HH: 2L EREES X

B8 B 4 RN ET E)iR =
4 AR
= 2. 2001110036
B & BEME S5
t W v 4
kb R AN I )% i
SImtta: A% (F#HASF)

M FRFEL O LFM

—O—"H 4 N H






AL ]

AT IR A AR SO R IRCAS I BRI N, REAIRSHEE R, AFRA
WA, TRAFREREAE S, Yoo, AMRBLMEAT )7 S0k 40— H51EA
TEHEZAALZ A, ] BERIHIA ST






S

fil %

N AT R N £ e A = K e TR 7/ B oy R QI L= W A5 BT o R DA K o
DU HE KT DA B AL A2y > S 8e . e A HLT 9 R R FE BN TIRRE R 4. TR
P72 DA SR e s e AR A R 28 SR B S . AR SCEE sUIFSY T T B SR A Y Y
i AR A AT R s ARy T8l 112 (Path Integral Molecular Dynamics, PIMD )
FIBEHLS 24175 (Random Batch Method, RBM) o 33X $E 77 ffue T o 4 RAE 174 5 S Bk
i, AFRCREFT AR . BfRR R G P A RN SO E DA ST A s [RIASEADL v S R Rt

IR T R — M) T T R R T RCFISEN A, X
THRE T 250 P R 2 X EE, PIMD B8 T 1E W R ZEMS-h il N DT
HMAERAREW ARG, 15 RFEEIY) Boltzmann 437 AN FI fE. SR, HALRKE
PLEh Dy T EAE N R —3 (IS RAHOf T 2 F8cR) 2 — 1D ERM
FREHRA . AE SO ARUER] T K FHJE Langevin 3l Jj2#4E PIMD Hridyshi X} N frfe—
B, AR T T R . ZGIRA(UERN T PIMD BUE I P A ,
R T LT A, AR RO T Bl sz,

BREAIL 53 2H v — P S EAE R T R GRS R0t 55, a8 i T oA
AR AT SR A T R R TR O G . R T RE L AR, RBM R
RS RO A MR, FENELREE RGNS . B SCRET R4
M EAEH KT %% (Random Batch Interacting Particle System, RB-IPS) , B T i
PIYEAE N B30, I35 BRI Wasserstein-1 1222 552k O(Vh), i b
SRR . AN, AR SO T B EL RB-IPS BRI [a14T 8, ERH H K I fa) iR 22 DA
O (e~ + Vh) FEU, Hh A s TR FRE SRR . FRATEREX LR e )
AR, UERH T RB-IPS 7Ei#E i McKean—Vlasov 3 7% i1 4371 b i) A (8 14 i vl
Pt

FUESCR AR TS SR, FF R T PIMD HI RBM T it s ZEFI R AUASRAT: 1]
R SEBR AR . IR BEGRRY], XL IR BB AR S A AT PR Rl ), SE B ks
JERFE, BIEAER 705 e R L & 4E i = ) R Ge @ Qi . X ARy ¥ ik g
XN PRFE—BUREROC N B, TR T HAE SR P AT EE R R

B2, IS SCEEBEIS AISL X PIMD Al RBM pUBRMRMOE T EE o, 4T
JURGIAIER . R IRZE M DA R G Bk BB ERE . X SRk A PR R T YT
JERAFESRE S HAR T3 BEVL PRI bLas 27 > T Y BEE T B4

K BRI T B e, B ATIR, PITE, OREE, mZERSE.
I



R A2 A 8 ST

I



ABSTRACT

Ergodicity and Long-Time Error of Complicated Stochastic

Processes and Numerical Methods

Xuda Ye (Computational Mathematics)
Directed by Prof. Zhennan Zhou

ABSTRACT

Sampling from high-dimensional distributions is a cornerstone of computational mathe-
matics and physics, with applications spanning molecular dynamics, Bayesian inference, and
machine learning. Efficient and scalable sampling algorithms are indispensable for explor-
ing complex systems, computing thermodynamic properties, and solving high-dimensional
integration problems. This thesis focuses on the ergodicity and long-time behavior of two
prominent sampling methods: Path Integral Molecular Dynamics (PIMD) and the Random
Batch Method (RBM). These methods address critical challenges in high-dimensional sam-
pling, such as maintaining computational efficiency, ensuring convergence of algorithms in
large systems, and achieving high accuracy over long-time simulations.

Path Integral Molecular Dynamics (PIMD) is a widely used approach for computing quan-
tum thermal averages, which are crucial for understanding the equilibrium properties of quan-
tum systems. By mapping the quantum canonical ensemble to a classical ring-polymer system
with N beads, PIMD enables sampling of the corresponding Boltzmann distribution. However,
ensuring that the stochastic dynamics exhibit uniform-in-N ergodicity—where the convergence
rate is independent of the number of beads—is a significant theoretical challenge. In this the-
sis, we rigorously prove the uniform-in-N ergodicity of the underdamped Langevin dynamics
in PIMD, measured in terms of relative entropy. This result not only fills an important gap in
the theoretical understanding of PIMD but also leverages the generalized I" calculus to provide
explicit convergence rates for high-dimensional stochastic processes.

The Random Batch Method (RBM) offers a computationally efficient approach for sim-
ulating interacting particle systems, where the cost of computing all pairwise interactions typ-
ically grows quadratically with the number of particles. By randomly grouping particles into
batches, RBM reduces this computational complexity to linear scaling while approximately

preserving the system’s statistical properties. This thesis focuses on the Random Batch Inter-

I
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acting Particle System (RB-IPS), establishing its uniform-in-N ergodicity and bounding the
Wasserstein-1 error from the target distribution by O(Vh), where h is the time step size. Fur-
thermore, we analyze the long-time behavior of the discrete RB-IPS, proving that its long-time
error decays as O (e~ + Vh), where A is a convergence rate independent of the number of par-
ticles. These results are extended to the mean-field limit, where the RB—IPS approximates
the invariant distribution of the McKean—Vlasov process, further demonstrating the method’s
robustness and scalability.

Numerical experiments validate the theoretical findings and highlight the practical ef-
ficiency of PIMD and RBM in addressing high-dimensional and large-scale sampling chal-
lenges. The results demonstrate the ability of these methods to achieve accurate sampling
while maintaining computational feasibility, even in systems with a large number of particles
or high-dimensional configurations. The uniform-in-N properties of both methods are partic-
ularly noteworthy, as they ensure reliability and efficiency for real-world applications.

In summary, this thesis provides significant contributions to the theoretical and practical
understanding of PIMD and RBM, offering rigorous proofs, quantitative error analysis, and
validated numerical performance. These advancements pave the way for further exploration
of scalable sampling algorithms and their applications in computational physics, stochastic

analysis, and machine learning.

KEY WORDS: Path Integral Molecular Dynamics, Random Batch Method, Ergodicity, Sam-
pling, High-dimensional Systems.
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CHAPTER 1 INTRODUCTION

Chapter 1  Introduction

In a sampling problem, the goal is to draw samples from a target probability distribution
n(x), which is often expressed in the form 7 (x) oc exp(—V(x)), where V(x) represents a po-
tential function. A sampling algorithm aims to generate a sequence of samples {Xy};"_, such
that the statistical properties of 7(x) can be inferred from this sequence.

Sampling is a fundamental problem in both computational physics and mathematics, with
diverse applications in fields such as molecular dynamics, Bayesian inference, and machine
learning. In computational physics, particularly in molecular dynamics, sampling methods are
indispensable for exploring the configuration space of many-body systems and for calculating
thermodynamic averages. The target distribution 7(x) often corresponds to the Boltzmann
distribution, representing the equilibrium state of the system (Frenkel and Smit, 2023; Tuck-
erman, 2023; Leimkuhler and Matthews, 2015). Accurate sampling enables the estimation
of properties such as free energy, entropy, and transport coeflicients, which are critical for
understanding the macroscopic behavior of complex systems.

In machine learning, sampling methods generate new data points that are similar to the
training data. They are also used to train generative models, which can generate new data
points that are indistinguishable from real data (Goodfellow et al., 2020). A prominent example
of sampling methods in data science is the diffusion model, which is a generative model that
learns to generate new data points by reversing a gradual noising process (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020; Croitoru et al., 2023). Diffusion models have achieved
state-of-the-art results in image generation, and they can also be used for other tasks such as text
generation and audio generation. However, diffusion models can be computationally expensive
to train, and they can also be prone to generating blurry or unrealistic samples.

Provided the strongly science motivated sampling problems, we require efficient sampling
methods for exploring complex distributions. Some popular sampling methods include Markov
chain Monte Carlo (MCMC) (Metropolis and Ulam, 1949; Hastings, 1970; Neal et al., 2011),
importance sampling (Kong et al., 1994; Neal, 2001; Tokdar and Kass, 2010) and Stochastic
Gradient Langevin Dynamics (SGLD) (Welling and Teh, 2011; Chen et al., 2014). MCMC
methods work by constructing a Markov chain whose stationary distribution is the target dis-
tribution; importance sampling methods work by sampling from a proposal distribution that is

similar to the target distribution; while SGLD is a variant of the Langevin dynamics (Leimkuh-
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ler and Matthews, 2015; Haile, 1992) that uses stochastic gradients to sample from the target
distribution. The choice of the sampling method depends on the specific problem being ad-
dressed, including the dimensionality of the space, the complexity of the distribution, and the
available computational resources.

The importance of sampling methods becomes even more pronounced in high-dimensional
problems, which are common in both molecular dynamics and data science. In molecular dy-
namics, the dimensionality grows rapidly with the number of particles, leading to a vast con-
figuration space that must be efficiently explored to ensure accurate results. Similarly, in data
science, high-dimensional sampling is crucial for tasks such as posterior inference, genera-
tive modeling, and high-dimensional optimization. The curse of dimensionality renders naive
methods infeasible, necessitating the development of scalable and efficient algorithms. Ad-
vances in sampling not only enhance our ability to solve these challenging problems but also
drive progress in related areas such as optimization, statistical physics, and machine learning.

Given the importance of high-dimensional sampling problems, understanding the accu-
racy of sampling algorithms is crucial. The sampling quality of an algorithm can be assessed
in several ways. Let (x) be the target distribution in R, and let {X; },-0 be the sequence of
samples produced by the algorithm. If our goal is to compute the high-dimensional integral
n(f) := fRd f(x)m(x)dx for a specific test function (or observable function) f(x), then the
sampling accuracy can be conveniently determined from the time average error:

1 K-1
time average error at the K-th step = T Z f(Xy) —n(f), (1.1)
k=0

where the integer K signifies the number of steps in the algorithm. Another approach to charac-
terizing sampling accuracy is to compare the distance between distribution laws. Suppose we
have a metric d(-, -) on the probability space P (R?), and let u;, = Law(X}) be the distribution
law of Xj at the k-th step. Then, the distribution law error of the algorithm is given by

distribution law error at the K-th step = d(ug, ). (1.2)

Inboth (1.1) and (1.2), we expect the sampling accuracy to systematically improve as the num-
ber of steps K increases. However, verifying such convergence is not trivial, and an essential
theoretical approach—ergodicity—is required to rigorously analyze the sampling accuracy.
In this paper, we study sampling algorithms based on the discretization of Stochastic Dif-
ferential Equations (SDEs). Ergodicity characterizes the rate at which the distribution law of

an SDE converges to the target distribution. On one hand, ergodicity captures the exponential
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convergence rate of the distribution law, indicating the time required to obtain an effective
sample point. On the other hand, it ensures the stability of the SDE, facilitating the analysis of
the long-time error in sampling algorithms derived from time discretization.

Various methods exist for proving the ergodicity of a given SDE. In this work, we pri-
marily employ reflection coupling (Eberle, 2011) and the generalized I'-calculus (Monmarché,
2019). A brief review of popular techniques for establishing ergodicity is provided in Sec-
tion 2.4, where we also introduce the triangle inequality framework. The triangle inequality
framework offers a quantitative estimate of the long-time error in sampling algorithms by lever-
aging both the ergodicity and the finite-time error.

In the following, we aim to rigorously analyze the ergodicity and long-time behavior of
two specific sampling algorithms: Path Integral Molecular Dynamics (PIMD) and Random
Batch Method (RBM).

The PIMD is designed to compute the thermal average of a specific observable within
a quantum canonical ensemble. Quantum thermal averages are vital in describing the ther-
mal properties of complex quantum systems, including chemical reaction rates (Miller, 1993;
Clary, 1998) and phase transitions (Voth, 1993; Sondhi et al., 1997). The PIMD approach is
inspired by Feynman’s path integral formulation (Feynman, 2018), which maps the original
quantum canonical ensemble to a classical Boltzmann distribution of a ring-polymer system
with N beads (Schweizer et al., 1981; Marx and Parrinello, 1996; Liu et al., 2016). Accurate
computation of thermal averages requires N — oo, making it essential to investigate whether
the stochastic process used to sample the target Boltzmann distribution exhibits uniform-in-N
ergodicity. This property ensures that the convergence rate of the stochastic process is inde-
pendent of N.

The RBM, introduced by Jin et al. (2020), is an efficient sampling algorithm for the inter-
acting particle system (IPS). The IPS is a fundamental model in molecular dynamics, widely
used to describe the collective behavior of particles interacting through pairwise forces. Such
systems are crucial for studying a variety of physical and chemical phenomena, including
molecular simulations (Frenkel and Smit, 2023), plasma dynamics (Nicholson, 1983), and
chemical reaction modeling (Haile, 1992). In these systems, each particle experiences forces
from all others, making the simulation computationally challenging as the number of particles
N increases. Specifically, the cost of computing all pairwise interactions grows quadratically
with N, i.e., O(N?), creating a bottleneck for large-scale simulations.

Beyond their role in molecular dynamics, the IPS has a significant mathematical prop-
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erty: their behavior as N becomes very large can be approximated by the mean-field limit,
which is described by the McKean—Vlasov process (MVP) (McKean, 1967; Sznitman, 1991;
Chaintron and Diez, 2021, 2022). The MVP is a nonlinear stochastic model that captures the
average effect of all particles in the system, making it a powerful tool in statistical physics,
population dynamics, and emerging areas like machine learning (Carrillo et al., 2018). This
mean-field approximation allows to study macroscopic properties of particle systems without
the computational expense of simulating all individual interactions. However, the accuracy
of this approach relies on the ability to efficiently sample the particle system, particularly for
long-time simulations where statistical averages are critical.

The contributions of this thesis are as follows:

Path Integral Molecular Dynamics (PIMD): We establish a rigorous proof of uniform-
in-N ergodicity for the underdamped Langevin dynamics associated with the N-bead ring poly-
mer, quantified via the relative entropy (Theorem 3.2). This result addresses a critical theo-
retical gap by guaranteeing that the convergence rate toward the invariant distribution remains
independent of N, even as the dimensionality grows. Such uniform convergence is pivotal
for ensuring the scalability and reliability of PIMD in practical high-dimensional quantum
simulations. Additionally, this finding demonstrates a novel application of the generalized I"
calculus, allowing explicit derivation of convergence rates for complex stochastic processes,
further broadening its utility in computational mathematics and quantum physics. Our major
proof technique is generalized I calculus, which is able to produce explicit convergence rate
for the underdamped Langevin dynamics.

Random Batch Method (RBM): Our focus is on the Random Batch Interacting Particle
System (RB-IPS), a key approximation for large-scale particle simulations. We prove that RB—
IPS achieves uniform-in-N ergodicity (Theorem 4.1) and demonstrate that the Wasserstein-1
error from the target distribution is bounded by O(Vh), where h denotes the step size (Theo-
rem 4.3). Furthermore, we analyze the long-time behavior of time-discrete RB-IPS, establish-
ing a bound on its long-time error of O (e~ + V), with A as a convergence rate independent
of N and h (Theorem 4.5). Leveraging the propagation of chaos, we also derive the long-time
error for discrete RB-IPS in approximating the invariant distribution of the McKean—Vlasov
process (Theorem 4.9). These contributions provide a robust theoretical foundation for the
efficiency and accuracy of RB—IPS in large-scale simulations, reinforcing its potential to sig-
nificantly reduce computational costs while maintaining high fidelity in the statistical proper-

ties of particle systems. Our proof technique is the reflection coupling, which is convenient to
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validate the ergodicity of the IPS with nonconvex potentials.

Collectively, these results advance the theoretical understanding of ergodicity and long-
time error analysis for high-dimensional stochastic processes, with direct implications for molec-
ular dynamics, statistical physics, and computational algorithms in scientific computing.

The thesis is organized as follows. Chapter 1 introduces the background and motivation
for this study, highlighting the importance of high-dimensional sampling algorithms and the
specific challenges addressed in this work. Chapter 2 provides a comprehensive review of
the theoretical and methodological foundations, including Path Integral Molecular Dynamics
(PIMD), the Random Batch Method (RBM), and key analytical tools such as the generalized I"
calculus and coupling techniques. Chapter 3 focuses on the uniform-in-N ergodicity of PIMD,
presenting rigorous proofs and illustrating their implications for sampling quantum thermal av-
erages. Chapter 4 addresses the RB-IPS, detailing its uniform-in-N ergodicity, approximation

error, and long-time behavior, with an extension to the mean-field limit.
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Chapter 2  Background

The background knowledge necessary for this thesis is presented in this section, providing
the theoretical foundation and methodological tools essential for the analysis in later chapters.
We begin by introducing two key concepts—ergodicity and long-time error, which are funda-
mental to understanding the convergence properties of stochastic sampling algorithms. Next,
we provide an overview of Path Integral Molecular Dynamics (PIMD) and the Random Batch
Method (RBM), the two primary sampling methods studied in this work. Their mathematical
formulations and practical relevance are discussed in detail. Additionally, we review theoret-
ical approaches for analyzing ergodicity and long-time behavior, including the generalized I
calculus and reflection coupling techniques, which serve as the main analytical tools in the sub-
sequent chapters. These foundations will be directly applied in Chapters 3 and 4 to establish

rigorous results on the ergodicity and error analysis of PIMD and RBM, respectively.

