏(𝑥)ℎ + |𝑏(𝑥) |2ℎ2

⩽ |𝑥 |2 + 2(𝐶0 − 𝛼0 |𝑥 |2)ℎ + 2𝐿2
0( |𝑥 |2 + 1)ℎ2

= (1 + 2𝐿2
0ℎ

2 − 2𝛼0ℎ) |𝑥 |2 + 𝐶ℎ. (4.77)

Since the step size ℎ ⩽ 𝛼0
2𝐿2

0
, the inequality (4.77) implies

|𝑥 + 𝑏(𝑥)ℎ|2 ⩽ (1 − 𝛼0ℎ) |𝑥 |2 + 𝐶ℎ, (4.78)

Square both sides of (4.78) and utilize ℎ ⩽ 1
2𝛼 , then

|𝑥 + 𝑏(𝑥)ℎ|4 ⩽ (1 − 𝛼ℎ)2 |𝑥 |4 + 𝐶 |𝑥 |2ℎ + 𝐶ℎ2

⩽ (1 − 𝛼ℎ)2 |𝑥 |4 + 𝛼

2
|𝑥 |4ℎ + 𝐶ℎ

= (1 − 𝛼ℎ) |𝑥 |4 + 𝐶ℎ.

Using the interpolation inequality, for some constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0, 𝐿1) we have

|𝑥 + 𝑏(𝑥)ℎ + 𝛾ℎ |4 ⩽
(
1 + 1

3
𝛼ℎ

)
|𝑥 + 𝑏(𝑥)ℎ|4 + 𝐶

ℎ3 |𝛾ℎ|
4

76



CHAPTER 4 ERGODICITY AND LONG-TIME ERROR OF RBM

⩽
(
1 − 1

3
𝛼ℎ

)
(1 + 𝛼ℎ) |𝑥 |4 + 𝐶ℎ

⩽
(
1 − 1

2
𝛼ℎ

)
|𝑥 |4 + 𝐶ℎ,

which completes the proof. ■

Now we can obtain the uniform-in-time fourth moments of the discrete RB–IPS (2.22).

Theorem 4.4. Under Assumptions 2.2 & 4.1, let ℎ0 be defined as in Lemma 4.10. If the initial
distribution 𝜈 ∈ P(R𝑑𝑁 ) satisfies

max
1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |4𝜈(d𝒙) ⩽ 𝑀,

and the step size ℎ ⩽ ℎ0, then there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0, 𝐿1, 𝑀) such that

sup
𝑛⩾0

E|𝑌 𝑖𝑛 |4 ⩽ 𝐶, 𝑖 = 1, · · · , 𝑁. (4.79)

Proof of Theorem 4.4. The update scheme of the discrete RB–IPS (2.22) is given by

𝑌 𝑖𝑛+1 = 𝑌
𝑖
𝑛 + 𝑏(𝑌 𝑖𝑛)ℎ + 𝛾𝑖 (𝒀𝑛)ℎ + 𝜎Δ𝐵𝑖𝑛, (4.80)

where Δ𝐵𝑖𝑛 ∼ N(0, ℎ), and 𝛾𝑖 (·) is defined in (4.3). Since the random variable Δ𝐵𝑖𝑛 is inde-
pendent of the numerical solution 𝒀𝑛, we have

E|𝑌 𝑖𝑛+1 |4 = E|𝑌 𝑖𝑛 + 𝑏(𝑌 𝑖𝑛)ℎ + 𝛾𝑖 (𝒀𝑛)ℎ|4 + 6E|𝑌 𝑖𝑛 + 𝑏(𝑌 𝑖𝑛)ℎ + 𝛾𝑖 (𝒀𝑛)ℎ|2 E|𝜎Δ𝐵𝑖𝑛 |2 + E|𝜎Δ𝐵𝑖𝑛 |4

⩽ E |𝑌 𝑖𝑛 + 𝑏(𝑌 𝑖𝑛)ℎ + 𝛾𝑖 (𝒀𝑛)ℎ|4 + 𝐶ℎ E|𝑌 𝑖𝑛 + 𝑏(𝑌 𝑖𝑛)ℎ + 𝛾𝑖 (𝒀𝑛)ℎ|2 + 𝐶ℎ2

=

(
1 + 1

8
𝛼ℎ

)
E|𝑌 𝑖𝑛 + 𝑏(𝑌 𝑖𝑛)ℎ + 𝛾𝑖 (𝒀𝑛)ℎ |4 + 𝐶ℎ. (4.81)

Applying Lemma 4.10 in (4.81), we obatin

E|𝑌 𝑖𝑛+1 |4 ⩽
(
1 + 1

8
𝛼ℎ

) ((
1 − 1

2
𝛼ℎ

)
E|𝑌 𝑖𝑛 |4 + 𝐶ℎ

)
+ 𝐶ℎ ⩽

(
1 − 1

4
𝛼ℎ

)
E|𝑌 𝑖𝑛 |4 + 𝐶ℎ.

yielding the desired moment bound. ■

Main theorem: estimate ofW1(𝜈𝑄̃ℎ𝑛, 𝜋) Using the uniform-in-timemoments, we can derive
the long-time error of the RB–IPS (2.22). As the RB–IPS is a discrete-time Markov chain, a
discrete version of the triangle inequality framework (Lemma 2.6) is required.