2.1 Basic notions: ergodicity and long-time error

Given the Markov process (x;);s0 in R?, define the Markov semigroup (P,)s¢ as:

(P, f)(x) =E[f(xt) :xo:x], x € RY, 2.1

where f(-) is a test function in C*(R9). The dual of (P,)s is the dual semigroup (P;);s0,
which acts on probability distributions on R¢, which are denoted by the set £ (R¢)®. Specif-
ically, for any initial distribution v with the initial state xo ~ v of the Markov process, the
notation vP, € P(R?) represents the distribution law of x;,.

If the infinitesimal generator of (x,),s¢ is £, then the Markov semigroup (P;),>¢ and the

dual semigroup (P,),>( can be expressed as:

where £ is the adjoint operator of £ in L?(R¢). This operator is also known as the forward
Kolmogorov operator or the Fokker—Planck operator.

Ergodicity characterizes the long-time convergence of stochastic processes. If the Markov

(1) The letter P in the Markov semigroup (P;);so, the dual semigroup (;),so and the probability distribution set P (R?) is
distinguished by the fonts.
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process (x;);so has an invariant distribution 7 € £ (R¢), meaning:
P, =m, Vtz=0, (2.2)
and there exist constants C, A, and a metric d(-, -) on probability distributions such that:
d(vP,, m) < Ce™d(v,n), Vt>0, (2.3)
for any probability distribution v € P (R?), then (x;), exhibits ergodicity.

Remark 2.1. The metric d(-, ) does not need to be symmetric nor means to be a metric space.
Common choices of d(-, -) include the total variation, the relative entropy (KL divergence), and

the Wasserstein distance.

When d(-, -) is the relative entropy H (-|-), the ergodicity property (2.3) can be equivalently
expressed as:

Ent. (P, f) < Ce ™ Ent,(f), Vt>0, (2.4)

where Ent, (f), the entropy of a positive test function f, is defined as:
Ent,(f) = flog fdn —/ fdnlog/ fdn. (2.5)
R4 R4 R4

In particular, by setting f = g—; in (2.4), we recover the inequality (2.3).
The stochastic process (x;);>o must be discretized in the time ¢ for implementation on a
computer, and the discretization error depends on the step size /& and the order of the numerical

method. As a simple example, consider the stochastic differential equation (SDE):
i =b(x,) + 0B, (2.6)

where b(-) : RY — R is the drift force, o > 0 is the diffusion coefficient, and (B,);s¢ is the
Brownian motion in R¢. Moreover, the Euler—Maruyama integrator provides a straightforward

discretization for the SDE (2.6) with strong order one:
Enetyn = Zun + D (Ean)h + oVREn, &y ~ N(O, 1) 2.7)

In general, let (X;),>o be the numerical approximation of (x;),»¢, and (P,):>0 be its dual

semigroup. If there exists an error function £(/) such that lim;,_,o £(h) = 0 and
d(vP,,m) < Ce ™ + &(h), (2.8)

then the long-time error of (%,),>¢ is said to exhibit exponential decay. Specifically, X, provides

reliable samples of the target distribution by choosing a sufficiently large evolution time ¢ and

8



CHAPTER 2 BACKGROUND

a sufficiently small step size h.

In conclusion, ergodicity describes the long-time behavior of a stochastic process, ensur-
ing convergence to the invariant distribution and effective exploration of the state space. Itis a
fundamental property for understanding the stability and convergence of stochastic dynamics.

The long-time error, in contrast, quantifies the accuracy of numerical algorithms in sam-
pling the invariant distribution, accounting for discretization and step size effects. Together,
these concepts provide a framework for evaluating the theoretical and practical efficiency of
stochastic simulation methods, crucial for applications in statistical physics, machine learning,

and computational chemistry.

2.2 Path integral molecular dynamics

Path Integral Molecular Dynamics (PIMD) is a fundamental tool for computing quantum
thermal averages. In this section, we demonstrate how the path integral formulation reformu-
lates the quantum canonical ensemble into the problem of sampling a ring polymer system
composed of N beads.

Consider the quantum system in R¢ given by the Hamiltonian

ﬂ:—%+V@L (2.9)

where A and £ are the Laplacian and position operatoes in R?, and V (-) is a real-valued potential
function in RY. When the quantum system is at a constant temperature 7 = 1/, the state of
the system is described by the canonical ensemble with the density operator e PH and thus the
partition function is Z = Tr[e #H]. We assume the observable operator O (X) depends only on
the position operator £, where O(-) is a real-valued function in R¢. Then the quantum thermal

average of the system is defined as the canonical average of O (%), namely
<mmm:%ﬁwﬂwmn (2.10)
Here, using the quantum bra-ket notation (Dirac notation), we can also write
N =7 [ 06 Gle P @11

To compute (O(X))g, we only need to sample the probability density proportional to
(x|ePH|x). Let N € N be an integer and x; € R? be a fixed position. Using the equality

Id:/IRdlx)(xldx
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and define Sy = B/N, we have the approximation

(xile PP xy) = / Gile PNy - ey le PV xy)y do -y (2.12)
N
= [T ¢wle gy sy
j=1
N BN B
z/l_[ (xjle” Ve e TV xn ) day - - diy

Il
—_

J

N
=/ﬂMWWHvﬁw%4% an
j=1
N [ v 1 2
- -BN Zj:| V(x_/) T 28N |xj_xj+|| dx . dx
e 2 N
-/ D (27TﬁN)2 ]
1
= ——— [ e VI ™My - day, (2.13)
(2rpn) =
where the energy function Ey (xy, - -+ ,xy) is defined by
1 N N
En(xp, - ,xN):ﬁ2|xj—xj+1|2+,8NZV(xj). (2.14)
N 53 =1

Here, we admit the periodic boundary condition for {x; namely, xy,; = x;. Therefore,

/ I
the quantum thermal average (O (X)) can be approximated as

N
. 1
(O(%))p z/ (—ZO(Xj) my(xy, e, xn)dxy - dxy, (2.15)
RAN N j=1
where mx (X1, -+ - ,xy) oc e” OGN g g classical Boltzmann distribution in R4V,
Note that En (x1, -+ ,xy) can be viewed as the energy of a ring polymer system of N

beads, where the adjacent beads (x;, x;.;) are connected by a spring potential, and each bead
x; feels the system potential V(x;). Figure 2.1 shows an example of the ring polymer system
with 10 beads. Moreover, as the number of beads N tends to infinity, the energy function

En(x1,- -+ ,xn) has a continuum limit (Lu et al., 2020)

B B
Ewl(x(4)) = %./o |x'(7’)|2d7'+/O V(x(1))dr, (2.16)

where x : [0, 8] — R is a parameterized continuous loop in the interval [0, ].

10
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Figure 2.1 Example of a ring polymer with 10 beads.

Remark 2.2. The approximation used in (2.13) is the symmetric operator splitting (Ames,
2014; Glowinski et al., 2017), and the local approximation error is O(B3,). Therefore, the
approximation error in the quantum thermal average in (2.15) is formally O (N, ﬁ?\,) However,

a rigorous justification of the approximation error in N is still unknown in literature.

Since the accurate calculation of the quantum thermal average must require the number
of beads N to be sufficiently large, it is essential to obtain a sampling algorithm for the target
distribution 7y (x1, - - - , x5) with uniform-in-N ergodicity, namely, the convergence rate does

not depend on the number of beads N.

2.3 Random batch method

Consider a system of N particles represented by a collection of position variables x, =
{x{}¥, where x| € R? denotes the position of the i-th particle. The interacting particle system
(IPS) x, evolves according to the overdamped Langevin dynamics:

1
N-1

&= b(xi) + D KGj-x)+oBl, i=1,... N (2.17)

Jj#
Here, b(-) : RY — R represents the drift force, K(-) : R — R is the interaction force,
o > 0 is a scalar constant, and {B;}f\i , are N independent standard Brownian motions in R4,

As the number of particles N — oo, the IPS (2.17) formally converges to the nonlinear

McKean—Vlasov process (MVP), defined as:
X = b(x) + (K a,) (%) + 0B, (2.18)

where i, represents the distribution law of %, in R¢, B, is standard Brownian motion, and *
denotes the convolution operator, defined as:
ke = [ K-putdy), xer, 2.19)
R

11
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Under suitable assumptions on the drift force »(x) and the interaction force K (x), the IPS
(2.17) admits a unique invariant distribution 7 (x) in RN . The primary objective is to sample
n(x) efficiently. For instance, if b(x) = —VU(x) and K(x) = —VV(x) for some potential
functions U(x) and V (x), with V(x) being even and o = V2, then 7(x) is explicitly given by:

N
7(x) o exp | - Z Ux') - ﬁ Z Vix'—x)|, xeRW. (2.20)
i=1

1<i<j<N

To simulate the IPS (2.17) numerically, time discretization is required at each time step.
For an IPS with N particles, calculating all interaction forces {K (x! — x{ )}iz; involves O (N?)
complexity per time step, leading to inefficiency for large N. Therefore, it is desirable to employ
approximate simulation methods that can reduce the computational cost while maintaining the
reliability of the samples generated from the invariant distribution 7 (x).

The Random Batch Method (RBM) proposed in Jin et al. (2020) is a simple random al-
gorithm to reduce the computational cost per time step from O(N?) to O(N). Nowadays, the
RBM has been used to simulate complicated chemical systems (Jin et al., 2021; Li et al., 2020b;
Liang et al., 2021, 2023) and accelerate the particle ensemble methods (Li et al., 2020a; Car-
rillo et al., 2021; Ha et al., 2021), and is also able to combine with the variance reduction
techniques (Pareschi and Zanella, 2024; Xu et al., 2024). In these applications, the RBM is
not only an efficient algorithm for the evolution of the system, it also preserves the invariant
distribution 77(x) in an approximate sense, thus can be used to obtain statistical samples of the
invariant distribution of the IPS (2.17).

The idea of the RBM is illustrated as follows. Let & > 0 be the time step for batch
divisions. For each n > 0, let the index set {1,--- , N} be randomly divided into g batches
{C1, -+, C,}, where each batch C has size p = N/q. The IPS (2.17) within the time interval
t € [nh, (n+ 1)h) is approximated as the particle system {y!}”  in RV, given by the SDE

K(yi—y))+ B, i€C, t€[nh, (n+1)h), (2.21)

Jj#i,jeC

g=by)+

where C is the unique batch that contains i. For the next time interval, the previous division is
discarded and another random division is employed for the dynamics (2.21). In the following,
the dynamical system (2.21) will be referred to as the random batch interacting particle system
(RB-IPS), as a comparison to the IPS (2.17). Note that both (2.17) and (2.21) are exactly
integrated in time, and thus there is no error due to time discretization.

Furthermore, if we employ the Euler—-Maruyama integrator to discretize the RB—IPS

12
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(2.21), then we obtain the following discrete RB—IPS:

Y =Y + (b(Y,;‘) + Z K(Y! - Y,{))h +0 (B a1y~ Bup)» i€C. (222)

j#i,jec

The discrete RB—IPS (2.22) requires only O (N p) complexity to compute the interaction forces
in each time step, which is a significant advance in simulation efficiency compared to the
O(N?) complexity of the discrete IPS. Specifically, selecting a batch size of p = 2 results in a
complexity of O(N) per time step.

In this work, we rigorously establish the ergodicity of the RB-IPS (2.21) and quantita-
tively estimate the long-time error of the discrete RB—IPS (2.22). These results highlight the
reliability of the RBM as an efficient sampling approach for IPS. By reducing computational
complexity while preserving key statistical properties, the RBM provides a practical and robust

method for simulating large-scale particle systems in the long time.

2.4 Theoretical approaches for ergodicity and long-time behavior

Ergodicity is a fundamental property of stochastic processes, signifying that the long-time
behavior of the process reflects its statistical equilibrium. Specifically, a stochastic process
is ergodic if time-averaged quantities converge to their ensemble averages, as defined by the
invariant distribution of the process. This property ensures that the dynamics of the system
explore the entire state space sufficiently over time, avoiding being trapped in specific regions.

The concept of ergodicity plays a pivotal role in stochastic analysis for both theoretical
and practical reasons. Theoretically, it provides a rigorous foundation for the convergence of
stochastic processes, allowing for the derivation of key results such as the existence and unique-
ness of invariant measures. Practically, ergodicity underpins the validity of sampling methods,
ensuring that long trajectories of a stochastic process yield reliable statistical estimates of the
target distribution. Without ergodicity, these estimates may be biased or incomplete, particu-
larly in high-dimensional systems where efficient exploration of the state space is crucial.

The theoretical approaches to studying ergodicity can be broadly classified into two cat-
egories: probabilistic approaches and PDE-based approaches.

Among the probabilistic methods, coupling is the most commonly used technique. For
stochastic processes driven by Brownian motions, coupling involves constructing coupled pro-
cesses with shared noise to demonstrate contractivity. Synchronous coupling is frequently
employed for systems with convex potentials (Lindvall and Rogers, 1996; Chen and Li, 1989).

More recently, reflection coupling has gained popularity in addressing non-convex sampling

13
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problems (Eberle, 2011; Eberle et al., 2019). Reflection coupling is also instrumental in an-
alyzing the contractivity of numerical integrators (Chak and Monmarché, 2023; Schuh and
Whalley, 2024), providing direct insights into the long-time error of numerical methods. An-
other widely used result is Harris’ ergodic theorem (Mattingly et al., 2002; Hairer and Mat-
tingly, 2011; Sanz-Serna and Palencia, 1985), which is also proven using coupling techniques.
Harris’” theorem is particularly valuable as it characterizes the invariant distribution through
Lyapunov conditions, offering a versatile framework for establishing ergodicity in a wide range
of stochastic systems.

For non-degenerate diffusion processes, functional inequalities (Bakry et al., 2014; Wang,
2006) are a widely used PDE-based approach to establish ergodicity. For instance, the Poincaré
inequality and the log-Sobolev inequality lead to exponential convergence in the sense of y?
divergence and relative entropy (KL divergence), respectively. For degenerate diffusion pro-
cesses, Villani’s hypocoercivity framework (Villani, 2009a) is a prominent method that em-
ploys a modified H! norm to derive ergodicity by capturing both diffusion and transport effects.
Alternatively, the generalized I" calculus (Monmarché, 2018, 2019) extends the hypocoerciv-
ity framework by leveraging functional inequalities, offering a versatile tool for analyzing the
ergodicity of degenerate systems.

In this work, we primarily utilize the generalized I" calculus to analyze PIMD and the re-
flection coupling technique for RBM. Additionally, we introduce the triangle inequality frame-

work to investigate the long-time error of numerical methods.

2.4.1 Generalized I' calculus

The generalized I' calculus developed in Monmarché (2018, 2019) is a functional ap-
proach to study the ergodicity of stochastic processes with degenerate diffusions. In particular,
the generalized I calculus can be applied on the underdamped Langevin dynamics. The gen-
eralized I" calculus is based on the functional inequalities (Bakry et al., 2014; Wang, 2006),
and can be viewed as a variant of Villani’s hypocoercivty theory (Villani, 2009a).

The generalized I calculus is able to provide explicit convergence rates for complicated
stochastic processes. Except for the PIMD considered in this thesis, we also note the applica-
tions of the generalized I calculus in the mean-field interacting particle system (Guillin and

Monmarché, 2021) and the Langevin dynamics with singular potentials (Baudoin et al., 2021).

Standard results in functional inequalities We begin with reviewing the standard results

in the functional inequalities. Let (x;),-o be a diffusion process (in the sense of Chapter 1.10.1
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of Bakry et al. (2014)) in R?, and (P;),s¢ be the correspondingly Markov semigroup. As is

stated in (2.1), this means for any positive test function f(x) in C*(R%),

(P)(x) =E[f(x) i xo=x]. xeR%

Let £ be the infinitesimal generator of (x,),>¢, and & be the invariant distribution. Then £ is
a self-adjoint elliptic operator in the Hilbert space L?(r). To characterize the convergence of

the diffusion process, we employ the relative entropy defined in (2.5):

Ent,(f) = /Rdflogfdﬂ— /Rd fdﬂlog/Rd fdn.

Next, we introduce a crucial notion in the functional inequalities, the I" operator (also

known as the carré du champ operator, see Chapter 1.4.2 of Bakry et al. (2014)).

Definition 2.1. For a diffusion process with generator L, the 'y, 1, operators are defined by

Li(f.9) = 5(£(f9) ~9L] - F L), 2.23)
D2(f.9) = 5(L11(F.9) =~ Ti(F. £0) ~ T (9, L)) .24

When the test functions f = g, we simply write Iy (f) = I';(f, f). Using the property of the

diffusion operator £, we have the following properties of the I'; operator.

Lemma 2.1. For any test function f, we have I'\(f) > 0, and thus the Cauchy inequality

[i(f.9? < Ti(HLi(9). (2.25)

If a is a smooth function in R?, then for any test functions f, g,
L(a(f)) =a' (HLf +a"(HT(), (2.26)
[i(a(f),9) =a" (NS, 9). (2.27)

The related discussions can be found in Chapter 1.4.2 of Bakry et al. (2014) and Lemma 6 of
Monmarché (2019).
We note that the generator £ can be conversely determined by the I'; operator and the

invariant distribution 7. In fact, for any test functions f, g we have the equality

/ gL fdr = —/ I (f, g)dn. (2.28)
R4 R4

In this case, we say the generator £ is determined by the pair (7,I";). See the related discus-
sions in Chapter 3.1 of Bakry et al. (2014).
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The inequality relation of I'; and I', provides a convenient condition to verify the log-

Sobolev inequality (see Chapter 5 of Bakry et al. (2014) for reference).
Theorem 2.1. For a diffusion process with generator L, if there is a constant p > 0 such that

IL(f) = pl'i(f), for any test function f, (2.29)

then we have the log-Sobolev inequality (denoted as LS(p))

B < L [ D)

20 Jpa  f

and thus the exponential decay of the relative entropy

dr, for any test function f, (2.30)

Ent.(P,f) < e *'Ent,(f), Vt>0. (2.31)

The proof can be found in Proposition 5.7.1 and Theorem 5.2.1 of Bakry et al. (2014).
A useful property is the bounded perturbation, which provides a convenient criterion to

prove the log-Sobolev inequality beyond directly verifying the inequality (2.29).