Lemma 4.11. Given 𝑚 ∈ N, 𝜀 > 0 and 𝑞 ∈ (0, 1). If a nonnegative sequence {𝑎𝑛}𝑛⩾0 satisfies

𝑎𝑛 ⩽ 𝜀 + 𝑞𝑎𝑛−𝑚, ∀𝑛 ⩾ 𝑚, (4.82)
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then
𝑎𝑛 ⩽

𝜀

1 − 𝑞 + 𝑀𝑞 𝑛
𝑚−1, ∀𝑛 ⩾ 0, (4.83)

where 𝑀 = max
0⩽𝑘⩽𝑚−1

𝑎𝑘 .

Proof of Lemma 4.11. By induction on the integer 𝑠 ⩾ 1, it is easy to verify if 𝑛 ⩾ 𝑠𝑚, then

𝑎𝑛 ⩽ 𝜀
1 − 𝑞𝑠
1 − 𝑞 + 𝑞𝑠𝑎𝑛−𝑠𝑚. (4.84)

For any integer 𝑛 ⩾ 0, let 𝑛 = 𝑠𝑚 + 𝑟 for some integer 𝑠 ⩾ 0 and 𝑟 ∈ {0, 1, · · · , 𝑚 − 1}. Then

𝑎𝑛 ⩽
𝜀

1 − 𝑞 + 𝑀𝑞𝑠 ⩽ 𝜀

1 − 𝑞 + 𝑀𝑞 𝑛
𝑚−1, (4.85)

yielding the inequality (4.83). ■

Combining the finite time strong error (Lemma 4.8) and the geometric ergodicity of the
IPS (Theorem 4.2), we employ the triangle inequality in Lemma 4.11 to estimate the long-time
error of the discrete RB–IPS.

Theorem 4.5. Under Assumptions 2.2 & 4.1, let 𝑐0, 𝜑0 be defined as in Lemma 2.5, and ℎ0 be
defined as in Lemma 4.10. If the initial distribution 𝜈 ∈ P(R𝑑𝑁 ) satisfies

max
1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |4𝜈(d𝒙) ⩽ 𝑀,

and the constant 𝐿1 in Assumption 4.1 and the step size ℎ satisfy

𝐿1 ⩽
𝑐0𝜑0𝜎

2

4
, ℎ ⩽ ℎ0,

then there exist positive constants 𝜆 = 𝜆(𝑑, 𝜎, 𝜅(·), 𝐿0) and𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0, 𝑀) such that
the discrete RB–IPS (2.22) satisfies

W1(𝜈Q̃ℎ𝑛, 𝜋) ⩽ 𝐶
√
ℎ + 𝐶𝑒−𝜆𝑛ℎ, ∀𝑛 ⩾ 0. (4.86)

Proof of Theorem 4.5. For any given integers 𝑛 ⩾ 𝑚, we have the following triangle inequality

W1(𝜈Q̃ℎ𝑛, 𝜋) ⩽ W1(𝜈Q̃ℎ𝑛−𝑚Q̃ℎ𝑚, 𝜈Q̃ℎ𝑛−𝑚P𝑚ℎ) +W1(𝜈Q̃ℎ𝑛−𝑚P𝑚ℎ, 𝜋P𝑚ℎ). (4.87)

By Theorem 4.4, 𝜈Q̃ℎ𝑛−𝑚 has uniform-in-time fourth order moment, i.e., there exists a constant
𝑀 ′ = 𝑀 ′(𝑑, 𝜎, 𝜅(·), 𝐿0, 𝑀) such that

max
1⩽𝑖⩽𝑁

{
sup
𝑛⩾𝑚

∫
R𝑑𝑁

|𝑥𝑖 |4
(
𝜈Q̃ℎ𝑛−𝑚

)
(d𝒙)

}
⩽ 𝑀 ′. (4.88)

Hence by Lemma 4.8, there exists a constant 𝐶1 = 𝐶1(𝑑, 𝜎, 𝜅(·), 𝐿0, 𝑀, 𝑚ℎ) such that

W1(𝜈Q̃ℎ𝑛−𝑚Q̃ℎ𝑚, 𝜈Q̃ℎ𝑛−𝑚P𝑚ℎ) ⩽ 𝐶1
√
ℎ, ∀𝑛 ⩾ 𝑚. (4.89)
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Note that the constant𝐶1 depends on the upper bound of𝑚ℎ, which signifies the evolution time
of the discrete IPS (2.22). By Theorem 4.2, there exist constants 𝐶0, 𝛽 > 0 depending only on
𝜎 and 𝜅(·) such that

W1(𝜈Q̃ℎ𝑛−𝑚P𝑚ℎ, 𝜋P𝑚ℎ) ⩽ 𝐶0𝑒
−𝛽𝑚ℎW1(𝜈Q̃ℎ𝑛−𝑚, 𝜋), ∀𝑛 ⩾ 𝑚. (4.90)

From (4.87), (4.89) and (4.90) we employ the triangle inequality and obtain

W1(𝜈Q̃ℎ𝑛, 𝜋) ⩽ 𝐶1
√
ℎ + 𝐶0𝑒

−𝛽𝑚ℎW1(𝜈0Q̃
ℎ
𝑛−𝑚, 𝜋), ∀𝑛 ⩾ 𝑚. (4.91)

For given time step ℎ > 0, we wish to choose 𝑚 to satisfy 𝐶0𝑒
−𝛽𝑚ℎ = 1

𝑒
, so that Lemma 4.11

can be applied. However, 𝑚 is restricted to be an integer, thus our choice is

𝑚 =

⌈
log𝐶0 + 1

𝛽ℎ

⌉
.

It is easy to check 𝑚ℎ has an upper bound independent of ℎ,

𝑚ℎ ⩽
(
log𝐶0 + 1

𝛽ℎ
+ 1

)
ℎ ⩽

log𝐶0 + 1
𝛽

+ 1
2𝛼
, (4.92)

hence the constant 𝐶1 in (4.89) can be made independent of ℎ, i.e., 𝐶1 = 𝐶1(𝑑, 𝜎, 𝜅(·), 𝐿0, 𝑀).
Note that for this choice of 𝑚 we have 𝐶0𝑒

−𝛽𝑚ℎ ⩽ 1
𝑒
, and (4.91) implies

W1(𝜈Q̃ℎ𝑛, 𝜋) ⩽ 𝐶1
√
ℎ + 1

𝑒
W1(𝜈0Q̃

ℎ
𝑛−𝑚, 𝜋), ∀𝑛 ⩾ 𝑚.

Applying Lemma 4.11 with 𝑎𝑛 := W1(𝜈0Q̃
ℎ
𝑛, 𝜋), we have

W1(𝜈Q̃ℎ𝑛, 𝜋) ⩽ 𝐶1
√
ℎ + 𝑀0𝑒

1− 𝑛
𝑚 , ∀𝑛 ⩾ 0, (4.93)

where the constant

𝑀0 := sup
0⩽𝑘⩽𝑚−1

W1(𝜈Q̃ℎ𝑘 , 𝜋) ⩽ sup
𝑘⩾0

W1(𝜈Q̃ℎ𝑘 , 𝜋). (4.94)

Introduce the normalized first moment for 𝜈 ∈ P(R𝑑𝑁 ) by

M1(𝜈) =
∫
R𝑑𝑁

(
1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 |
)
𝜈(d𝒙),

then the normalized Wasserstein-1 distance in (4.94) is bounded by

W1(𝜈Q̃ℎ𝑘 , 𝜋) ⩽ M1(𝜈Q̃ℎ𝑘) +M1(𝜋). (4.95)

On the one hand, 𝜈Q̃ℎ𝑘 has uniform-in-time fourth moments according to Theorem 4.4, hence
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there exists a constant 𝐶2 = 𝐶2(𝑑, 𝜎, 𝜅(·), 𝐿0, 𝑀) such that

sup
𝑘⩾0

M1(𝜈Q̃ℎ𝑘) ⩽ 𝐶2. (4.96)

On the other hand, by Lemma 4.4, for the invariant distribution 𝜋 of the IPS (2.17), there exists
a constant 𝐶2 = 𝐶2(𝑑, 𝜎, 𝜅(·), 𝐿0, 𝑀) such that

M1(𝜋) ⩽ 𝐶2. (4.97)

Combining the inequalities (4.95), (4.96) and (4.97), we obtain

W1(𝜈Q̃ℎ𝑛, 𝜋) ⩽ 𝐶1
√
ℎ + 𝐶2𝑒

− 𝑛
𝑚 , ∀𝑛 ⩾ 0, (4.98)

where both constants 𝐶1, 𝐶2 only depend on (𝑑, 𝜎, 𝜅(·), 𝐿0, 𝑀). Note that by the choice of 𝑚
in (4.92) ensures that

𝑛

𝑚
⩾

𝑛
log𝐶0+1
𝛽ℎ

+ 1
⩾

𝛽𝑛ℎ

log𝐶0 + 𝛽/(2𝛼) + 1
,

hence by defining the constant

𝜆 :=
𝛽

log𝐶0 + 𝛽/(2𝛼) + 1
, (4.99)

there holds 𝑒−𝑛/𝑚 ⩽ 𝑒−𝜆𝑛ℎ. Hence (4.98) implies

W1(𝜈Q̃ℎ𝑛, 𝜋) ⩽ 𝐶
√
ℎ + 𝐶𝑒−𝜆𝑛ℎ, ∀𝑛 ⩾ 0,

which is exactly the long-time sampling error of the discrete RB–IPS (2.22). ■

Note that the sampling error W1(𝜈Q̃ℎ𝑛, 𝜋) approaches 0 as the number of steps 𝑛 → 0 and the
step size ℎ → ∞. Hence we obtain the consistency of the discrete RB–IPS (2.21) in sampling
the invariant distribution 𝜋 of the IPS.