Theorem 2.2. Suppose a diffusion process determined by (n,T')) satisfies LS(p) in RY. Let n’
be a probability distribution in R? such that

1 dn’
— <

i d#n<m Vx € RY, (2.32)

then the diffusion process determined by (n’,T')) satisfies LS(M™2p).

The proof can be found in Proposition 5.1.6 of Bakry et al. (2014). This result shows that the
new diffusion process determined by (n’, I') still satisfies the log-Sobolev inequality, however
the convergence rate reduces from p to M~2p.

Another useful property is the tensorization of the log-Sobolev inequalities, allowing to

establish the log-Sobolev inequality in higher dimensions.

Theorem 2.3. Suppose two diffusion processes determined by (n,I'1) and (n’,I']) satisfy
LS(p) and LS(p’) in RY respectively, then the product diffusion process determined by (n ®
7', Iy @ I satisfies LS(min{p, p'}) in R*%.

The proof can be found in Proposition 5.2.7 of Bakry et al. (2014). This result implies the

convergence rate of the product diffusion process is determined by the smaller one in p and p’.

Generalized I" operator The generalized I' operator is the central tool in the generalized I"

calculus, and can be viewed as the generalization of the I'; and I'; operators.
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Definition 2.2. Let ®( f) is a local operator on the test functions, namely, ®( f) only depends

on the value and derivatives of f. For a diffusion process with generator L, define the gener-

alized 1" operator by

Fa(f) = 5 (L) - () - L),

where d®( f) - g for two test functions f, g is defined as
Q(f +s9) —@(f)

s

dd(f) - g = lim
When @©(f) is a quadratic form, it is convenient to obtain the expression of I'q( f).
Lemma 2.2. Suppose Cy, C, are two linear operators and ®(f) = C,f - Cof, then
Fo(f) = T1(C . Cof) + 3G - [L.Clf + 5L G- Cof,
where [-, -] is the operator commutator.
The following proof is adapted from Lemma 5 of Monmarché (2019).

Proof of Lemma 2.2. Use d®(f)-g=C,f - Cyg+ Cyg- C,f from Definition 2.2.

(2.33)

(2.34)

(2.35)

Using Lemmas 2.1 & 2.2, it is convenient to derive some useful properties of ' (f).

Lemma 2.3. I[f ®(f) = flog f, then

Iy (f)

Lo(f) =T = 2

If ®(f) = |Cf|? for some linear operator C, then
To(f) =Ticp(f) =2 Cf-[LC]f.

If®(f) = |Cf|*/f for some linear operator C, then

Cf-[L.Clf
T

The following proof is partially adapted from Lemma 7 of Monmarché (2019).

Lo(f) =Ticp)(f) 2

Proof of Lemma 2.3. To prove (2.36), we use Definition 2.2 and derive

Cioet) () = 5 (L(F1og /) - d(flog ) - L)

Using the definition of the I'; operator, we have
L(flogf)=Lf-logf+ fL(»ogf)+2I'(f,logf)

17
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1
:£f-logf+f(?£f—f2

= (1+log f)Lf + %nm.

Fl(f)) + frl(f . f)

On the other hand,
d(flogf)-Lf =1+logf)Lf.

Hence from (2.39) we obtain the desired equality (2.36).
To prove (2.37), we only need to choose C; = C; = C in Lemma 2.2, then

Lic.p(f) =T(CH+Cf-[LCLf > Cf-[L.CIf, (2.40)

which completes the proof.

The proof of (2.38) is a bit more complicated. For the operator |C - |?/-, we have

2
L('Cf | ) = L(CrP) + ICfIZL(%) + 2r1(|Cf|2, %)

f f
= ?£(|Cf|2) + |Cf|2( a + Frl(f)) + }2 ; (2.41)
and ) )
(f Lf = - Iflfz- (2.42)
Hence from (2.41), (2.42) and Definition 2.2, we obtain
Cf|? Cf|?
o= e[ o
_ LUCP) —d(CFP) - Lf  |CAPLIS) |, 2Cf - T1(CF. /)
- 2f f? f?
_Tiep() N ICAIPT(f) L 2Cf - Tu(Cf, f)
f I3 f?
Then using the expression of I'|c.;2( f) in (2.40) and Cauchy inequality in (2.25),
Fep(f) s MEN*+CFLLCI ICFPTI(.f)
f f
_y ISP ) N Cf - LL.Clf
f? foo
Hence we obtain the desired inequality (2.38). [

Next we show that the generalized I" operator I's ( f) can be related to the time derivative

of the local operator ®.
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Lemma 2.4. Given the constant t > 0, for any s € [0, t], we have the equality

d

5 [Ps@(Ps)()] = 2P To(Pr-s f)(x).

As a consequence, for any t > 0,
d
dt R4 R4
Proof of Lemma 2.4. Note that the Markov semigroup P; = e'£. Using the chain rule, we have

4 |Ps®@(Pi_sf)| = LP,®(P,_, f) + Ps% [®(P:—f)]

ds
(D(Pt—s—rf) B (I)(Pt—sf)
r

= LP,®(P, s f) + Py lii%
= £P5®(Pt—sf) - Psdq)(Pt—sf) : ‘EPZ—Sf
= Py(LOD,f ~ dD(P,,f) - LP,,f)

= 2PSFCI>(Pt—Sf)'

Integrating the equality over the distribution &, we obtain

a4 / P.®(P,_,f)dr =2 / o(Pr_sf)dr. (2.43)
ds R4 R4

Since 7 is the invariant distribution, replacing ¢ — s by s in (2.43), we obtain

d

5 [ o= /R To(P,f)dr,

which completes the proof. [

Convergence in entropy-like functional Now we derive the main theorem in the generalized
I" calculus, which states that the entropy-like functional W, (f) exhibits exponential decay
under specific functional inequalities. This result connects the geometric properties of the

underlying stochastic process with the rate of convergence to equilibrium.

Theorem 2.4. Let (x;);0 be a diffusion process with the invariant distribution n. If for two

local operators ®(f) and ©,( f), there hold the functional inequalities

0< /Rd @ (f)dm — @l(/Rd fdn) < C/Rd ®,(f)dn, (2.44)
Lo, (f) 2 p®2(f) — mle, (f), (2.45)

for some constants c, p,m > 0, then by defining the entropy-like functional

W (f) :m(/R Cbl(f)dn—Ql(/Rdfdn))+/RdCI)2(f)d7r, (2.46)
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we have the exponential decay

2pt
1+mc

Wo(P:f) < exp(— )W,r(f), vt > 0.
The following proof is adapted from Lemma 3 of Monmarché (2019).

Proof of Theorem 2.4. Using Lemma 2.4 and (2.45), we have
d d
_Wn(Ptf) = |m (Dl(Ptf)dﬂ' + q)z(Ptf)d”
dt dt Rd Rd
=-2 /d (qu,l + Fq)z)(Ptf)dﬂ' < -2p /d O, (P, f)dn. (2.47)
R R

Using (2.44) and the definition of W, ( f), we have

. = dr — d dr < (1 dn.
war) = [ onar-a( [ gar))+ [ @snan<aeme [ @
Hence (2.47) implies

d 2p
—W, (P, f) < — Wq (P, f), Vt=0,
ZWa(Pif) <~ Wa(P.f)
yielding the desired result. [

Example: ergodicity of Langevin dynamics We employ the functional inequalities and the

generalized I" calculus to study the ergodicity of two specific examples, the overdamped and

underdamped Langevin dynamics. Let V(x) be the potential function in R¢ and 7r(x) oc ¢=V®)

be the target distribution. The assumptions on V(x) are provided as follows.

Assumption 2.1. The potential function V(x) € C*(R?) satisfies

(i) V(x) can be decomposed as V¢ (x) + V?(x), and for some constants a, M, > 0,
VIVe(x) # aly, |VP(x)| < M, VxeR
(ii) For some constant M, > 0,
~MoI; < V*V(x) < MyI;, Vx e R4

Here, 1,; donotes the identity matrix of size d, and <, = define the Loewner order in symmetric
matrices. Assumption (i) shows that V(x) is the sum of a strongly convex potential and a
globally bounded potential, and V (x) itself does not require to be globally convex.

The overdamped Langevin dynamics for sampling the distribution 7 (x) reads
% =-VV(x) + V2B, (2.48)
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where B is the standard Brownian motion in R¢. The following result states the exponential
convergence of the overdamped Langevin dynamics (2.48) in the sense of the relative entropy.

The proof is based on the functional inequalities.

Theorem 2.5. Assume (i). Let (P;);»o be the Markov semigroup of the overdamped Langevin
dynamics (2.48), and m € P(R?) be the invariant distribution. Then for any test function f in
Rd

Ent,(P,f) < e *"Ent,(f), Vt>0, (2.49)

where the convergence rate 1; = e *1aq > (.

Proof of Theorem 2.5. We first prove the log-Sobolev inequality for the dynamics
% =-VV(x) + V2B, (2.50)

where the potential function V¢(x) is convex. The invariant distribution of (2.50) is clearly

n¢(x) oc V™) By direct calculation, the I operators for (2.50) are given by

rl(f’g) = Vf ’ V.g?
0(f.9) =V f: Vg +Vf-VV(x)- Vg,

where A : B = )] A;;B;; denotes the double inner product. Since V°(x) is convex, we have
I(f) = al'1(f), for any test function f, (2.51)

which corresponds to the condition in (2.29). Therefore, applying Theorem 2.1, we obtain the
log-Sobolev inequality LS(a) for the overdamped Langevin dynamics (2.50) determined by
(¢, Ty). Next, note that the target distribution 7 satisfies the inequality

m(x
—( ) — eV ¢ [e‘M‘,eMl], Vx € RY,
e (x)

hence, by using the bounded perturbation property (Theorem 2.2), we conclude that LS (e > a)
holds for the overdamped Langevin dynamics (2.48) determined by (7, I'}). [

The underdamped Langevin dynamics for sampling the distribution 7 (x) reads
X =v,
_ (2.52)
v=-VV(x)-v+ V2B,

and the invariant distribution is given by

|o]?
u(x,v) o exp(—T — V(x)).
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The following result states the exponential convergence of the underdamped Langevin dynam-

ics (2.52) in the sense of the relative entropy. The proof is based on the generalized I calculus.

Theorem 2.6. Assume (i)(ii). Let (P;);>¢ be the Markov semigroup of the underdamped Langevin
dynamics (2.52), and p € P(R??) be the invariant distribution. Define the entropy-like func-

tional , ,
\ Vof =V,
W, (f) = 2(Ms + 1)*Ent, (f) +/ Vo I+ ff A (2.53)
R2d
Then for any test function f in R*?,
Wi (Pif) < e*2'W,(f), Vi >0, (2.54)

where the convergence rate A, = £(M> + 1)"> min{e **1qa, 1}.

o2
Proof of Theorem 2.6. Let o (v) o< e~'% be the target distribution in the v variable. Define the

I} operators in the v and x variables as

Fi)(f’ g) = va : va» Ff(f’ g) = fo : ng-

Since the potential function %lvl2 is strongly convex in R?, the overdamped Langevin dy-
namics determined by (o, I'?) satisfies LS(1) in R?. According to Theorem 2.5, the over-
damped Langevin dynamics determined by (7, I'Y) satisfies LS(e *'a) in R?. Using p(x, v) =
7(x) ® o (v) and the tensorization of the log-Sobolev inequalities (Theorem 2.3), we conclude
that the overdamped Langevin dynamics determined by (7, I'}) satisfies LS(min{e*"a, 1})

in R??, where the I'; operator is defined by

Fl(f’g) = Ff(f’g) + Ff(f’g) = fo ' ng+ va ' va

The log-Sobolev inequality LS(min{e *1a, 1}) explicitly reads

1 V. fI?+ |V, f|? .
min{e *'a, 1}Ent, (f) < 5/ V./| 7 V. /] du, for any test function f.  (2.55)
R4

The inequality (2.55) alone cannot establish the convergence of the underdamped Langevin
dynamics (2.52) because it pertains to an overdamped Langevin dynamics.

To address this, we introduce the local operators

2 _ 2
®,(f) = flog . Bs(f) = e/ *'Vf“f VS| (2.56)

for the underdamped Langevin dynamics (2.52). The construction of ®(f) and ®,(f) is
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directly inspired by Example 3 of Monmarché (2019). Using the inequality

|fo|2 + |va|2 < |Vuf|2 + |va - fo|2
3f f ’

we derive from the log-Sobolev inequality (2.55) that

1
§min{€_2Mla, 1}['/RM @, (f)dp — q)l(/de fdll)

hence the inequality (2.44) holds with ¢ = 3 max{e*'a~! 1}.

< / ®,(f)du, 2.57)
R2d

Using Lemma 2.3, we deduce

|Vuf|2 Vuf ' [L’ Vu]f + (va - fo) : [‘E’ Vv - Vx]f
2f f '

Here, £ is the infinitesimal generator of the underdamped Langevin dynamics (2.52),

I_‘<I>1 (f) = FCDz (f) > (258)
L=v-V,—(VV(x)+v)-V,+A,.
The operator commutators are given by
[L,V,]=V,-V,, [LV]=VV(x)-V,
Using the estimate of I'g, (f) in (2.58), we obtain

(2va B fo) ’ (va - fo) B (va B fo) : VZV : va
f .

Lo, (f) 2 (2.59)

For convenience, let

P=V,f-V.feR! Q=V,feR?

so that

|Q|? P> +|QJ? (P+Q)-P-P-VV-Q
Lo, (f) = 2 D, (f) = —F Lo, (f) > 7 :
Using the boundedness of V2V in Assumption (ii), we derive from (2.59) that
P> - (M, + 1D)|P|IQ|
7 .

Combining (2.58) and (2.60), we obtain the functional inequality

3PP - (Mo + DIPIQ| + 3(M + 1)°|QI
f

which implies we can take p = % and m = 2(M, + 1)? in (2.45). According to Theorem 2.4,

Lo, (f) 2 (2.60)

o (/) =5 @2+ 2(Ms+ 1) T, (/) > >0, 261)
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the convergence rate in the entropy-like functional W, (f) satisfies

__0pr
1+ mc

1
> > ﬁ(M2 + 1) > min{e *Ma, 1},

which completes the proof. [

Remark 2.3. It can be observed that the convergence rate obtained in the underdamped Langevin
dynamics (2.52) is smaller than the overdamped Langevin dynamics (2.48). Technically, this is
because the generalized I calculus still relies on the functional inequalities on the overdamped
Langevin dynamics. In practice, however, it is believed that underdamped Langevin dynamics
has a faster convergence rate Ma et al. (2021), which has been rigorously justified in Lu and

Wang (2020).

2.4.2 Reflection coupling technique

Overview of reflection coupling Reflection coupling is a probabilistic technique used to es-
tablish the ergodicity of stochastic processes and the contractivity of numerical integrators,
particularly when the potential function is non-convex. While synchronous coupling is typi-
cally applied to strongly convex functions, reflection coupling focuses on coupling the Brow-
nian motions of two copies of a stochastic process and proving contractivity with respect to an
appropriate metric.

Initially, reflection coupling was employed to demonstrate the ergodicity of the over-
damped Langevin dynamics (Eberle, 2011, 2016). With refined coupling schemes, it has also
been used to establish the ergodicity of Andersen dynamics (Bou-Rabee and Eberle, 2022),
Hamiltonian Monte Carlo (Bou-Rabee et al., 2020; Bou-Rabee and Eberle, 2021, 2023), and
underdamped Langevin dynamics (Eberle et al., 2019). More recently, reflection coupling has
been applied to verify the contractivity of numerical integrators, such as generalized Hamilto-
nian Monte Carlo (Gouraud et al., 2022; Chak and Monmarché, 2023) and the UBU integrator
(Schuh and Whalley, 2024). Stochastic gradient integrators have also been analyzed using
similar techniques in Li et al. (2023); Leimkuhler et al. (2024).

Construction of distance function To illustrate the principle of reflection coupling, consider
the following overdamped Langevin dynamics in R¥:
i =b(x,) + B, (2.62)

where b(-) : R4 — R represents the drift force, o > 0 is a scalar constant, and (B, )0

denotes standard Brownian motion in R¢. The contraction property of the drift force b(-) is
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described by the following function:

2 (x—-y)-(b(x)-b
k(r) =inf{ — — =y b - b)) x,yeRY x—y|=ry. (2.63)
o? lx —yl?
If b(x) = —=VU(x) is in gradient form, k(r) characterizes the convexity of the potential function

U(x). Specifically, if V2U(x) is strongly convex outside a finite ball, x(r) becomes positive

for sufficiently large r. This leads to the following reasonable assumption about k(7).

Assumption 2.2. For the drift function b(x), the function k(r) defined in (2.63) satisfies
* «(r) is continuous for r € (0, +00);
* k(r) has a lower bound for r € (0, +00);

o lim x(r) > 0.

r—0
Assumption 2.2 allows to construct a special distance function f(r) satisfying a differen-

tial inequality related to It6 calculus.

Lemma 2.5. Under Assumption 2.2, there exists a function f(r) inr € [0, +00) satisfying
* f(0) =0, and f(r) is concave and strictly increasing in [0, +00);

e f(r) € C?[0, +o0) and there exists a constant c, > 0 such that
f%n—%m@y%n<—%fux Vr > 0. (2.64)
» There exists a constant ¢y > 0 such that
wor < f(ry<sr, Vr>=0. (2.65)
The constants cg, @y only depend on the function k(r).
Proof of Lemma 2.5. Utilizing the positivity of k(r), define the constants R,, R; > 0 by
Ro:=inf{R>0:«(r) > 0,Vr > R},
Ry :=inf{R > Ry : k(r)R(R — Ry) > 16,V¥r > R}.

Then we then have k(r) > 0 forr > Ry and «(r)R, (R, — Ry) > 16 for r > R;. Given the
function «(r), define the auxiliary functions ¢(r), ®(r), g(r) by

o(r) =exp ( - ‘11/0 SK(S)_dS), D(r) = /0 p(s)ds,

1) Rid(s)
: 2/0 QD(S)dS/-/o o(5) 5 TSR

1 n(r-R) FS R
2 1+4n(r-R)’ b
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where x~ = —min{x, 0} is the negative part of x € R and the constant > 0 is defined by
, 1<1>(R1)//R' D(s)
n=-9(R) =5 ds.
YU 20D Jo e(s)

Finally, the distance function f(r) is defined as

() = /O o(5)g(s)ds. (2.66)

The only difference of the construction of above from the original one in Eberle (2011) is the
definition of g(r) for r > R. In our choice, ¢(r) is differentiable at r = R, so that f(r) € C?,
while in the original proof f(r) € C! and f’(r) is absolutely continuous.

It is easy to verify the following properties of the functions f(r), ¢(r), ®(r) and g(r):

L 0<o(r)<1,1<g(r) <1 ¢0)=g(0) =1. ®0) = 0.

2. The derivatives of ¢ and g are given by

o1 B sy 1) Rid(s)
o) ==grerren. g0 =320 | [T 204 o< <,
Hence ¢’(0) = ¢’(0) =0and ¢’(r) < 0,¢'(r) < Oforall r > 0.

3. The second derivative of f(r) is given by
f7(r) =¢(r)g'(r) + ¢ (r)g(r) <0, (2.67)

which implies f(r) is concave for all r > 0.

4. When r > Ry, ¢(r) equals to a constant ¢, given by

1 R
@(r) = ¢ =exp ( - —/ SK(S)_dS),
4 Jo
Since ¢(r) > ¢; and g(r) > }‘ for all » > 0, we obtain

J'(r) = e(r)g(r) > % = f(r) > %r. (2.68)
Denote the constant ¢, = £!, then we have f(r) > @or for any r > 0.

5. Since ¢g(r) < 1, ®(r) provides an upper bound of f(r):

()= [ ewas> [ egsas = 1), 2.69)

0 0
From @ (r) = ¢’(r) < 0, we conclude ®(r) is also concave for r € [0, +00).

Now we prove the inequality (2.64) with the constant ¢, defined by

R,
1. / () 4. (2.70)
Co 0 SD(S)
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1. When r < Ry, using the inequality f(r) < ®(r),
J7(r) =" (r)g(r) + ¢(r)g'(r)

_ —%rk(r)‘so(")g(r) - %q)(r)//o

1 ) 1 R (s)
< Zrk(r)f (r) - Ef(r)/ /0 205) ds,

hence (2.64) holds with ¢y defined in (2.70).

Rid(s)

w(s) as

2. When r > Ry, we have f’(r) > £ and f”(r) < 0. Hence by the definition of R, and
the concavity of ®(r) with ®(0) = 0, we obtain the inequality

£ < — @1 D(r)
R — Ry R, R, — Ry ®(R))

f"(r) - %rk(r)f’(r) < —%FK(I’)QDO < - (2.71)

Since ¢(r) = ¢, for r > Ry, the primitive function ®(r) is linear in r, i.e.,
(I)(I") = CI)(R()) + (I" - Ro)(pl, r = Ro.

In particular, ®(R;) = ®(Ry) + (R, — Ro)¢1, hence

/ B a(s) @ (Ro)
ds =

Ry ¥(s5) $1

Combining the inequalities (2.71) and (2.72), we obtain

¢(R1).

®1

(R; — Ry) + %(Rl — Rp)* > %(Rl - Ry) (2.72)

. 1 ) 1 R (s) 1 R (s)
f7(r) - ZrK(r)f (r) < —Ed)(r)/ /RO 205) ds < —Ef(r)/ /o 205) ds, (2.73)

hence (2.64) holds with the constant ¢ defined in (2.70).

Finally, it is easy to see gor < f(r) < r forany r > 0. [

Coupling to ergodicity To study the ergodicity of the overdamped Langevin dynamics (2.62),
we define two copies (x;);>0 and (¥;);>0 of (2.62) in the following Brownian noise reflection

coupling scheme:

i, =b(x,) + 0B,
) _ whent < T, (2.74)
il = b(.fl) +O-(Id_26te;r)Bt,

where T := inf{r > 0 : x, = X,} denotes the collision time of the two copies. Fort > T, the
two copies are defined to be identical, namely, x, = X,. Moreover, e, is the unit vector

TN R (2.75)

e, = —
' lx; — %,
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so that I, — 2e;,e] is the Householder transform Householder (1958) of x, and %,, as shown in

Figure 2.2.

E(Id - 2ete:)Bz

Xt

Figure 2.2 Graphic illustration of the reflection coupling.
Let z;, = x;, — X; and r, = |z,|. Then z, satisfies the SDE
Z[ = b(xt) - b(i[) + ZO-W[, (2.76)

where (W,),>¢ is a one-dimensional Brownian motion defined by W, = etTBt.

Recall the distance function f(r) defined in Lemma 2.5. Utilizing Itd calculus, we have

S F0D = Z (bw) = NS ) 4207 ) 4 20 f (W QT

ry

Taking the expectation in both sides, we obtain
d Z - ’ 17
ZE[f(r)] = E[f (b(x) = bE)F (r) + 207 f <rt>]
t

< E[ - %Zrzzf/(”t) + 20‘2f"(rt) S _COO'ZE[f("t)],

and thus we have the exponential decay of E[ f(r,)]:
E[f(r)] < e P'E[f(ro)], V>0, (2.78)
where the convergence rate § = cyo>.

Remark 2.4. The positivity of o is crucial for the validity of the reflection coupling (2.74),

ensuring that the convergence rate 3 is also positive.

The inequality (2.78) is sufficient to show the convergence in the Wasserstein-1 distance.
Before presenting the main theorem, we introduce the Wasserstein- f distance corresponding

to the distance function f(r):
Definition 2.3. For the distance function f(r), define the Wasserstein- f distance as

Wy = nf [ ey, 2.79)

yell(u,
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where I1(u, v) denotes the set of joint distributions in R¢ x RY whose marginal distributions
in the x, y variables are exactly u,v.
In particular, if f(r) = r, the corresponding Wasserstein- f distance becomes the usual

Wasserstein-1 distance W, (-, -).

Since the distance function f(r) defined in Lemma 2.5 satisfies ¢or < f(r) < r, the corre-

sponding Wasserstein- f distance satisfies the inequality

PoWi (i, v) < We(p,v) < Wi, v). (2.80)

Remark 2.5. In the field of optimal transport (Villani, 2009b), the joint distribution y €

II(u, v) is commonly referred to as the transport plan between u and v.

Remark 2.6. Since the distance function f(r) is concave, Wy (-, -) does not necessarily satisfy

the triangle inequality and, therefore, does not define a metric space.

Given the initial distributions y, v € P(R%), if the initial random variables x, ~ u and

Xy ~ v are chosen such that

E[f(Ixo — %ol)| = Wy (w,v),

then we immediately obtain the Wasserstein- f contractivity from the inequality (2.78).

Theorem 2.7. Under Assumption 2.2, let (P,);so be the dual semigroup of the overdamped
Langevin dynamics (2.62), and f(r), co, po be defined as in Lemma 2.5. Then for any distri-

butions p,v € P(R?), we have
We(uP,vP,) < e‘B’(Wf(,u,v), vVt > 0, (2.81)
where the convergence rate B = co0>. As a consequence,

1
W, (uP,, vP,) < S7e—ﬁffv|/l (u,v), Vt>0. (2.82)
0

Example: non-convex potential We consider a simple example of a non-convex potential
function and calculate the convergence rate 8 using Lemma 2.5. Let the potential function
U(x) be defined as

U(x) = %xz +2sinx, xeRY, (2.83)

with the corresponding drift force given by b(x) = —VU(x) = —x — 2 cos x. Let the diffusion
coefficient o = V2, and the underlying overdamped Langevin dynamics (2.62) reads
% = —x, —2cosx, + V2B,. (2.84)
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For real numbers x, y € R with x —y = r > 0, we have

- 4sin % 4sin £
b() ~by) | _4sing o xvy | dsing
xX—-y r 2 r

hence the distance function «(r) in (2.63) is explicitly given by «(r) = 1 — dsinp

r

According to the proof of Lemma 2.5, the constants Ry ~ 3.790989 and R; ~ 6.307840.
Furthermore, we plot the functions «(r), ¢(r) and ®(r) in Figure 2.3.

1.5 1 6
1 ]

1 . 0.8
.

1
0.5 ! 06
.

1
0 / 0.4

|
0.5 i 0.2
|

§ : o : . .
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
T T T

Figure 2.3 The functions «(r), ¢(r) and ®(r) in Lemma 2.5. The red and yellow dashed lines
denote the constants Ry and R;.

Finally, the convergence rate 8 in Theorem 2.7 is calculated as

R, -1
B =coo? = 2( / j((j)) ds) ~ 0.068906. (2.85)
0

2.4.3 Triangle inequality framework

In general, the long-time error analysis for numerical methods is more challenging than
the finite-time error analysis, and the latter being relatively standard and well-documented
in textbooks, such as Chapter 7.5 of E et al. (2021). However, Shardlow and Stuart (2000);
Mattingly et al. (2002, 2010) introduced a specialized approach—referred to in this paper as
the triangle inequality framework—to address the difficulties of long-time error analysis. This
framework has also been recently reviewed in Schuh and Souttar (2024) for the applications in
the multiscale methods.

The core idea of the triangle inequality framework is straightforward: in addition to lever-
aging the results from finite-time error analysis, one only requires the geometric ergodicity of
the stochastic dynamics to extend the analysis to the long-time regime. The basic idea can be

summarized in the following lemma.

Lemma 2.6. Let (x,);50 and (%,);s¢ be stochastic processes in R? with dual semigroups (P,),s¢

and (P,),so respectively. Given the metric d(-,-) on P(R?), assume (P,),o has an invariant
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distribution n € P(R?) and there exist constants C, 8 > 0 such that
d(vP,,n) < CeP'd(v,n), Vv ePRY); (2.86)
and for any T > 0, there exists a constant £(T) such that

sup d(vP,,vP,) < &(T), Vv eP(RY). (2.87)

0<t<T
Then there exist constants Ty, A > 0 such that
d(vP,, m) < 2e(Ty) + 2Mye ™™, Vi >0, (2.88)
where My = sup d(vPy, ).
s€[0,Tp]
In Lemma 2.6, (%,);5¢ is interpreted as an approximation of (x,),so. For instance, (x;);s0
could represent the solution to a SDE, while (%,),5¢ corresponds to its time discretization.
The inequality (2.86) characterizes the ergodicity of (x;);o, with 8 > 0 denoting the conver-
gence rate. Similarly, the inequality (2.87) measures the distance between the dual semigroups
(P,)ss0 and (P,),s0 over a finite time period. Typically, this finite-time error is determined
by strong error estimates, where the error term &(7) usually vanishes as the step size of the
discretization approaches zero.
Finally, the long-time error of (%;),>¢ is characterized by the difference between the distri-
butions vP, and 7. For sufficiently large 7, the choice of T, remains constant. Thus, Lemma 2.6
demonstrates that only the ergodicity and finite-time error estimates are needed to deduce the

long-time error.
Proof of Lemma 2.6. For any T > 0 and t > T, we have the inequality

d(vPi, n) < dvP, v Pr,vP, _1Pr) + d(vP, 1+ Pr, nPr)
< &)+ CePTd(vP,_r, 7).

By choosing T = T, such that Ce P = 1, we have

1

2’
~ 1 ~

d(VTt,JT) < E(To) + Ed(VfPt_TO,ﬂ), vVt > T.

By induction on the integer n > 0, we obtain

~ 1 1 ~
d(vP;, ) < 2(1 — ﬁ)s(To) + ?d(viPt_nTO,ﬂ), vVt > nTy.
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For any ¢ € [0, +0), there exists a unique integer n > 0 such that r € [nTj, (n + 1)T;). Then
d(vP,, ) < 2e(Ty) +2'7"% sup d(vP,, ),
SE[O,T()]

which implies the long-time error estimate (2.88) with A = In2/Tj. [ |

Remark 2.7. In this work, the distance d(-,-) is chosen as the Wasserstein-1 distance, and
estimate of the finite-time error £(T) comes from the strong error estimate. As a consequence,
we can only obtain half-order convergence in the step size h. In practice, d(-,-) can also be

chosen as the total variation, see Durmus and Moulines (2017) for example.

Finally, we remark that the triangle inequality framework is remotely reminiscent of the
well-known Lax equivalence theorem (Sanz-Serna and Palencia, 1985) in numerical analysis.
Here, the ergodicity (2.86) serves as the stability and it helps translate the finite-time error

estimate (2.87) to the long-time error estimate (2.88) without sacrificing the accuracy order.
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Chapter 3  Dimension-free ergodicity of PIMD

Within the path integral formulation, the calculation of the quantum thermal average

(O(X))g is reduced to a sampling problem for a classical Boltzmann distribution

1 N N
ﬂN(xl, ce ,xN) oc exp ( - 2’TN Z |)Cj —Xj+1|2 _ﬁN ZV(XJ')), (31)
=1 =1

where By = B/N and we adimit the periodic boundary condition xy,; = x;. In this sec-
tion, we first introduce the normal mode coordinates, which diagonalizes the spring poten-
tial Zj-\’:] |x; — x;41| of the ring polymer. Second, we derive the preconditioned underdamped
Langevin dynamics for sampling 7 (xy, - - - , x5 ). Finally, we prove the underlying Langevin

dynamics has uniform-in-N ergodicity in the sense of the relative entropy.

3.1 Normal mode coordinates

Since the energy function Ey (xy, - -+ ,xn) has a proper inifinite bead limit, it is natural
to ask whether we can sample the corresponding Boltzmann distribution 7y (x1, - - - , xx) with
a uniform-in-N convergence rate. However, the direct simulation of the ring polymer system
1s notorious for the stiffness in the ring polymer energy (Marx and Parrinello, 1996; Ceriotti
etal., 2010)—the spring potential )’ ;vzl |x;—x+1|* has high mode frequencies when the number
of beads N is large, making it impossible to stably discretize the dynamics with an O(1) step
size. In practice, there are three major approaches to resolve the stiffness issue: (i) precondition
the dynamics to slow the time scale of high-frequencies modes (Durlak et al., 2009; Lu et al.,
2020; Bou-Rabee and Eberle, 2021); (i1) apply staging coordinates to decouple the dynamics
(Cao and Martyna, 1996; Liu et al., 2016); (ii) use strongly stable numerical integrators (Korol
etal., 2019, 2020). In the thesis, we employ the preconditioning approach, which requires the
normal mode coordinates to diagonalize the spring potential into different Fourier modes.

In order to diagonalize the spring potential, we note that the eigenvalues and eigenvectors
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of the periodic Laplacian matrix

2 -1 0 --- 0 -1
-1 2 -1 --- 0 O
I o -1 2 --- 0 c RNXN
0O 0 O 2 -1
-1 0 O -1 2
are explicitly given by
1
j2zk
e!'’N
wk 1 -dnk
/lk:4sin2(—)>0, v=—1| % |[eR", k=0,1,---,N-1.
N VN
PRICEIVE TS

e
As a consequence, we introduce the following definition of the normal mode coordinates.

Definition 3.1. Given the bead positions {x; };V: | in RY, define the normal mode coordinates
{&hey inRY by
N
& = Bn ijcj,ka (3.2)
j=1
where By = /N, and c; i is the discrete Fourier coefficient defined by the following rule:
» If N is odd, then for each j = 1,--- ,N,

2 2nkj 2rkj N-1
Cj2k-1= — sin " > Cj2k =4[ COS dhZ, , k=1,--+, ——.
’ B N - B N 2

* If N is even, then for each j = 1,--- ,N,
1 (=1
Cio=—F7=> CjN-1= )
SR/ E VB

2 . (2nkj 2 2rk j N
C]',Zk—l = — Sin s Cj,Zk = — COS s k = 1’ ’__1'
B N B N 2
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It is easy to verify c; ; satisfies the orthogonal condition:

N ) 1, ifk==k,
By Y cjncia =8(k - k') = (3.3)
j=1 0, ifk#kKk’,
then we obtain the formula for the inverse transform
N-1
xp= Y & j=10 N, (3.4)
k=0
and the spring potential can be equivalently written as
1 & LNl
Y- |x; —Xj+1|2 =5 wi|§k|2- (3.5)
35 93
Therefore, in the normal mode coordinates & = (&), --- ,&y) € R?N, we can equivalently write
the ring polymer energy function En (xy,- -+ ,xy) as
LN N N-1
En(€) = 3 Z wiléx® + B Z V( Z fkcj,k), (3.6)
k=0 j=1  \k=0
where the normal mode frequencies {wy kN:‘Ol are given by
2 k N
Wy = O, Wok—-1 = W = ﬁ_N sin (Wn), k = 1, e, \‘E| (37)
The target Boltzmann distribution 7y (x1, - - - , xn) is now expressed as 7y (€) o e v @) de-

fined in the normal mode coordinates {& k}kN:;)l. In Figure 3.1, we plot the Fourier coefficients

ck,; for the first five modes, along with the growth curve of the normal mode frequency wy.

3 ‘ ‘ ‘ 250
e k=0 e k=3
5 o k=1 o k=4
k=2 200 | /
™, ly—-\\\ T, T, ..a-"‘ /
1 e o 0 s e . s
. . %, . o . .
S8 NN 150 - o
2 o F = -
S R 4 3 P o
100 - o
1F - . -
L Pl
Sotvens Svoer” P o
50 o
2+ ..'.._.n
."'..
=
3 . . . . . . 0¥ . . . . . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
7 k

Figure 3.1 Left: Fourier coefficients c; x in the first five modes. Right: Growth curve of the
normal mode frequency wg. The number of beads N = 128, and the inverse temperature 8 = 1.

Remark 3.1. The transform from the positions {x;} j\’:  to the normal mode coordinates {£;} v

is orthogonal, hence the Jacobian matrix has a constant determinant. This means that to com-
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pute the quantum thermal average, sampling ny(x1,--- ,xy) in the positions and sampling

an (&, -+ ,ENn-1) in the normal mode coordinates are equivalent.