Remark 4.5. As shown in (4.99), the decay rate 𝜆 in the discrete RB–IPS (2.22) is smaller than
the convergence rate 𝛽 of the IPS (2.17) and the RB–IPS (2.21). However, 𝜆 is guaranteed to
be independent of the number of particles 𝑁 , the batch size 𝑝, and the step size ℎ.

Remark 4.6. The batch size 𝑝 does not explicitly appear in the long-time error (4.86) because
the discretization error, which is of half-order in the step size ℎ, dominates the random batch
error described in Theorem 4.3.
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4.4 Long-time error in approximating MVP
The discrete RB–IPS (2.22) can also function as a sampling algorithm for theMVP (2.18).

Since the MVP is the mean-field limit of the IPS (2.17), the sampling is accurate only when
the number of particles 𝑁 → ∞. To estimate the sampling error of the discrete RB–IPS, it
is necessary to evaluate the difference between the invariant distributions 𝜋 ∈ P(R𝑑𝑁 ) of the
IPS and 𝜋̄ ∈ P(R𝑑) of the MVP. This analysis falls under the classical topic of propagation of
chaos (McKean, 1967; Sznitman, 1991; Guillin and Monmarché, 2021).

Propagation of chaos While the IPS (2.17) is defined for 𝑁 particles, the MVP (2.18) char-
acterizes the evolution of the distribution law of a single particle. To compare the difference
between the IPS and the MVP, we introduce 𝑁 copies {𝑥𝑖𝑡}𝑁𝑖=1 of the MVP:

¤̄𝑥𝑖𝑡 = 𝑏(𝑥𝑖𝑡) + (𝐾 ∗ 𝜇̄𝑡)(𝑥𝑖𝑡) + 𝜎 ¤𝐵𝑖𝑡 , (4.100)

where the initial values {𝑥𝑖0}𝑁𝑖=1 are drawn independently from the same distribution 𝜈 ∈ P(R𝑑),
{𝐵𝑖𝑡}𝑁𝑖=1 are 𝑁 independent Brownian motions in R𝑑 (identical to those of the IPS), and 𝜇̄𝑡 ∈
P(R𝑑) is the distribution law of each 𝑥𝑖𝑡 . Since the distribution laws of 𝑥𝑖𝑡 for different 𝑖 are
identical, we omit the superscript 𝑖 in 𝜇̄𝑡 .

The key difference between the IPS (2.17) and theMVP system (4.100) is that the particles
in {𝑥𝑖𝑡}𝑁𝑖=1 interact with each other, whereas the particles in {𝑥𝑖𝑡}𝑁𝑖=1 are fully decoupled, meaning
the evolution of the 𝑁 particles in {𝑥𝑖𝑡}𝑁𝑖=1 is independent. In the synchronous coupling of the
IPS and the MVP system, we assume that for some distribution 𝜈 ∈ P(R𝑑), the initial values

𝑥𝑖0 = 𝑥
𝑖
0 ∼ 𝜈, 𝑖 = 1, · · · , 𝑁,

are independently sampled from 𝜈, and the Brownian motions {𝐵𝑖𝑡}𝑁𝑖=1 are identical. The strong
error between the IPS and the MVP system is a well-established result in the propagation of
chaos (see Theorem 3.1 of Chaintron and Diez (2021) for reference).

Theorem 4.6. Under Assumption 4.1, for any𝑇 > 0, there exists a constant𝐶 = 𝐶 (𝑑, 𝜎, 𝐿0, 𝐿1, 𝑇)
such that the IPS (2.17) and the MVP system (4.100) satisfy

1
𝑁

𝑁∑
𝑖=1

E
[

sup
0⩽𝑡⩽𝑇

|𝑥𝑖𝑡 − 𝑥𝑖𝑡 |2
]
⩽
𝐶

𝑁
. (4.101)

We note that the IPS (2.17) in this paper differs slightly from the setting in Chaintron and Diez
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(2021), where the interaction force 𝛾𝑖 (𝒙) is defined as

𝛾𝑖 (𝒙) = 1
𝑁

𝑁∑
𝑗=1

𝐾 (𝑥𝑖 − 𝑥 𝑗) (4.102)

instead of
𝛾𝑖 (𝒙) = 1

𝑁 − 1

∑
𝑗≠𝑖

𝐾 (𝑥𝑖 − 𝑥 𝑗). (4.103)

This minor difference in the definition of 𝛾𝑖 does not affect the final result of the propagation
of chaos. The proof of Theorem 4.6 under the setting (4.103) can be found in Proposition 4.2
of Jin and Li (2022).

We can also express the result of Theorem 4.6 in terms of semigroups. For a given 𝜈 ∈
P(R𝑑), let 𝜈⊗𝑁 ∈ P(R𝑑𝑁 ) denote the product distribution of 𝑁 independent copies of 𝜈. Then,
𝜈⊗𝑁P𝑡 ∈ P(R𝑑𝑁 ) represents the distribution law of the IPS (2.17), while 𝜈⊗𝑁 P̄⊗𝑁

𝑡 ∈ P(R𝑑𝑁 )
represents the distribution law of the MVP system (4.100). Theorem 4.6 implies

sup
0⩽𝑡⩽𝑇

W1(𝜈⊗𝑁 P̄⊗𝑁
𝑡 , 𝜈⊗𝑁P𝑡) ⩽

𝐶
√
𝑁
. (4.104)

Using the strong error of the discrete RB–IPS (2.22) in Lemma 4.8, we obtain the following
finite-time error estimate.

Lemma 4.12. Under Assumption 4.1, if the initial distribution 𝜈 ∈ P(R𝑑) satisfies∫
R𝑑

|𝑥 |4𝜈(d𝑥) ⩽ 𝑀,

then for any𝑇 > 0, there exist constants𝐶1 = 𝐶1(𝑑, 𝜎, 𝐿0, 𝐿1, 𝑀, 𝑇) and𝐶2 = 𝐶2(𝑑, 𝜎, 𝐿0, 𝐿1, 𝑇)
such that the MVP system (4.100) and the discrete RB–IPS (2.22) satisfy

sup
0⩽𝑛⩽𝑇/ℎ

E
(

1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖𝑛ℎ − 𝑌 𝑖𝑛 |2
)
⩽ 𝐶ℎ + 𝐶

𝑁
. (4.105)

As a consequence, we have the inequality

sup
0⩽𝑛⩽𝑇/ℎ

W1(𝜈⊗𝑁 P̄⊗𝑁
𝑛ℎ , 𝜈

⊗𝑁 Q̃ℎ𝑛) ⩽ 𝐶
√
ℎ + 𝐶

√
𝑁
. (4.106)

Estimate of W1(𝜋̄⊗𝑁 , 𝜋) To analyze the long-time behavior of the MVP (2.18), it is neces-
sary to quantify the difference W1(𝜋̄⊗𝑁 , 𝜋). This can be obtained using the ergodicity of the
MVP (2.18), as stated below.

Theorem 4.7 (ergodicity of MVP). Under Assumptions 2.2 & 4.1, let 𝑓 (𝑟), 𝑐0, 𝜑0 be defined
as in Lemma 2.5, and (P̄𝑡)𝑡⩾0 be the dual semigroup of the MVP (2.21). If the constant 𝐿1 in
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Assumption 4.1 satisfies
𝐿1 ⩽

1
4
𝑐0𝜑0𝜎

2,

then for any probability distributions 𝜇, 𝜈 in R𝑑, we have

W𝑓 (𝜇P̄𝑡 , 𝜈P̄𝑡) ⩽ 𝑒−𝛽𝑡W𝑓 (𝜇, 𝜈), 𝑛 = 0, 1, · · · , (4.107)

where 𝛽 = 1
2𝑐0𝜑0𝜎

2. As a consequence, in the normalized Wasserstein-1 distance we have

W1(𝜇𝑃̄𝑡 , 𝜈𝑃̄𝑡) ⩽
1
𝜑0
𝑒−𝛽𝑡W1(𝜇, 𝜈), 𝑛 = 0, 1, · · · . (4.108)

The proof can be conveniently obtained from the ergodicity of the IPS (2.17) in Theorem 4.2,
whose mean-field limit is exactly the MVP (2.18).

Proof of Theorem 4.7. Given the distributions 𝜇, 𝜈 ∈ P(R𝑑), by Theorem 4.2 we have

W1(𝜇⊗𝑁P𝑡 , 𝜈
⊗𝑁P𝑡) ⩽

1
𝜑0
𝑒−𝛽𝑡W1(𝜇⊗𝑁 , 𝜈⊗𝑁 ) = 1

𝜑0
𝑒−𝛽𝑡W1(𝜇, 𝜈), ∀𝑡 ⩾ 0.

Here, (𝑃𝑡)𝑡⩾0 is the semigroup of the IPS inR𝑑𝑁 , andW1(𝜇, 𝜈) denotes the usualWasserstein-1
distance between 𝜇 and 𝜈. Using the triangle inequality, we have

W1(𝜇P̄𝑡 , 𝜈P̄𝑡)

= W1(𝜇⊗𝑁 P̄⊗𝑁
𝑡 , 𝜈⊗𝑁 P̄⊗𝑁

𝑡 )

⩽ W1(𝜇⊗𝑁 P̄⊗𝑁
𝑡 , 𝜇⊗𝑁P𝑡) +W1(𝜈⊗𝑁 P̄⊗𝑁

𝑡 , 𝜈⊗𝑁P𝑡) +W1(𝜇⊗𝑁P𝑡 , 𝜈
⊗𝑁P𝑡)

⩽ W1(𝜇⊗𝑁 P̄⊗𝑁
𝑡 , 𝜇⊗𝑁P𝑡) +W1(𝜈⊗𝑁 P̄⊗𝑁

𝑡 , 𝜈⊗𝑁P𝑡) +
1
𝜑0
𝑒−𝛽𝑡W1(𝜇, 𝜈). (4.109)

By Theorem 4.6, for given 𝑡 > 0 there exists a constant 𝐶0 = 𝐶0(𝑑, 𝜎, 𝐿0, 𝐿1, 𝑡) such that

W1(𝜇⊗𝑁 P̄⊗𝑁
𝑡 , 𝜇⊗𝑁P𝑡) ⩽

𝐶0

𝑁
. (4.110)

Using the inequalities (4.109) and (4.110) we obtain

W1(𝜇P̄𝑡 , 𝜈P̄𝑡) ⩽
2𝐶0√
𝑁

+ 1
𝜑0
𝑒−𝛽𝑡W1(𝜇, 𝜈).