3.2 Preconditioned underdamped Langevin dynamics in PIMD

We derive the underdamped Langevin dynamics for sampling the target distribution 7 (§)

N-1

in the normal mode coordinates & = {&;},_; -

The internal frequency of the k-th mode is

ﬁ_fv sin %" ~ 2"7”; in particular, the frequency of the first mode is wy = 0. Inspired from

Lu et al. (2020); Bou-Rabee and Eberle (2021), we introduce a constant a > 0 and define

Wr =

Vé(x) =V(x) - %|x|2, then the energy function Ey (§) can be written as

N-1 N N-1
D (@ + @)l + By ) va( >, fkcj,k), (3.8)
k=0 Jj=1 k=0

and the frequency of the first mode becomes a > 0.

En(§) =

| =

To construct the underdamped Langevin dynamics sampling 7y (£) « e~8¥©) | we intro-

duce the auxiliary momentum variables 17 = {n;}7_,' and write

é‘:k = MNk»

. 2 N . (3.9)
M = (W} + @) = By ) YV (x;(€))cx — i+ V2B,
j=1

where { B, }}_, are independent Brownian motions in R4. Although the underdamped Langevin

dynamics (3.9) preserves 7 (&) as the invariant distribution, it appears that (3.9) embeds strong

2kn
B

technique in Lu et al. (2020) modifies (3.9) by adding a scaling coefficient (a)i +a)”! to the

stiffness due to frequency wy ~ grows linearly with the mode index k. The preconditioning

drift force, namely,

£ = Mk
' B N . > . (k=0,1,---,N-1) (3.10)
Mk = =6k — — = Z VVea(x;(&))cjk —m + | 5Bk
Wy +a 4 wi+a
where {x; j\’: , are determined by the normal mode transform (3.4). As k grows large, the

dynamics of (&, n;) in the preconditioned underdamped Langevin dynamics (3.10) is close to

ék = Nk,

> . (k=0,1,---,N-1) (3.11)
By,

e ==k =Mk + |
w+a
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which is a linear stochastic process can be integrated with O(1) step size. In this way, the

stiffness embedded in the vanilla underdamped Langevin dynamics (3.9) is resolved.

Remark 3.2. An alternative way to handle the stiffness is to use a strongly stable numerical
integrator, for example the BCOCB integrator introduced in Korol et al. (2019). The BCOCB
integrator directly discretizes the vanilla underdamped Langevin dynamics (3.9), while the

discussion on the numerical stability is subtler compared to the preconditioning technique.

Remark 3.3. The preconditioning technique can also be applied without introducing the ar-
tificial parameter a > 0. For example, one may use the scaling coefficient a)lzz for each mode

index k > 1, and the resulting preconditioned underdamped Langevin dynamics reads

'fo = No,
N
=2 S WV, () o+ V2B,
. = (3.12)
fk =Nk

(k=1,---,N-1)

N NB
Mk = —'B—]Z Z VV(x;(§))cjx — M + — B
wk =) Wi

The alternate Langevin dynamics (3.12) can be used when the potential V(x) is defined in a
periodic region. However, in this paper, we focus on the Langevin dynamics (3.10), as it is

more convenient for studying ergodicity.

Remark 3.4. In addition to Langevin thermostats, several other options are available for sam-
pling the target Boltzmann distribution. Commonly used alternatives include the Hamiltonian
Monte Carlo (HMC) method Betancourt (2017), the Andersen thermostat E and Li (2008),
and the Nosé—Hoover thermostat Evans and Holian (1985). By comparison, the convergence

analysis of Langevin dynamics is more extensively studied and understood.

3.3 Assumptions and results

In this section, we present the assumptions and results in the ergodicity of the precondi-

tioned underdamped Langevin dynamics (3.10). The invariant distribution of (3.10) is

1 N-1 N N-1
pn(.m) o exp{—i D (@ + @) (&l + Inel) - Bu ZV“( >, fkcj,k)}, (3.13)
k=0 j=1 k=0
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whose marginal distribution in £ is exactly the target distribution

N

N-1 N-1
iy (£) o exp{—% D (@i +a)l&l —ﬁNZV“( kac‘;,k)}, (3.14)
k=0 k=0

j=1

For the convenience of the proof, we also introduce the overdamped form of (3.10):

By, (k=0,1,---,N—-1) (3.15)

. By S
be=—bu-—— Zl VY (€Dt | = —

k k

where {B}-' are independent Brownian motions in R?. It is clear that the invariant distri-

bution of (3.15) is 7y (£).
Assumption 3.1. Given the constant a > 0, the potential function
Vi) =V - kP xer,

is twice differentiable in R?, and for some constants M;, M, > 0,
(i) V4(x) can be decomposed as V¢(x) + V?(x), where V*V¢(x) = O4 and |V?(x)| < M,
for any x € RY;
(ii) —M,1; < V2V4(x) < M,1, for any x € R%.

Assumption (i) can be interpreted as: V¢(x) is the sum of a globally convex potential V(x)
and a globally bounded potential V?(x).
The ergodicity results of the overdamped and underdamped Langevin dynamics are sum-

marized in Table 3.1.

Dynamics overdamped (3.15) underdamped (3.10)
Assumption (1) = Theorem 3.1 (1)(i1)) = Theorem 3.2
Distribution nn(€)in (3.14) un(€,1m)in (3.13)

Ergodicity | Enty, (P, f) < e > Enty, (f) | Wy (Pof) < e 22 W, (f)

Table 3.1 The uniform-in-N ergodicity of the Langevin dynamics in PIMD.

Here, the convergence rates 4, and A, are explicitly given by

2

a
Ay =exp(—-48M,), A =———
: p( A2 3M;3 + 5a?

exp(—48M,).

We note that 4, < 4, is because the generalized I" calculus—the proof technique for the under-
damped Langevin dynamics (3.10)—is based on the log-Sobolev inequality for the overdamped

Langevin dynamics (3.15). See the related discussions in Remark 2.3.
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Remark 3.5. In principle, the overdamped Langevin dynamics (3.15) can also be used to sam-
ple the target distribution nty (€). Nevertheless, the underdamped form (3.10) is preferred in
the physics community because (3.10) is a direct generalization of the Hamiltonian dynamics.
From the mathematical perspective, justifying the ergodicity of the underdamped Langevin dy-
namics is much more difficult than the overdamped case, because the infinitesimal generator

is a hypoelliptic operator rather than a strongly elliptic one (Villani, 2009a).

Remark 3.6. The ergodicity of PIMD has also been established in its preconditioned Hamil-
tonian Monte Carlo (pHMC) formulation, as shown in Theorem 3.5 of Bou-Rabee and Eberle
(2021). However, the time duration restriction imposed on pHMC, as specified in Equa-
tion (3.22), is quite stringent and challenging to verify in practical applications. In contrast,
the underdamped Langevin dynamics (3.10) offers a more straightforward approach, as it can

be directly discretized for computing the quantum thermal average.

3.4 Uniform-in-N ergodicity of Langevin dynamics in PIMD

In this section we prove the uniform-in-N ergodicity of the overdamped Langevin dy-
namics (3.15) and the underdamped Langevin dynamics (3.10). A introduction of the proof
techniques—the functional inequalities and the generalized I" calculus—can be found in Chap-
ter 2.4.1. In particular, the proofs of Theorem 2.5 and 2.6 provide the blueprints for the proofs

of Theorem 3.1 and 3.2 in this section.

Theorem 3.1 (overdamped). Assume (i). Let (P;);>o be the Markov semigroup of the over-

damped Langevin dynamics (3.15), then for any test function f(&) in R4V,
Ent,, (P,f) < e *"Ent., (f), Vt>0,

where the convergence rate 11 = exp(—48M,).

The proof is based on the log-Sobolev inequality for the distribution 7y (£).

Proof of Theorem 3.1. Introduce the potential function of the ring polymer energy

N N N-1
V(&) = v Y V(x;(£) :ﬁNZV“(kac,-,k), (3.16)
j=1 j=1 k=0
then we can simplify the overdamped Langevin dynamics (3.15) as
=€ Ly Vi (€) + 2 5 (3.17)
k = 76k a)i+a & YN wi+a k- .
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Similar to the proof of Theorem 2.5, we prove the log-Sobolev inequality for (3.17) by studying

its convex counterpart. The potential function corresponding to V¢(x) is given by

V(€)= By Z V) = SV ( Z fucyu)
=1

Since V¢(x) is globally convex in R?, we can deduce Vy (§) is globally convex in RN In fact,

for any @ = (6o, 6,,- -+ ,0n_1) € R we calculate

6 -V>Vy(£) -6 = Zek (ﬂNZvWC(x,(f))c] kcﬂ) 7

k.1=0
N N- N-1

:ﬁNZ(ZQij,k) 'VZV(Xj(f))'( chjl) >
Jj=1 \ k=0 =0

The overdamped Langevin dynamics driven by the potential Vy (£) reads

1 2.
bk = ~&— —— Vg Vy(6) + ‘/ s— Bx, (3.18)
wi+a wi +a

whose infinitesimal generator is given by

N-1 1 |
L=y (fk " ka(vN(g)) Ve + Z —As. (3.19)
k=0

k+a

and the invariant distribution is

75 (€) oc exp { -5 Z(wk +a)l&l® - By Z ve (Z £xe;, k))} (3.20)

By direct calculation, the I" operators (see Definition 2.2) corresponding to L€ are given by

N-1
Vef - Veag
I(f.9) = Z —s—,

=0 (l)k +a

N-1 f V g N—IV 'V NIV f V (Vc(é:)v g
Ff(f,g):z Vi & +Z alf §k9+Z &k aa VN a9

(w; + a)(w] + a) w; +a (w7 + a)(w; +a)

k,l1=0 k=0 k,1=0

Utilizing the convexity of the potential function Vg (£), we obtain

N-1 N-1 c N-1
) Ve, fI? Vaf Ve VW) Ve f Ve /1P
HOEDY >y @iy D =), 32D

2
—wpta o = wta

Hence from Theorem 2.1 we derive the log-Sobolev inequality

1 I1(f) e 2 1 IngfI2
Ent,,;\'] (f) < 5 ‘/RdN N = / . (322)

N-

k=0
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In the final step, we apply the bounded perturbation property (Theorem 2.2) to transform
(3.22) to the log-Sobolev inequality for 7 (£). Let Zy and Zy, be the normalization constants
of the distributions 7 (£) and 75, (£), namely,

Zn = /RdNexp( Z(wk+a>|§k|2 ﬁNZva(x,@)))
k=

N-
Zy = /R L &P ( - % Z(wi +a)lél” - By Z V“(xj(f)))d«f
k=0 j=1

Using the inequality [V¢(x) — V¢(x)| = |V?(x)| < M,, we have

[V (&) = V@I < Bn D IVP (0 ()] < BM,

J=1

and thus the normalization constants Zy and 3, satisfy

Z
ZQV € [exp(—BM:), exp(BM))].
N
As aresult, the density functions 7y (£) and 7§, (§) satisfy
7€) Zn ( O b )
= ——ex VZ(x; € | exp(—28M,;),exp(28M)|. (3.23)
@) " Zo P ﬁN; (x;(€)) | € [exp(=25M)), exp(25M))]
Using the bounded perturbation (Theorem 2.2), we obtain from (3.22) that
1S 1 Ve fI2
—48M,)Ent, < = L dny. 3.24
PABMERe (1)< 5 3 [ Sy (324

Hence for the rate A, = exp(—48M,), the relative entropy has exponential decay,
Ent,, (P,f) < e *"Ent.,(f), Vt>0,
which completes the proof. [

Theorem 3.2 (underdamped). Assume (i)(ii). Let (P;);so be the Markov semigroup of the

underdamped Langevin dynamics (3.10), and define the entropy-like functional

_ (M2 v | Vo f = Ve f P+ |V, /12
W (f) = (? + 1)Ent,,N(f) + ; ot a /m 7 duy. (3.25)

Then for any test function f(&€,n) in RV,
W (P f) < e22'W, (f), VYt>0,

where the convergence rate A, = 5 M2+5 > exp(—48M,).
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The proof is based on the generalized I" calculus.

Proof of Theorem 3.2. First, we establish the uniform-in-/N log-Sobolev inequality for the dis-
tribution uy (£, 7). In Theorem 3.1, we have proved the log-Sobolev inequality 7 (£):

1S 1 Ve fI?
A Ent,, (f) < = - / VeS| drw, (3.26)
2 oo Wi T a Jrav f

where the convergence rate 4; = exp(—48M,). On the other hand, for the Gaussian distribution

1 N-1
o () o exp{—5 > Wi+ a>|nk|2} (327)

k=0

we apply Theorem 3.1 and obtain the log-Sobolev inequality

151 IV [
Ento, (f) < = I oy 3.28
) 2; — /R oo (328)

wj
Since the invariant distribution uy(€,n7) = an(€) ® on(n), Theorem 2.3 implies that the

tensorization of (3.26) and (3.28) yields a new log-Sobolev inequality

1 / Ve /I + 1V, fI?
R2dN f

where the convergence rate is determined by the smaller one of the rates 4; = exp(—48M,)

and 1, which is A, itself.

1 N-1
AiEnt () < 5 > dpn, (3.29)
k=

2
Oa)k+a

We continue using the notation in the proof of Theorem 3.1,
N N-1
Vy(€) = Bn Z Va( Z fkcj,k), £ e R,
j=1 k=0
which denotes the external potential of the ring polymer. Note that the generator of the under-

damped Langevin dynamics (3.10) is given by

N-1 N-1 1 N-1 A
L= Vg — + 1+ V.V 'V, + L 3.30
; Nk Ve kZ(; (§k Nk ot a & N(f)) - kZ:(; pr (3.30)
then it is easy to derive the expressions of the commutators:
Nl
_ 2 a _
[£.V:]=V, + ; mvfk&q/]v(g) Vo (LY ] =V, —Ve. (3.31)

Inspired from Example 3 of Monmarché (2019), introduce the local operators

1 |V77kf - V-fkf|2 + |Vnkf|2
w; +a f ’

N-1

D, (f) = flog f, @(f) =

k=0
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then from Lemma 2.3 we obtain the generalized I" operator

11 V,,k 2
Ftl)l (f) = 5 Z | f|
k=0

In order to compute 'y, (f), we write ®,(f) = S0 a)2+a @, «(f), where

|V77kf - kaf|2 + |V7]kf|2
f 9

Utilizing Lemma 2.3 again, we have the following estimate of I', , ( f):

Dok (f) = k=0,1,---,N—1.
f : F@g,k(f) = (Vnkf - kaf) : [Lavnk - ka]f + Vnkf' [‘E’Vﬂk]f
N-1
1
= Vo =Vl P = Vuf =Val) 2, o Vaa Vi) -Vl

Taking the summation over k =0, 1,--- , N — 1, we obtain

= \ -V 2 e Vﬂk _Vk 771
T s Y ol Vel N Vot ZVal g g S

2
*=0 wy +a w} +a

> (3.32)
CL)k +a k.1=0

To further simplify the expression of I'y, (), define the vectors P, Q € RN by
N-1 N-1

Vil =Vaf c RdN’ Q= Vi f
\Jwi +a o \Jwi +a o
then the inequality (3.32) can be equivalently written as
P2 - PTEQ
— 5

is given by

P - e R, (3.33)

Fo,(f) 2 (3.34)

where the symmetric matrix X € RIV*dV j

B 1
Kl =
\/(wi + a)(a)l2 +a)

For any 6 = (6y,61,---,0n_1) € RN, we have

)y Vi o Va(€) eR” Kk 1=0,1,--- ,N—1.

N-1

Ok
07X = Vi V() ——

kI=0 \Jwi + w? +a
N

YA 0kCik . 91C11
=Bn )| D = VE VU (x(8))

b
JAI\KIE0 \Jw? + a \Jw; +a
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which implies

——I;n S TS —1In. (3.35)
a a

In conclusion, the local operators @, ( f), ®,(f) and their generalized I" operators satisfy

PP +1Q)

©i(f) = flogf. @)= ——— (3.36)
Fo.(f) = X () > PE - 1Piel (3.37)
@, - 2f > @, Z f . .

Finally, we derive the functional inequalities satisfied by ®;(f) and ®,(f). The log-
Sobolev inequality (3.29) implies

1 P+ Q17+ |Q? 3/ P> + Q)7
A,Ent <= duy < = - =
1Enty (/) 2/RMN I NS S Joan — F

hence with the expressions of @ ( f) and ®,( f), we can equivalently write

2
Tl( / @, (f)duy - @, ( / fduN)) < / 5 (f)duy. (338)
R2dN R2dN R2dN
On the other hand, (3.37) implies

dun,

2

M P| - M2101)2
Fcbz(f)—%q)z(f)+(a_22+1)rq)l(f)>(| | - 221Q|) N

2f > 0. (3.39)

Collecting the functional inequalities (3.38) and (3.39), we can directly apply Theorem 2.4

with constants

3 1 M3 ol
cC=—, = -, m= —
22, P72 2
and obtain the convergence rate
0 A a’
Ay = = < exp(—48M,),
T2 wme) oy 3(M ) M5 P(=45M)
which completes the proof. [

In Theorem 3.2, we established the explicit convergence rate A, for the entropy-like quan-

tity Wy, (P, f). Next, we demonstrate that for a carefully chosen initial distribution vy €
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P (R?@N), the test function

(&)
#N(f’ ’7)

ensures W, (fy) remains uniform-in-N. This uniformity is crucial, as it guarantees that

fN(f’ ") =

H(vyP;|un) does not diverge as the number of beads N — co.
We select the initial distribution vy (€, 1) = oy (€) ® on (17), Where oy (+) is the Gaussian
distribution defined in (3.27). Since the target distribution is uy (&€,n) = nn(€) ® on(n), the

test function f) depends only on the & variable and is expressed as

fn#) = 28 o oxp ﬁNiV“(NZ_lfkc'k) . (3.40)
n(€) = =0 ”

Consequently, the entropy-like quantity W, ( fy) simplifies to

M; o 1 Ve, fiv]?
1% =|—2+1 Ent, + —/ §"—dn
on () (az ) V() ;wiw Pl
N-1

M2 1 Ve Snl®
< e*BM 2 13
e (_a2 +2) E wi+a/RdN I3 dry, (3.41)

k=0

where the log-Sobolev inequality in (3.24) is applied. Therefore, the task reduces to estimating
the RHS of (3.41). In the following, we assume VV(0) = 0. If this condition is not met, the
global minimum of the potential function V(x) can be shifted to the origin without loss of

generality.