Fix 𝑡 > 0 and let 𝑁 → ∞, we obtain

W1(𝜇P̄𝑡 , 𝜈P̄𝑡) ⩽ 𝐶𝑒−𝛽𝑡W1(𝜇, 𝜈),

yielding the desired result. ■

Next it is convenient to apply the triangle inequality framework to estimate W1(𝜋̄⊗𝑁 , 𝜋).
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Theorem 4.8. Under Assumptions 2.2 & 4.1, let 𝑓 (𝑟), 𝑐0, 𝜑0 be defined as in Lemma 2.5, and
(P̄𝑡)𝑡⩾0 be the dual semigroup of the MVP (2.21). If the constant 𝐿1 in Assumption 4.1 satisfies

𝐿1 ⩽
1
4
𝑐0𝜑0𝜎

2,

then the MVP has a unique invariant distribution 𝜋̄ ∈ P(R𝑑), and

W1(𝜈P̄𝑡 , 𝜋̄) ⩽
1
𝜑0
𝑒−𝛽𝑡W1(𝜈, 𝜋̄), ∀𝑡 ⩾ 0, (4.111)

where 𝛽 = 1
2𝑐0𝜑0𝜎

2. Furthermore, there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0) such that

W1(𝜋̄⊗𝑁 , 𝜋) ⩽ 𝐶
√
𝑁
. (4.112)

Since (P̄𝑡)𝑡⩾0 is a nonlinear dual semigroup, we cannot use the same technique as in the linear
case. Our proof below is partially inspired from Theorem 5.1 of Cañizo and Mischler (2023).

Proof of Theorem 4.8. First we prove the existence of the invariant distribution 𝜋̄ ∈ P(R𝑑) of
the MVP (2.18). Choose the constant 𝑇 which satisfies 1

𝜑0
𝑒−𝛽𝑇 = 1

2 , then we have

W1(𝜇P̄𝑇 , 𝜈P̄𝑇) ⩽
1
2
W1(𝜇, 𝜈)

for any probability distributions 𝜇, 𝜈 ∈ P(R𝑑). Hence the mapping 𝜇 ↦→ 𝜇P̄𝑇 is contractive in
the complete metric space (P1(R𝑑),W1). Using the Banach fixed point theorem, there exists
a unique fixed point 𝜋̄ ∈ P1(R𝑑) such that

𝜋̄P̄𝑇 = 𝜋̄.

Since (P̄𝑡)𝑡⩾0 forms a semigroup, for any 𝑡 ⩾ 0 we have(
𝜋̄P̄𝑡

)
P̄𝑇 = 𝜋̄P̄𝑡 ,

which implies 𝜋̄P̄𝑡 ∈ P1(R𝑑) is the invariant distribution of the operator P̄𝑇 . Due to the
uniqueness of the invariant distribution 𝜋̄ for the operator P̄𝑇 , we obtain

𝜋̄P̄𝑡 = 𝜋̄, ∀𝑡 ⩾ 0,

hence 𝜋̄ ∈ P1(R𝑑) is the invariant distribution of the semigroup (P̄𝑡)𝑡⩾0.
Next we estimate the difference between the invariant distributions 𝜋 ∈ P1(R𝑑𝑁 ) and

𝜋̄ ∈ P1(R𝑑). We choose the constant 𝑇 according to 1
𝜑0
𝑒−𝛽𝑇 = 1

2 . Using the propagation of
chaos in Theorem 4.6, there exists a constant 𝐶 = 𝐶 (𝑑, 𝜎, 𝜅(·), 𝐿0) such that

W1(𝜋̄⊗𝑁 , 𝜋) = W1(𝜋̄⊗𝑁 P̄⊗𝑁
𝑇 , 𝜋P𝑇)
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⩽ W1(𝜋̄⊗𝑁 P̄⊗𝑁
𝑇 , 𝜋̄⊗𝑁P𝑇) +W1(𝜋̄⊗𝑁P𝑇 , 𝜋P𝑇)

⩽
𝐶
√
𝑁

+ 1
𝜑0
𝑒−𝛽𝑇W1(𝜋̄⊗𝑁 , 𝜋)

=
𝐶
√
𝑁

+ 1
2
W1(𝜋̄⊗𝑁 , 𝜋),

which implies the inequality W1(𝜋̄⊗𝑁 , 𝜋) ⩽ 𝐶√
𝑁
. ■

Main theorem: long-time error in approximating MVP Combining Theorem 4.5 and
Theorem 4.8, we immediately obtain the following result of long-time sampling error of the
discrete RB–IPS (2.22) in approximating the invariant distribution 𝜋̄ ∈ P(R𝑑).

Theorem 4.9. Under Assumptions 2.2 & 4.1, let 𝑐0, 𝜑0 be defined as in Lemma 2.5, and ℎ0 be
defined as in Lemma 4.10. If the initial distribution 𝜈 ∈ P(R𝑑𝑁 ) satisfies

max
1⩽𝑖⩽𝑁

∫
R𝑑𝑁

|𝑥𝑖 |4𝜈(d𝒙) ⩽ 𝑀,

and the constant 𝐿1 in Assumption 4.1 and the step size ℎ satisfy

𝐿1 ⩽
𝑐0𝜑0𝜎

2

4
, ℎ ⩽ ℎ0,

then there exist positive constants 𝜆 = 𝜆(𝑑, 𝜎, 𝜅(·), 𝐿0), 𝐶1 = 𝐶1(𝑑, 𝜎, 𝜅(·), 𝐿0, 𝑀) and 𝐶2 =

𝐶2(𝑑, 𝜎, 𝜅(·), 𝐿0) such that the discrete RB–IPS (2.22) satisfies

W1(𝜈Q̃ℎ𝑛, 𝜋̄⊗𝑁 ) ⩽ 𝐶1
√
ℎ + 𝐶1𝑒

−𝜆𝑛ℎ + 𝐶2√
𝑁
, ∀𝑛 ⩾ 0. (4.113)

If we define the empirical distribution of the 𝑁-particle system {𝑌 𝑖𝑡 }𝑁𝑖=1 as

𝜇̃ℎ𝑛 (𝑥) =
1
𝑁

𝑁∑
𝑖=1

𝛿(𝑥 − 𝑌 𝑖𝑡 ) ∈ P(R𝑑), 𝑥 ∈ R𝑑, (4.114)

then 𝜇̃ℎ𝑛 (𝑥) is a random probability distribution inR𝑑. According to Proposition 2.14 of Hauray
and Mischler (2014), we can also write (4.113) as

E
[
W1( 𝜇̃ℎ𝑛, 𝜋̄)

]
⩽ 𝐶1

√
ℎ + 𝐶1𝑒

−𝜆𝑛ℎ + 𝐶2√
𝑁
, ∀𝑛 ⩾ 0. (4.115)

Theorem 4.9 characterizes the long-time sampling error of the discrete RB–IPS (2.22)
in approximating the invariant distribution 𝜋̄ ∈ P(R𝑑). The error terms in (4.113) consist of
three components: (1) 𝐶1

√
ℎ, error due to time discretization and random batch divisions; (2)

𝐶1𝑒
−𝜆𝑛ℎ, error from the exponential convergence of the discrete RB–IPS; (3) 𝐶2/

√
𝑁 , error

from the uniform-in-time propagation of chaos. In particular, the constants 𝐶1, 𝐶2 and 𝜆 do
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not depend on the number of particles 𝑁 , the batch size 𝑝 and the step size ℎ, showing that the
reliability of the discrete RB–IPS to sample the distribution 𝜋̄.

4.5 Numerical tests
We perform numerical tests to evaluate the convergence and accuracy of the discrete RB–

IPS (2.22) in sampling the IPS. Assume the drift force 𝑏(𝑥) = −∇𝑈 (𝑥) and the interaction
force 𝐾 (𝑥) = −∇𝑉 (𝑥) with 𝜎 =

√
2, so that the invariant distribution 𝜋(𝒙) is given by (2.20):

𝜋(𝒙) ∝ exp

(
−

𝑁∑
𝑖=1

𝑈 (𝑥𝑖) − 1
𝑁 − 1

∑
1⩽𝑖< 𝑗⩽𝑁

𝑉 (𝑥𝑖 − 𝑥 𝑗)
)
, 𝒙 ∈ R𝑑𝑁 .

Example: non-convex potential with aggregation interaction Let the external potential
𝑈 (𝑥) and the interaction potential 𝑉 (𝑥) be given by

𝑈 (𝑥) = 1
2
𝑥2 + 3.5𝑒−(𝑥−0.3)2

, 𝑉 (𝑥) = −𝑒−𝑥2
, (4.116)

and it is evident from Figure 4.2 that 𝑈 (𝑥) is a non-convex double-well potential, while 𝑉 (𝑥)
induces an aggregation effect on the interacting particles.

Figure 4.2 Graphs of the potential functions 𝑈 (𝑥) and 𝑉 (𝑥) in (4.116).

Next, we fix the number of particles to 𝑁 = 64 and simulate the IPS (2.17) (without
random batch approximations) with a step size of ℎ = 1

32 and a simulation time of𝑇 = 107. The
sampling trajectory of the first particle, 𝑥1

𝑡 , is shown in Figure 4.3, and the marginal distribution
of the target distribution 𝜋(𝒙) is shown in Figure 4.4.
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Figure 4.3 Sampling trajectory of 𝑥1
𝑡 from the IPS (2.17) over a finite time.