Lemma 3.1. Assume (i)(ii) and VV (0) = 0. Let fn (&) be the test function in (3.40), then

N-1

1 Ve fnl? 1 ?
> = / Valvl g, < Mg(— +3,82) . (3.42)
wy +a Jran fN a

k=0

As a consequence, the entropy-like quantity W, (fn) is bounded by

MZ 1 2
W (fn) < e“ﬁMlMg(a—j + 2)(2 + 3ﬁ2) . (3.43)

Proof of Lemma 3.1. We begin with the following inequality:

1 1
> < +3p (3.44)
a

Using the explicit expression of the frequency wy in (3.7), we obtain

1 1
Z—M<ZW

|k|<Na+B12VSan \k\<Na+_

-1

a)k+a

k=0
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2 2

[e9)
et i
o S K2 a

2’32

<)

keZa+

Since 45 > < 3, we obtain the desired inequality (3.44).
Next we prove (3.42). Using VV(0) = 0 we have VV¢(0) = 0 and thus the inequality

|VVe(x)| < Mslx|, VxeR9.

€3]

Utilizing the expression fi (§) = 7~ ( &> We have

\% \% 2

/ Wa sl - / Wa /vl gk{’vl doy. (3.45)
RAN fN RAN fN
From (3.40), f" IN s explicitly given by
Ve In O e
L = B ) WV (€))e s
/i Z.

and hence by Cauchy’s inequality

v
"f}—sz < ﬁNZ Ve @) Z eyl

< By M: Z I (€)= M2 Z &l
k=0

j=1

As a consequence, we obtain

/ ‘—2d0'N<M2/ Z|§ ||don = M. ZE[|§1<| fNO-N]
RV fy k=0 k=0
e 1
— A2 2 2
—M2 w2+a<M2(5+3ﬁ)’
k=0 “k
foreach k =0,1,--- , N — 1. Hence we finally obtain
-1 2 N-1 2
Ve 1 1 1
Z / ¢d0N<M§(—+3,BZ)Z . <M22(—+3,82),
kowk+a RAN fN a —wpta a
which completes the proof. [

Utilizing Lemma 3.1, we establish the exponential decay of the relative entropy H(vnP;|7y),
where both the coefficient and the convergence rate remain independent of the number of beads
N.

Theorem 3.3. Assume (i)(ii) and VV (0) = 0. Let (P;);»¢ be the dual semigroup of the under-
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damped Langevin dynamics (3.10), and choose the initial distribution vy € P(RN) as

N-1
v (£.) o exp{—é D (@i + )l + |nk|2>},
k=0

then we have the inequality
1 2
H(vnP:ny) < 2M§(— + 332) ePMi—ht -y >, (3.46)
a

2
where the convergence rate Ay = 335~ exp(—4BM,).
2

3.5 Relation to Matsubara mode PIMD

We propose an alternative derivation of the Path Integral Molecular Dynamics (PIMD),
which is based on taking the continuum limit of the ring polymer energy in (2.16), rather than

directly diagonalizing the ring polymer energy in (2.14). This approach leads to a different set

N-1
k=0 >

(Chandler and Wolynes, 1981; Willatt, 2017; Althorpe, 2024). Consequently, the resulting

of mode frequencies, denoted as {@y which are referred to as the Matsubara frequencies
method is also known as the Matsubara mode PIMD.
Recall that the continuum limit of the ring polymer energy is given by

B B
eux() =5 [ WFdr+ [ Vi),

0
where x(+) is a continuous loop defined over the interval [0, 8]. To diagonalize the kinetic
energy part of &, (x(-)), we consider the following eigenvalue problem with periodic boundary
conditions:

—& (1) = @zer(t), T €[0,8]. (3.47)
The eigenvalues and eigenfunctions are explicitly given by

1
wo =0, co(T) = 1 3;

5

2k 2 2k
a_)zk—1=7ﬂ, CZk—l(T):\/;Sin( ;T), k=1,2,---;

_ 2km 2 2knt
w2k=7, Czk(T):\/;COS( 7 ), k=1,2,---

The eigenvalues {w; } and eigenfunctions {c(-)} are closely related to the normal mode

frequencies {wy} and coefficients {c; s} as defined in Definition 3.1. Specifically, we have the
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following relationship:

2 Kn 2[8 7

lim w; = lim — sin l2lr) _ 2051 =a, k=01,..., (3.48)
N—> N—> ﬂN N [)’

and when N is odd, cx(jBny) = cjx for j = 1,...,N. Since @, represents the infinite-

bead limit of wy, {@x}}, are referred to as the Matsubara frequencies, and the corresponding
eigenfunctions {c,(-)};_, are known as the Matsubara modes in chemical literature.

Using the Matsubara modes, any continuous loop x(-) in [0, 8] can be represented as
x(r) = ) &ei(r), Te[0,B], (3.49)
k=0

where {& }kN:‘O1 are referred to as the Matsubara coordinates. Using the Matsubara coordinates,

we can express the energy function &, (x(-)) as

1 00 B N-1
Ew(8) = ) kZ:;J Flél® + /0 4 (kzz(; §kck(T)) dr. (3.50)

Formally, the preconditioned underdamped Langevin dynamics that samples e~~®) is

ék = Nk,
2 ) (3.51)

By,

1 B
e =—ér— = / VVe(x(T))er(r) dt —mi +
Wy, +aJo

-2
(,Uk+(l

where {By};’_, are independent Brownian motions in R4. The infinite-dimensional Langevin
dynamics in (3.51) corresponds exactly to the stochastic partial differential equation (SPDE)
introduced in Equation (21) of Lu et al. (2020).

Although (3.51) does not involve any approximation error, it is infinite-dimensional. There-
fore, we must truncate the number of modes to a finite integer N, and the continuous integral

must be approximated numerically. A natural truncation scheme is given by

ék = Nk

N
- (3.52)
Mk = =&k — _ﬁN Z VVEa(x;(€)ejx =k + | =B
@ +a @} +a

where the values of {x j(‘f)}?’: , are given by

N-1
(€)= ) i
k=0

The truncated Langevin dynamics in (3.52) is referred to as the Matsubara mode PIMD, which
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differs from the Langevin dynamics in (3.10) in the mode frequencies.

Denote the invariant distribution of the Matsubara mode PIMD (3.52) as

1 N-1 N N-1
in(Em) exp{—i @+ aet sty ) ve( X, fkc,-,k)}. (3.53)
=0 = =0

Employing the same approach with Theorem 3.2, we can prove the uniform-in-N ergodicity of

(3.52), and the convergence remains the same.

Theorem 3.4 (Matsubara). Assume (i)(ii). Let (P;);so be the Markov semigroup of the Mat-
subara mode PIMD (3.52), then for any test function f(&,n) in R*V,

Wiy (Pif) < e W (f), V120,
where the convergence rate Ay = 375 —~— Mﬁl;az exp(—48M,).

Our results demonstrate that both the standard PIMD (with normal mode frequencies)
and the Matsubara mode PIMD (with Matsubara frequencies) exhibit uniform-in-N ergodicity.
However, this does not imply that their approximation errors with respect to N are similar. As
shown in the numerical tests, the convergence rates of the standard PIMD and the Matsubara
mode PIMD are O(1/N?) and O(1/N), respectively. This indicates that the standard PIMD

(3.10) 1s more suitable for accurately calculating the quantum thermal average.

Remark 3.7. In chemical literature, Matsubara frequencies are primarily used in Matsub-
ara dynamics Willatt (2017); Althorpe (2024), which is a computational tool for evaluating
quantum correlation functions (QCT). In this context, errors mainly arise from approximating
the real-time quantum dynamics, and the Matsubara frequencies result from discretizing the
imaginary-time path integral to reflect the periodic boundary conditions in quantum systems.
However, the Matsubara mode PIMD is not a standard technique for calculating quantum ther-
mal averages. Unlike the standard PIMD, which uses normal mode frequencies, the Matsubara

mode PIMD introduces a different formulation and leads to distinct approximation errors.

3.6 Numerical tests

In the numerical tests, we compute the quantum thermal average using both the standard
PIMD (3.10) and the Matsubara mode PIMD (3.52). The primary objectives are to evaluate the
approximation accuracy with respect to the number of beads N and to verify the uniform-in-N

ergodicity of the Langevin dynamics. To achieve this, we fix the step size / as a small constant
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while varying the inverse temperature § and the number of beads N. The numerical examples

include a one-dimensional potential and a three-dimensional spherical potential.

Time average error and autocorrelation function To evaluate the accuracy and efficiency
of the simulation, we introduce two key metrics: the time average error, which quantifies the
error in computing the quantum thermal average, and the autocorrelation function, which mea-
sures the convergence rate. While these concepts are primarily explained using the standard
PIMD (3.10), their definitions for the Matsubara mode PIMD (3.52) are analogous.

The target distribution for the standard PIMD is 7y (£), as defined in (3.14). Accordingly,
the quantum thermal average (O(§))g is approximated by

N

N-1
(0(R)p ~ (OD))pn 1= /R N [% > 0( > fkc_,-,k)]m@ d§. (3.54)
k=0

j=1
Furthermore, let &, () and 7, (¢) be solutions of the underdamped Langevin dynamics (3.10).
The accuracy of the quantum thermal average (O(§))z can be characterized by the time average

error,
N-1

e(B,N,T) := %/0 [;]Z (ng(z)cj k)]dz—<0(x)>,;, (3.55)

j=0
which depends on the number of beads N and the simulation time 7.

The autocorrelation function of the normal mode coordinates {& k}kN:_Ol is defined by

(k1) = (€)1 + AT)) — <§k>)
(1) = (€)Y

where (£ (1)) 1= limy_e T! /o f(2) dt denotes the time average of a function f, and AT is the

Cu(B.N,AT) :=

k=0,1,...,N -1, (3.56)

time interval between successive measurements of &;. The exponential decay of Cy (8, N, AT)

characterizes the convergence behavior of the k-th mode.

Time discretization: BAOAB integrator The time discretization of the underdamped Langevin
dynamics is performed using the BAOAB integrator (Leimkuhler and Matthews, 2015; Liu
et al., 2016), a widely used numerical scheme in molecular dynamics based on operator split-

ting. In the standard PIMD, (3.10) can be expressed as:

fk = Nk,
> (3.57)
e =~ 2 V() — i+ | B
wk+ wk+a
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where Vi () is the potential function defined in (2.14). To construct the integrator, (3.57) is

split into three parts:

: - £ =0
Ek = Mk, &k =0,
A : B : B BN g, e, 0 : .
] = 07 == k— v 7 = - + —B )
Nk wk ta k Nk Nk wi s k
where (A, B, and O have explicit solutions. The solutions for A and B are:
A Ex (1) = §k(0) + 1. (0)t, (3.58)
B, (1) = (§k(0) +—— VfJV“ (& (0))) (3.59)
k
For O, which represents a linear Ornstein—Uhlenbeck process, the solution is:
e—Zt
O; 1 (1) = e”'ni(0) + - Ok, (3.60)
k
where {6} ' are independent Gaussian random variables sampled from N (0, 1,).
Finally, the BAOAB integrator with step size & is constructed as:
(E™ ™) = (Bhjp o Apjp 0 Oy 0 Appp 0 Bip) (€7,0™), m=0,1,.... (3.61)

Since the BAOAB integrator is based on symmetric operator splitting, the time discretization

error is O (h?) in the weak sense, ensuring both accuracy and efficiency.

Example: 1D potential Let the potential V(x) and the observable O (x) be defined as:
1
V(x) = Exz +xcosx, O(x)=sin (gx) , x€eR. (3.62)

The exact quantum thermal average (O (X))g is computed using the spectral method with Gauss—

Hermite quadrature. For the simulations, the step size is fixed at h = and the simulation

16’
timeis setto 7 = 5 x 10°.

The time average error e(8, N, T), as defined in (3.55), is shown in Figure 3.2. The
tests are conducted for inverse temperatures S = 1,2,4,8, and the number of modes N =
9,17,33,65,129. The left and right columns of Figure 3.2 illustrate the results for the stan-

dard PIMD and the Matsubara mode PIMD, respectively.
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Figure 3.2 Time average error in computing the quantum thermal average for the 1D potential
(3.62). Left: standard PIMD. Right: Matsubara mode PIMD. Top to bottom: inverse tempera-
tures 8 =1,2,4,8.

Figure 3.2 demonstrates that the standard PIMD achieves better accuracy than the Matsubara
mode PIMD across all temperatures and requires fewer modes N for convergence. The numer-
ical results suggest that the standard PIMD converges with an order of O(1/N?), whereas the
Matsubara mode PIMD converges with an order of O(1/N).

Next, we compute the autocorrelation functions for the first five mode coordinates {£;};_,
at inverse temperatures S = 1, 2,4, 8 and mode numbers N = 9, 17,33, 65, 129. The autocor-
relation functions Cy (8, N, AT), as defined in (3.56), are plotted against AT in Figure 3.3.

correlation
correlation
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time interval time interval

B=1

53



R A2 A 8 ST

iy

)
&6 |
&,&

o
©

o
o

0.4F

correlation
correlation

o\

0 5 10 15 20 0 5 10 15 20
time interval time interval

&
&1,6
08¢ &, |

0.6 [

0.4r

correlation
correlation

0.2+

| /\'
5 10

time interval

10
time interval

20

o
&,&
08y &6 |

3
SR
&,&

0.6 [

0.4+

correlation
correlation

0.2+

S
|

0 5 10 15 20 0 5 10 15 20
time interval time interval

(B=28)
Figure 3.3  Autocorrelation functions for the 1D potential (3.62). Left: standard PIMD. Right:
Matsubara mode PIMD. Top to bottom: B = 1,2,4,8. The first mode &, is shown in blue, &;
and &; in red, and &; and &, in yellow.
Figure 3.3 shows that the correlation functions for various N coincide, confirming that both the
standard PIMD and the Matsubara mode PIMD exhibit uniform-in-N ergodicity. Furthermore,

the separation of correlation functions for different k-modes highlights that convergence rates
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vary among modes. At lower temperatures (larger ), high-frequency modes tend to exhibit

longer correlation times.

Example: 3D spherical potential Consider the 3D spherical potential

1 1
V(x) = xP + —, Ix| = 2 +x2+x2,
2 V2 +0.22 b

X

(3.63)

where we aim to capture the probability distribution of |x|, the Euclidean distance from the

origin in R?. Using the density operator e PH _the distribution of |x| can be expressed through

the density function:

1 ; .
pr) =~ / (xle Py (x| —r)dx, >0, Z=Tr[ePT].  (3.64)
R3
This radial distribution p(r) characterizes observable functions dependent on |x|.
L and the

For the simulation, we set the inverse temperature S = 4, the step size h = 3>

simulation time 7 = 5 x 10°. In Figure 3.4, the density function p(r) is plotted for varying

numbers of modes N = 3,5,9, 17, 33.
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Figure 3.4 Probability density of |x| in the simulation of the PIMD. Left: Matsubara mode
PIMD. Right: standard PIMD. Top and bottom graphs use different scales.
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Figure 3.4 shows that as the number of modes N increases, the density function transitions
from the classical distribution (black dashed curve) to the quantum limit. Both the standard
PIMD and Matsubara mode PIMD accurately compute the density function p(r); however, the
standard PIMD exhibits better accuracy than the Matsubara mode PIMD when the number of

modes N is small.

3.7 Brief summary

In this work, we have conducted a comprehensive theoretical analysis of Path Integral
Molecular Dynamics (PIMD). A key achievement is our proof of the uniform-in-N ergodicity
of the underdamped Langevin dynamics within PIMD (Theorem 3.2), where N represents the
number of beads. This result marks a significant advancement in the theoretical understanding
of PIMD and demonstrates a novel application of the generalized I" calculus.

A crucial open question remains: how can the approximation error in terms of N be
rigorously quantified? Resolving this would further enhance the theoretical framework and
inform practical simulations. This work lays the groundwork for addressing such challenges,

bridging theoretical insights and practical applications in PIMD.
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Chapter 4  Ergodicity and long-time error of RBM

In this chapter, our primary objective is to establish the ergodicity of the RB—IPS model
(2.21) and to quantify the long-time error of the discrete RB—IPS scheme (2.22). To achieve
this, we utilize the reflection coupling technique presented in Section 2.4.2 for proving ergod-
icity and adopt the triangle inequality framework outlined in Section 2.4.3 for estimating the
long-time error. Notably, we aim to demonstrate that the convergence rate and error coeffi-
cients are independent of both the number of particles N and the step size h.

For clarity in the analysis, let (P,),o denote the continuous dual semigroup of the IPS
(2.17), (P;);s0 the continuous dual semigroup of the MVP (2.17), (Q"),50 the discrete dual
semigroup of the RB—IPS (2.21), and (QZ),,>0 the discrete dual semigroup of the discrete RB—
IPS (2.22). Specifically, for any initial distribution v € P (R4V), vP, represents the distribution
law of the IPS at time ¢, while vQ" and vQ” represent the distribution laws of the RB-IPS and
discrete RB-IPS at the n-th step, respectively. We also list the related notations and the main
results in Table 4.1.

Dynamics Symbol | Semigroup | Invariant | Ergodicity | Long-time error
IPS (2.17) (x>0 (Po)is0 n Theorem 4.2 -
MVP (2.18) (%) >0 (PH)eso 7 Theorem 4.7 Theorem 4.8
RB-IPS (2.21) (Y1)i>0 (Q") 50 ah Theorem 4.1 Theorem 4.3
discrete RB—IPS (2.22) | (Yn)ns0 Q)50 — - Theorem 4.5

Table 4.1 The stochastic processes studied within the RBM, and the corresponding results
on the ergodicity and the long-time error.