Figure 4.4 Marginal of 𝜋(𝒙) in blue, and the distribution exp(−𝑈 (𝑥)) in red.

From Figure 4.3, we observe that the IPS (2.17) is ergodic, with the particle 𝑥1
𝑡 alternately

switching between the two basins of the potential function𝑈 (𝑥). In Figure 4.4, we see that the
marginal distribution of 𝜋(𝒙) slightly differs from the distribution exp(−𝑈 (𝑥)). The presence
of the interaction potential causes the target distribution to be more concentrated around the
global minimum of𝑈 (𝑥).

In the following, we fix the simulation time at 𝑇 = 105 and test the convergence of the
discrete RB–IPS (2.22) with different choices of step size ℎ. We also test the convergence of
the discrete IPS, which can be viewed as a special case of the discrete RB–IPS with batch size
𝑝 = 𝑁 . The sampling errors of the algorithms are computed from the quadratic mean of the
errors in calculating the averages of the following five test functions:{

𝑒−2𝑥2
, 𝑒−2(𝑥−0.4)2

, 𝑒−2(𝑥+0.4)2
, 𝑒−2(𝑥−0.8)2

, 𝑒−2(𝑥+0.8)2}
.
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We compute the sampling errors for these algorithms with step sizes ℎ = 1
2 ,

1
4 ,

1
8 ,

1
16 and batch

sizes 𝑝 = 2, 4. The results are shown in Figure 4.5 and Table 4.2.

Figure 4.5 Sampling error of the discrete IPS and the discrete RB–IPS for various step sizes
ℎ = 1

2 ,
1
4 ,

1
8 ,

1
16 . The batch sizes 𝑝 are set to 2 and 4.

step size ℎ 1
2

1
4

1
8

1
16

discrete IPS 0.0993 0.0532 0.0215 0.0067

discrete RB–IPS (𝑝 = 2) 0.1022 0.0570 0.0241 0.0076

discrete RB–IPS (𝑝 = 4) 0.1001 0.0545 0.0219 0.0069

Table 4.2 Sampling error of the discrete IPS and the discrete RB–IPS for various step sizes
ℎ = 1

2 ,
1
4 ,

1
8 ,

1
16 . The batch sizes 𝑝 are set to 2 and 4.

From Figure 4.5 and Table 4.2, we observe that the discrete RB–IPS (2.22) exhibits a con-
vergence order of 1 with respect to the step size ℎ, which exceeds the theoretical result in
Theorem 4.5. Additionally, since the interaction force is small and the discretization error
dominates the error bound, the sampling results remain highly accurate even when 𝑝 = 2.

4.6 Brief summary
The RB–IPS (2.21) serves as an efficient samplingmethod for interacting particle systems,

with the discrete RB–IPS (2.22) being its time discretization. In this work, we rigorously
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established the long-time behavior of the RB–IPS (Theorem 4.1) and analyzed the long-time
error of the discrete RB–IPS (Theorem 4.5). We demonstrated that the convergence order
with respect to the step size is 𝑂 (

√
ℎ) in general. Moreover, when the interaction force is

moderately large, the convergence rate is independent of the number of particles 𝑁 , the batch
size 𝑝, and the step size ℎ. By combining error analysis with the propagation of chaos, we
further showed that the discrete RB–IPS can reliably sample the invariant distribution of the
MVP (2.18) (Theorem 4.9).
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Chapter 5 Conclusion

This thesis has explored fundamental aspects of ergodicity and long-time behavior in
high-dimensional stochastic processes, focusing on two critical sampling methodologies: Path
Integral Molecular Dynamics (PIMD) and the Random Batch Method (RBM). By addressing
theoretical challenges and providing practical insights, the work contributes significantly to
the field of computational mathematics and physics.

The main contributions of this thesis include a rigorous establishment of the uniform-in-
𝑁 ergodicity of the underdamped Langevin dynamics in Path Integral Molecular Dynamics
(PIMD), ensuring that the convergence rate remains independent of the number of beads. This
advancement significantly enhances the theoretical applicability of PIMD. Additionally, the
thesis provides a systematic study of the ergodicity properties of the Random Batch Interacting
Particle System (RB–IPS), along with an in-depth analysis of the long-time error of the discrete
RB–IPS. These results offer a solid theoretical foundation for related sampling methods.

Building upon these findings, several potential directions for future research are proposed.
A rigorous error analysis of stochastic gradient-based sampling methods is an ongoing effort,
aiming to further refine the theoretical framework. Moreover, leveraging machine learning
techniques and extending generative models could lead to the development of new and effi-
cient sampling algorithms for complex distribution sampling. Another promising direction
involves designing specialized sampling algorithms tailored to practical applications, such as
high-dimensional physical and data science problems, to enhance their performance in real-
world scenarios.

In conclusion, this thesis has provided both theoretical insights and practical tools for
high-dimensional sampling. The uniform-in-𝑁 properties and rigorous error analyses pre-
sented here not only deepen the understanding of PIMD and RBM but also establish a founda-
tion for future innovations in computational mathematics and physics.
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