4.1 Uniform-in-N ergodicity of RB-IPS

Basic assumptions Compared to the overdamped Langevin dynamics (2.62) for a single par-

ticle in R, the RB-IPS model involving N particles {y/}", defined as

i=1’

Z K(yi—y)+cB, ieC, te[nh (n+1)h),

Jj#i,jeC

Ji=by) +

includes additional pairwise interaction terms K(y' — ytj ). Consequently, in addition to the

contraction condition on the drift force b (x) stated in Assumption 2.2, we also impose a bound-
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edness condition on the interaction force K (-).
Assumption 4.1. For the drift force b(-) : R — RY, there exists a constant L such that
|b(x)| < Lo(|x| + 1), |Vb(x)| < Ly, VxeR?. 4.1)
For the interaction force K(-) : R — R, there exists a constant L, such that
max {K(x), VK (x), V’K(x)} < L, Vx € R%. (4.2)
For notation convenience, denote the interaction force on the i-th particle as
yi(x) = %1 Z K(x'—x7), Vx=(x, - ,xn)€RN, (4.3)
j#i,jeC
where C is the batch which contains i. Then the RB-IPS (2.21) can be shortly written as
g =by) +y'(y)+0oB, i=1-- N. (4.4)

Due to the Lipschitz condition on K (-) in Assumption 4.1, we have the inequality

Y (1) =¥ (B) € — K (xf - ) - K(& - )|
- 1

1 Lj#i,jeC

A

i

1

<
-1

L1(|xi —)Z'il + |x]' —)?]|)]

]
1=

i | j#i,jeC

N
= 2LIZ el — .
i=1

Hence we obtain the inequality
N N
D) -y @) <2Ly Y &, Vx, e RV 4.5)
i=1 i=1

Construction of reflection coupling Let (y,),>0 and (¥,),>o be two copies of the RB-IPS

(2.21) in RN and we define the reflection coupling scheme as

i = b+ () + o re(r) B + se(r) B,

.- . . . . . .. Lo (4'6)
i = b(@) + 7' (@5 + o (re () (U = 2¢i(e)T) Bl + se(r) B,
where we employ the notations
. o . . g i i ‘
d=yi-geR:, ri=ldl, e=Zt=lU0 =1 N, @)
Ty |yt - yt'
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and {B.}Y

rc(r) and sc(r) are two smooth functions in r € [0, +o0) satisfying

, and {B;}f\i , are two sets of independent Brownian motions in R4. In addition,
e rc?(r) +sc?(r) = 1 forany r > 0;
* rc(r) =0forr < $andrc(r) = 1 forr > 6.

Here, 6 > 0 is a flexible parameter in the construction of the coupling. Figure 4.1 provides a

simplified illustration of the coupling scheme described in (4.6).

sc(r;')é;'\\
4=y -y

e, =2;/1z 7

Figure 4.1 The coupling scheme between the two copies y; and g,: blue arrows represent the
synchronous coupling, while red arrows represent the reflection coupling.

Remark 4.1. The key distinction between the coupling scheme (4.6) for the RB—IPS and the
coupling scheme (2.74) for the overdamped Langevin dynamics is the inclusion of the auxiliary
functions rc(r) and sc(r). These functions facilitate a smooth transition between synchronous
coupling (sc(r) = 1) and reflection coupling (rc(r) = 1), preventing particles from becoming
stuck together. The importance of this smooth transition lies in the need to define the coupling

dynamics consistently for all N particles, as detailed in Section 6 of Eberle et al. (2019).

Remark 4.2. By Lévy’s characterization (Lévy, 1940), the normalizing condition rc*(r) +
sc2(r) = 1 ensures that both copies (y,);s0 and (i§;);>o are driven by standard Brownian

motions in the coupled dynamics (4.6).

Remark 4.3. The random divisions at each time step lead to a different definition of y'(-) at
each step. However, the batch divisions for (yY,),>0 and (¥,);>o remain consistent and identical

at every time step.

From the coupled dynamics (4.6), the position displacement z! = y’ — ij! satisfies the SDE

i i _j i - iy 2t vizi
& =b(y) =)+ (y0) =" (§0) + 20me(r) W, (4.8)

t
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where W! is the one-dimensional Brownian motion defined by W/ = (e!)"B!. Note that the
synchronous coupling part vanishes in (4.8), and the diffusion coefficient orc(Z!) solely comes
from the reflection coupling. Furthermore, we can verify that r! = |z!| satisfies the SDE
g _ % i _j i if= i\ Vi
Fp == (bly) = D) + 7' (90) =7 (1) + 201 (r) W (4.9)
t
With the distance function f(r) introduced in Lemma 2.5, we apply It calculus and obtain

d . i . . . . .
SF() = 2 () = () + () = Y (@) f (7]
"y (4.10)

+ 207 (r)) £ (r!) + 20re () £/ (P B,

which is an analogue to (2.77) in the proof for the overdamped Langevin dynamics (2.62).
Taking the expectation in both sides of (4.10), we obtain the changing rate of E[ f(r!)]:

d i Z i _j i PN\ f NP

B/l =E = (b(y) = b)) + ¥ (y) =Y (@) [ (r}) + 207 (r}) £ (r}) | . (4.11)

t

We note that the interaction force y'(-) in (4.10) is a random function, as it depends on the
choice of the batch division. Consequently, the expectation in (4.11) involves the random se-

lection of the batch division.

Estimate of changing rates We need to estimate the RHS of (4.11) to prove the ergodicity.

The following inequality is essential in estimating the changing rate of E[ f(r,)].

Lemma 4.1. Under Assumptions 2.2 & 4.1, let f(r), co, po be defined as in Lemma 2.5. Given
0 > 0, let rc(z) be a smooth continuous function with |rc(z)| < 1 and rc(z) = 1 for |z| = 6. If

the constant Ly in Assumption 4.1 satisfies

2
Copo0

Iy

L <

then the following inequality holds with = %(,‘00'2.'

N i
> (Z— () = b + ¥ (@) =Y @) ()

i=1

N 4.12)
+ 202r02(ri)f”(ri)) < Nm(8) =B Y f(r).
i=1
where y,ij € RN, z =y — i, r' = |7'| and m(6) is defined by
o? _ )
m(6) = > sup (rK(r) ) + coo 0. (4.13)
r<o
Here x~ = —min{x, 0} denotes the negative part of x € R.
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Proof of Lemma 4.1. The LHS of (4.12) can be writtenas I = I, + I + I,

M-

~
Il
—

(b(y") = b)) [ (),

S
I
M=

~
Il
—

() =Y @S,

13 20’2

\|N~ | AL
MZ Jeu Tk

re(r) 7 (r").

Il
—_

i

Next we estimate I, I,, I5 respectively. By the definition of x(r) in (2.63), we obtain

RN R NI
11<—7 r'e(r') f/(r').
i=1

Using the Lipschitz condition in 4.5 and f(r)

Z Qor,
N oL N
Zw () =7 @< 2L < 2D F0.
i=1 i=1
Applying the estimate of f”/(r) in Lemma 2.5, we have
(7'2 N . . . . N . .
I3 < > Z rik(r) e (r) £ (r') = coo? rcz(r’)f(r‘)

i=1

i=

0.2

N
=72rk(r)f (') = coo Zf(r)

N
_%Z Fic(rY (1 = 12 (r)) £/ () + coo? 2(1 — 2 (F) F).

I3 I3

Then we estimate /3, and I3, in (4.16). Note that 1 — rc?(r’) = 0 if r;

2 N

> 6, we have

Ly =-= rr(r) (1 =1 (r) £/ ()
i=1

< %2 Z rie(r)"f(r") < 0-7 Z ri(r)” < N% b (rK(r)_)'

. R r<oé
iri<s ir'<o

In a similar way, using f(r) < r we obtain

I3, = coyo? Z(l rc?(r')) £(r') < coo? Z f(r') < cgNo?6.

iri<o
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From the definition of m(6) in (4.13), we obtain the estimate of /5:
o2 Y N
< ; rik(r) £/ (r') = coo? Zl F(r) + Nm(6). 4.17)

Summation over the inequalities (4.14), (4.15) and (4.17) for 1, I,, I5 gives

i\,
I < —(000'2 - 71) ;f(r )+ Nm(0).

0

When the Lipschitz constant L < icogoo(fz, we obtain

1 oo N
1< =300 QS0 + Nm(o) = Nm(@) = B 3 f ('),
which is exactly the result we need. [

Note that the distance function f(r), the upper bound of L, and the contraction rate S are all
independent of parameter J, thus we may pass ¢ to the limit O without changing the value of .
Using Lemma 4.1, it is convenient to obtain the contractivity of the coupled dynamics

(4.6). Denote the distance between the two sets of particles y, § € RN by

1 < L
) = — =), 4.18
r(y.9) =+ ;:1 fAy' =g (4.18)
then we have the following result on the contractivity of the RB—IPS (2.21).

Lemma 4.2. Under Assumptions 2.2 & 4.1, let f(r), co, @y be defined as in Lemma 2.5. If the
constant Ly in Assumption 4.1 satisfies

1 2
L1 < ZC()QDQO' .

then for (Y,):>0 and ()0 evolved by the coupled RB—IPS (4.6), we have

d

5E[p(yt,yt)] <m(8) - B-Elp(y:. §1)]. (4.19)

where 8 = Leopoo? and m(6) is defined in (4.13).

2
Proof of Lemma 4.2. Using p(y,, §;) = # SN, £(r)), according to the equality (4.11) we have

N i
W) = Y B |5 00 - b 47 w0~ @) 7+ 200D .

i=1
Applying the estimate in Lemma 4.1, we immediately obtain

d

ElP(we. 8] < m(8) - B-E[p(y.. 5],
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which completes the proof. [

Main theorem: ergodicity of RB-IPS Similar to Definition 2.3 for the overdamped Langevin

dynamics, we introduce the normalized Wasserstein distances for distributions in R4V,

Definition 4.1. For the distance function f(r), define the normalized Wasserstein- f distance

as

yel(u,v)

1 < o
W= ot [ (50 e w0

where T1(u, v) denotes the set of joint distributions in R¢ x RY whose marginal distributions
in the x, y variables are exactly u, v.
In particular, if f(r) = r, the corresponding normalized Wasserstein- f distance becomes

the normalized Wasserstein-1 distance

: 1<,
W (/.l, V) = inf / (N Z |Xl _ yll)y(dxdy) (4.21)
RAN xRAN i1

yell(p,v)

The normalization factor N~! in Definition 4.1 ensures that the distance between two distribu-

tions in RV is still O(1) for sufficiently large N. According to Lemma 2.5, we have
eoWi (1, v) < We(p,v) < Wiu,v) (4.22)

for any distributions g, v in R4V,

We have the following theorem on the ergodicity of the RB-IPS (2.21).

Theorem 4.1 (ergodicity of RB-IPS). Under Assumptions 2.2 & 4.1, let f(r), co, po be defined
as in Lemma 2.5. Let (Q"),50 be the dual semigroup of the RB-IPS (2.21). If the constant L,
in Assumption 4.1 satisfies

2
L1 < ZCQ(p()O' s

then for any probability distributions u, v in RN, we have
Wf(,qul’, VQZ) < e_B"h(Wf(,u, v), Vn>=0, (4.23)
where 8 = %co(poa’z. As a consequence, in the normalized Wasserstein-1 distance we have
W, (uQ, vah) < ée-ﬁ"hwl (u,v), VYn>=0. (4.24)

Proof of Theorem 4.1. For given distributions y, v in R let y € I1(u, v) satisfies

1 < o
/ﬂw (N 2l =y |))7(dXdy) < Wr(u,v) +e, (4.25)
i=1
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where € > 0 is an arbitrary small constant. Let (¥,),>o and (#,);>0 be evolved by the coupled
RB-IPS (4.6) with the initial value (yo, o) ~ ¥, then we have y,,, ~ uQ" and g, ~ vQ".
Recall in Lemma 4.2 the following inequality holds for ¢ € [nh, (n + 1)h):

d

Bl 30] <m() - B-Elp(y:. 5], (4.26)

Integrating the inequality (4.26) for ¢t € [nh, (n + 1)h) yields
m(6)(1 - ePM)
7 .

E[p(Y sty Gnryn)| < e P*E[p(Yuns Gun)| + 4.27)

Repeating the inequality (4.27), we obtain for any n > 0,

_ ,—PBnh
E[p(Yun- Gun) | < eP"Ep(yo. §o) | + m(d)(lﬂ —

N(1 - —pnh
m(@)(1 =)
B
Using the definition of the normalized Wasserstein- f distance in Definition 4.1, we have
m(8)(1 — e~Pnh)
+¢
B

Note that the evolution of uQ" and vQ" does not depend on the coupling scheme, we can

< e P Wi (yo, §o) +

(Wf(,uQZ, vaMh) < e"g"h‘Wf(,u, V) + (4.28)

directly pass 6 and € to 0 in (4.28) and obtain
Wy (i, vQh) < e P W (u, v),
which completes the proof. [

Since the IPS (2.17) is a special case of the RB—IPS (2.21) with batch size p = N, the ergodicity
of the IPS follows directly from Theorem 4.1, thereby recovering Corollary 9 of Eberle et al.
(2019).

Theorem 4.2 (ergodicity of IPS). Under Assumptions 2.2 & 4.1, let f(r), co, o be defined
as in Lemma 2.5. Let (P;);s¢ be the dual semigroup of the IPS (2.21). If the constant L, in

Assumption 4.1 satisfies

L <1 2
1\4009000',

then for any probability distributions u, v in RN, we have

Wi (uP,vP) < e P We(u,v), V¥n>0, (4.29)
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where 3 = %C()QO()O'Z. As a consequence, in the normalized Wasserstein-1 distance we have
1
W (uP,, vP,) < —e P"Wi(u,v), VYn 0. (4.30)
%o

It is crucial that all constants in Theorem 4.1, including ¢, ¢¢, 8, are independent of both
the number of particles N and the step size 4. This dimension-free property provides a solid
theoretical foundation for studying the mean-field behavior of the RB-IPS (2.21). It is also
worth noting that the condition requiring L; to be sufficiently small is essential for ensuring
dimension-free ergodicity. Without this condition, when the mean-field McKean—Vlasov pro-
cess admits multiple invariant distributions, the convergence rate can degenerate to zero as

N — oo. See, for example, Durmus et al. (2020).

4.2 Approximation error of RB-IPS

In Chapter 4.1, we established the uniform-in-N ergodicity of the RB-IPS (2.21), demon-
strating its effectiveness as an approximate sampling method for the target distribution 7 (x)
in R4, However, to fully understand the sampling error of the RB-IPS, it is essential to
evaluate the bias of its invariant distribution. Specifically, we need to quantitatively estimate

W, (r, "), where n"* denotes the invariant distribution of the RB-IPS.

Existence and uniqueness of invariant distribution Leveraging the ergodicity results es-
tablished in Theorems 4.1 and 4.2, we can readily confirm the existence and uniqueness of the
invariant distribution using the Banach fixed point theorem, even when the drift force b(-) and

the interaction force K (-) are not in gradient form.

Lemma 4.3. Under Assumptions 2.2 & 4.1, let f(r), co, po be defined as in Lemma 2.5. If the

constant Ly in Assumption 4.1 satisfies

then we have the following:
1. The IPS (x;);s0 defined in (2.17) as a (continuous) Markov process has a unique in-
variant distribution m € P(RN);
2. The RB—IPS (Y.n)ns0 defined in (2.21) as a (discrete) Markov chain has a unique in-

variant distribution " € P (RN).

The following proof is inspired from Corollary 3 of Ref. Eberle et al. (2019).
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Proof of Lemma 4.3. Let P;(RN) be the set of the probability distributions in RN with finite

first moments, namely,

P(RINY = {u e P(RWN) . /ﬂw (% Z |xi|)u(dx) < +oo}, 4.31)

then (P, (RYY), ‘W,) forms a complete metric space, where W, (-, ) is the normalized Wasserstein-
1 distance in Definition 4.1.

In Theorem 4.2, we have proved for any distributions x, v in R4V,

1
W (uP;,vP;) < ;e‘ﬁ’(Wl(,u, v), Vt>=0.
0

By picking a constant 7 > O such that #e‘BT = %, we obtain the inequality

1
Wi (uPr,vPr) < E(Wl (1, v). (4.32)

Hence the mapping v +— v Py is contractive in (P;(R4Y), ‘W,). From the Banach fixed point
theorem (see Chapter 5.1 of Kreyszig (1991) for reference), this mapping has a fixed point
Ty € 7)1 (RdN), i.e.,

o =T O{PT~
Define the probability measure in R?Y by

1 T
= —/ moPds,
T Jo

then from the semigroup property of (P,),s, for any # > 0 we have

1 [ 1 rr
ﬂ'j)t = —/ (ﬂo?s)ﬂ)tds = —/ ﬂ'OtysH‘ds' (433)
T 0 T 0
Since the family of distributions {myP, },>( has the period T, from (4.33) we have
1 [ I
ﬂ'iPt = —/ ﬂofPs.HdS = _/ ﬂOTsds =T (434)
T 0 T 0

Therefore, 7 is the invariant distribution of the IPS (x;);>o. The uniqueness of 7 follows from
the ergodicity of the IPS proved in Theorem 4.2.

For the RB—IPS, the proof is similar. Given & > 0, from Theorem 4.1 we have
1
Wi (uQt,vahy < —e P W (u, v).
()
Then we choose an integer M € N such that #e‘BM h < % and thus

(Wl (IUQh s VQj\l/[) < (Wl (lua V), (435)

N =
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hence the mapping v — vQ", is contractive. From the Banach fixed point theorem, this map-

ping has a fixed point 7y € P;(RN), i.e.,
ny = np Q. (4.36)

Define the probability distribution in RN by

M

—_

e
Al (4:37)

k=0

at =
then from the semigroup property of (Q"),50, for any n > 0 we have
1 M-1 1 M-1
hoh _ * moh — - hoh _ _h
Q= ;(mgk)gn = ]; xhQl = gt (4.38)

Therefore, n”* is the invariant distribution of the RB-IPS (¥,),s0. The uniqueness of n"

follows from the contractivity in Theorem 4.1. [

Strong error of RB-IPS in finite time We establish the uniform-in-time moments for both
the IPS (2.17) and the RB-IPS (2.21). In particular, the fourth moment estimate is crucial, as

it is needed for the strong error estimate.

Lemma 4.4. Under Assumptions 2.2 & 4.1, if the initial distribution v € P(RN) satisfies

max / Ix|*v(dx) < M,
RAN

1<i<N
for some constant M, then there exists a constant C = C(d, o, k(+), Lo, L1, M) such that the
Sfourth moments of the IPS (2.17) and the RB—IPS (2.21) are bounded by

supE[[xi[*] < C, supE[lyi'] <C, i=1,---,N.
>0 120
The following proof is inspired from Lemma 3.3 of Jin et al. (2020).

Proof of Lemma 4.4. We only prove the moment bound for the RB—IPS, because the IPS can
be viewed as a special case of the RB-IPS when the batch size p = N. We aim to prove the

following inequality:
%E|y§|4< -B-ElyjI*+C, i=1,---,N (4.39)
for some positive constants 8, C > 0. By Ito calculus, we have
%Elyil4 = 4E{|y§|2(y§ ~b(y) + ;- Vi(yz))} +2(d +2)Ely; %, (4.40)

where the interaction force y'(x) is given by (4.3).
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On the one hand, the definition of x(r) yields the inequality

—x-(b(x) = b(0)) > O;K(lxl)l)dz, Vx € RY.

Hence the drift force part in (4.40) is bounded by

2
020 i i o PN
il - by < ClyilP = =« (iDIy (4.41)

On the other hand, |y’ (x)| < L, implies the interaction force part in (4.40) is bounded by
AASECARS AR (4.42)
Combining the inequalities (4.41) and (4.42), from (4.40) we deduce
%Elyfl4 < =20°E(x(ly;D1y;I*) + C (Ely;|* + Ely; ). (4.43)

According to Assumption 2.2, there exist constants ¢, R > 0 such that x(r) > ¢ forr > R.

Also «(r) has a uniform lower bound for » > 0. Hence we have the inequality

—k(r)yrt = (6 —k(r)r*=o6r* < C-6r*, Vr>0,
and thus
“E(x(lyDly;l") < € =6 -Ely;[*. (4.44)
Hence from (4.43) and (4.44) we obtain
SEII < <207 Blyil* + CEII + Bl + 1), (4.45)

Using the interpolation inequality, E|y/|* and E|y/|* can be bounded by E|y!|* plus constant.
Therefore, (4.45) implies

d_ . .

aE|y;|4 < -0’ Elyl*+C (4.46)

for some constant C, which is exactly the inequality (4.39). Finally, it is easy to deduce

supE[|9/[°] < C.

t>0

which completes the proof. [

We now present the strong error analysis between the IPS (2.17) and the RB-IPS (2.21).
As is typical in strong error analysis, we assume that the Brownian motions {B:}" in both
the IPS and RB—IPS are identical. Therefore, the difference between the IPS and the RB-IPS

arises solely from the interaction forces.
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Lemma 4.5. Under Assumptions 2.2 & 4.1, if the initial distribution v € P(RN) satisfies

max / Ix|*v(dx) < M,
RAN

I<i<N
for some constant M, then for any T > 0, there exists a constant C = C(d, o, «(-), Lo, L1, M, T)
such that the IPS (2.17) and the RB—IPS (2.21) satisfy

1< h
sup E(NZ ! —y;|2) < c(p — hz). (4.47)
i=1

0<t<T

As a consequence, we have the inequality

/ h
sup Wi (vP, vQH < C + h2. (4.48)
0<n<T/h p-1

The proof can be found in Theorem 3.1 of Jin et al. (2020). When the batch size p is small,
v/h/(p — 1) dominates the Wasserstein error ‘W, (vP,,, vQ"). In this sense, the Wasserstein

error W, (v, vQ") has at least half-order convergence with respect to the time step .

Main theorem: estimate of W, (r,n") We are now prepared to estimate the approxima-
tion error of the RB-IPS (2.21), specifically the difference between the invariant distribu-
tions W, (r, n"). In particular, we utilize the triangle inequality framework to transition from

Wi (vP,h, vQ") over finite time to ‘W (rr, n”*) in the long-time limit.

Theorem 4.3. Under Assumptions 2.2 & 4.1, let cy, @o be defined as in Lemma 2.5, and Let
and " be the invariant distributions of the IPS (2.17) and the RB—IPS (2.21) respectively. If

the constant L, in Assumption 4.1 satisfies

L1 < ZCQQDQO'Z,

then there exists a constant C = C(d, o, k(-), Lo) such that

/ h
Wi(n,n")y < C o+ h2. (4.49)
p —

Proof of Theorem 4.3. Let v, be the distribution in R?Y with all the N particles frozen at origin,

then using Lemma 4.4 we have the uniform-in-time moment estimates

Sup{lrgi?;v /RdN Ix"l“(vOsz)(dx)} <Gy, sup{ max /RM Ixil“(vOQZ)(dx)} <Cp, (4.50)

>0 ns0 | 1<isN

where the constant C; = C,(d, o, k(+), Lo, L,). Since 7 and n”* are the long-time limits of v(P,

and v(Q" in the metric space (P;(RY), W)) respectively, from the moment estimate (4.50)
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we have
1 1 & i
~ |x’|)7r(dx) < C, / (— |x’|)7r (dx) < C.
</RdN (N ; RAN N ; !

Hence the Wasserstein error ‘W, (7, 7"*) is bounded by

W, (n,n") < /RdN (%Z |xi|)7r(dx) + /RdN (%Z |xi|)ﬂh(dx) < C.

In the following, we may assume the step size & < C,. Instead of directly measuring the
Wasserstein error ‘W, (7, n'*), we fix a constant T > 0 and study the quantity W, (voPr, 7).

By Theorem 4.1, for any integer n > 0 we have the inequality

W (VO:PT, 7Th) = W\ (voPr, ﬂhQZ)

< (Wl (VQTTQZ, ﬂ'h QZ) + (Wl (V():PT, VO?TQZ)
1

< ae—ﬁnhrwl (V()iPT, ﬂ'h) + (W] (VOI.PT, VO:PTQZ)-
0

Since the step size & < C;, we can choose the integer n as

. { log<2/¢o>w
- [lelrenl]

log(2/¢o)
B

which implies nh has an upper bound uniform in N and 4. For this chosen n we have

+1)I’l< + Cy,

W (voPr, ") < 2 - Wi (voPr, VO:PTQZ)
< 2-Wi(voPr,voPrPun) + 2 - Wi(voPrPun, VO?TQZ)

1
< (’Te_ﬁT(Wl(Vo, V()Tnh) +2- (Wl(V():PT:Pnh, V():PTQZ).
0

Fixing the integer n > 0, we pass to the limit 7 — oo and obtain
W, (r, 7" < 2Tli_m WL (voPrP s voPrQh). (4.51)

Since vy Pr always has finite fourth moments as in (4.50), using Lemma 4.5 we have

/ h
W, (voPrPun, voPrQM) < C o+ h?, VT >0, (4.52)
p —

where the constant C = C(d, o, k(+), Lo, L1). Combining (4.51) and (4.52) we finally obtain
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the estimate of the Wasserstein-1 error ‘W, (rr, n'*):

/ h
Wi(n,a") < C + h2,
p—1

which completes the proof. [

We stress that the constant C in Theorem 4.3 does not depend on the number of particles N,

the batch size p and the step size h.

Remark 4.4. When the batch size p = N, there is RB—-IPS (2.21) coincides with the IPS (2.17).
However, this consistency property is not reflected in the expression for W, (n, i) because the
strong error analysis was used to derive ‘W, (n,x"). Additionally, the strong error analysis
only achieves half-order convergence with respect to the step size h. For a more refined result,
we refer to the recent work (Huang et al., 2024), which establishes first-order convergence

using the entropy method.

4.3 Long-time error of discrete RB-IPS

In this section, we analyze the long-time error of the discrete RB—IPS (2.22). Given the
established ergodicity of both the IPS (2.17) and the RB-IPS (2.21), our focus shifts to esti-
mating the strong error of the discrete RB—IPS. By applying the triangle inequality framework

from Section 2.4.3, we can effectively study its long-time behavior.

Strong error of discrete RB-IPS Since the strong error between the IPS and the RB—IPS is

already established in Lemma 4.5, it remains to estimate the strong error between the RB-IPS

and the discrete RB-IPS,
1 EN: i i2
sup E(ﬁ - |ynh - Yn| )’

0<n<T/h

which accounts solely for the discretization error. We first prove the following result:
Lemma 4.6. Under Assumption 4.1, if the initial distribution v € P (RN) satisfies

max / Ix'[*v(dx) < M,
dN

I<i<N Jg
then for any T > 0, there exists a constant C = C(d, o, Ly, L1, M, T) such that the RB—IPS
(2.21) satisfies

sup E|yf|* < C, sup Ely! - y.,I> < Ch. (4.53)

0<t<T te[nh,(n+1)hAT)
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Proof of Lemma 4.6. By It calculus, we have
SWP =24 (b + 7 (91) + oBY) + o,
where y'(-) is the interaction force defined in (4.3). Taking the expectation, we have
Ely;|* = Elyl* +2 /0 i (b + 7 (g)ds + e (4.54)
On the one hand, y(+) is uniformly bounded by L, hence
2 /0, vty (y,)ds < 2L, /Ot lyilds < L, /Ot ly'|*ds + Lt (4.55)
On the other hand, using |b(x)| < Lo(|x| + 1) we have
2 [k biabias <220 [P + 1Das
< LO/OI(3|y§|2+ 1)ds < 3L0/0t Y. 1> + Lot. (4.56)
Using the inequalities (4.54), (4.55) and (4.56), we obtain
2/0ty§, . (b(y;) + 7i(ys))ds < (BLo+ L) ‘/Ot |y§|2ds + (Lo + Ly)t. (4.57)
Let L := 3Ly + L, + do?, then for any ¢ € [0, T], we have
Ely|* < Elyi|* + L/Ot lyi|*ds + Lt < M + LT + L/OI |y |*ds. (4.58)
Using the Gronwall inequality (Lemma 7.21 of E et al. (2021)), we obtain from (4.58)
Ely!|* < (M + LT) exp(LT), te€ [0,T],

which yields the first inequality of Lemma 4.6. For the second inequality, we note that

t
Y = Y = / (b(y)) + 7' (ys))ds + o (W] = W.,). (4.59)
nh

Hence using Cauchy inequality, we obtain

t
Ely! —yi,|* < 2h/ E|b(yl) + 7i(ys)|2ds +2doh. (4.60)
nh

Using the inequality |h(x%) + ¥ (x)| < L(]x’| + 1), we obtain

t

Ely; - y;,I” < 4L2h/ (BIYSI* + 1)ds + 2do*h < 4L*TCh + 2doh = Ch,  (4.61)

nh

which produces the desired result. [

Subsequently, we can derive the strong error between the RB—IPS and the discrete RB-IPS.
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Lemma 4.7. Under Assumption 4.1, if the initial distribution v € P (RN) satisfies

max / IX'|*v(dx) < M
1<i<N RAN

then for any T > 0, there exists a constant C = C(d, o, Ly, L1, M, T) such that the RB—IPS
(2.21) and the discrete RB—IPS (2.22) satisfy

1 & .
sup E(NZw;h—Y;P) < Ch. (4.62)
i=1

0<n<T/h

Proof of Lemma 4.7. Let the step size h < T. Define the trajectory difference ¢!, = v, — Y

n®

and let F'(x) be th total force on the i-th particle, namely,
Fi(x) = b(x") +y'(x), xeRW.

Then we can write the RB-IPS (2.21) and the discrete RB—IPS (2.22) as

) ) (n+l)h ) -
Yineyn = Ynn + / F'(y,)dt + cAB,, (4.63)
nh
. (n+Dh .
Yo =Y, + / F'(Y,)dr + cAB,, (4.64)
nh
where AB! : Wz D)k —W!, ~ N(0, h). Then ¢!, satisfies the recurrence relation
. . (n+)h .
Cpp1 = €p / (F'(y,) - F'(Y,))dt. (4.65)
nh

Squaring both sides of (4.65) and applying Cauchy inequality, we obtain

i 2 i2 1 (el i i ?
ehar < (1+m)lef 2+ (14 1) (Fi(g,) - F/(¥,)dr
nh

(n+1)h
< (L+h)e, |2+(1+h)/ |F'(y,) — F'(Y,)*dt

(n+1)h

< (L+ el +2<1+h)/ 16(y}) — b(¥)Pdr

(n+Dh _
+2(1+ ) / i () — ¥ (¥,)Pdr. (4.66)
nh

On the one hand, the Lipschitz condition on the drift force b(-) implies

(n+l)h _ _ (n+l)h ) )
[ e -pepp<rd [ - vipar (.67
nh nh

On the other hand, the Lipschitz condition on the interaction force ¥’ implies

L o
ly? =Y.

J#i,jeC

ly'(y:) = y' (Y| < Lily, - Yi| + P
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where C is the batch which contains 7, and p is the batch size. By Cauchy inequality, we have
1 ' 2
Y (g) =Y (V)P < 2Lyl - Vi + 203 —— > |y/ - Y]]
p-1 5

i 12
ly; - Y, 1%
Jj#i,jeC

. ) 207
< 2Lfly; -~ Vi 4

Hence we obtain the inequality

(n+1)h (n+1)h (n+1)h
[ -y mara <ot [ - vipare = Ly [ e

h nh ];&z jec

(4.68)

Combining the inequalities (4.66), (4.67) and (4.68), eil .1 can be bounded by

(n+1)h
le! (P < (1+h)el >+ (1+h)(2L5 +4L3) / ly — Yi|dt
nh

412 (Db
J _vi2
+(1+h)p_1 Z / ly; —Y;/17dr.

j#i,jec Y nh
Summation over i gives

(n+l)h

Z et 12 < (1+h) Z e >+ (1 + h) (2L + 8L?) Z/ i —Yi’dr.  (4.69)
Note that from Lemma 4.6
Ely; = Y;I> < 2Ely; — y,,|* + 2By}, — YiI> < Ch + 2Ee;, %,
hence integrating in the time interval [nh, (n + 1)h) gives

(n+1)h _ _ _
/ Ely' — Y!|*dt < Ch* + 2hE|eé’ |*.
nh

Taking the expectation in (4.69), we obtain
N N N
DBl P < (14h) Y Blel P +C(1+ h)(Nh2 + hZE|e;|2)
i=1 i=1 i=1

N
< (1+Ch) Z Ele! | + CNR. (4.70)

i=1

Note that e}, = 0, the discrete Gronwall inequality applying on (4.70) gives

1.
5 D Eleil < h((l +Ch)" - 1) < e p < Ch,
i=1

which implies the strong error is bounded by Ch for 0 < n < T/h. [
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Combining the results in Lemma 4.5 and Lemma 4.7, we obtain the strong error of the discrete

RB-IPS (2.22) in a finite time.

Lemma 4.8. Under Assumption 4.1, if the initial distribution v € P (RN) satisfies

i, [ W10 < o
then for any T > 0, there exists a constant C = C(d, o, Lo, L1, M, T) such that the IPS (2.17)
and the discrete RB—IPS (2.22) satisfy

A .
sup E(ﬁ Z; It — Y,;|2) < Ch. 4.71)

0<n<T/h

As a consequence, we have the inequality

sup W, (vﬂ)nh,vf)fj) < cVh. (4.72)

0<n<T/h
Note that the requirement on the moment of the initial distribution v increases to fourth-order,

as stipulated in Lemma 4.5.

Uniform-in-time moment estimate To analyze the long-time behavior of the discrete RB—
IPS (2.22), it is necessary to establish that the discrete RB-IPS maintains uniform-in-time
fourth moments. The proof differs slightly from Lemma 4.4 due to the involvement of time

discretization in the discrete RB—IPS.

Lemma 4.9. Under Assumptions 2.2, there exists a constant ay = ay(o, k(-)) > 0 such that

sup (x - b(x) + aglx|*) < +c0. (4.73)

x€eR4

Proof of Lemma 4.9. Using the definition of the function x(r) in (2.63), we have
x-(b(x) = b(0)  o?

d
PE > 7K(|x|), Vx € R,
which can be written as
x-bx) o? x - b(0)
P > 7/<(|)c|) TP Vx € R4, (4.74)

Since «(r) has asymptotic positivity, we can choose the constant « as

2
aozo-—li_mk(r)>0.

r—00

Taking the limit inferior in (4.74) as |x| — oo, we obtain

fim [~ =29 5 240 > 0.
. x|?

|x|—>00
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Then there exists a constant R such that when |x| > R, there holds the inequality
—x-b(x) > aolx|>, V|x|>R.

Hence x - b(x) + aplx|*> < 0 when |x| > R. Since the drift function b(x) is continuous, we

conclude that x - b(x) + ay|x|* is globally bounded in R¢. [
Next, we require the following general result to bound the fourth moments.
Lemma 4.10. Under Assumptions 2.2 & 4.1, let ay be defined as in Lemma 4.9 and define

1 . [ay 1
ho(c. k(). Lo) = 5 min {L_g a—o}. (4.75)
0

Then there exists a constant C = C(d, o, k(+), Lo, L) such that for any step size 0 < h < hy

and y € R with |y| < L,, there holds the inequality
4 ahy 4
X+ b(x)h + yh|* < (1 - 7)|x| +Ch. (4.76)
Proof of Lemma 4.10. Using Lemma 4.9, there exists Cy = Cy(d, o, k(+), L) such that
—x-b(x) > ap|x|* = Cp, Vx € RY.
Hence we have the following estimate of |x + b(x)h|*:

Ix + b(x)h|* = |x|® + 2x - b(x)h + |b(x)|*h?
< x]? +2(Co — aglx )k + 2L§(|x|2 + 1) h?
= (1+2Lh* - 2aph)|x|* + Ch. 4.77)

(0]

Since the step size h < 22

the inequality (4.77) implies
Ix + b(x)h|* < (1 = aoh)|x|* + Ch, (4.78)
Square both sides of (4.78) and utilize h < ﬁ, then

Ix + b(x)h|* < (1 — ah)*x|* + C|x|*h + Ch*
< (1—ah)?x* + %|x|4h +Ch
= (1 -ah)|x|* + Ch.

Using the interpolation inequality, for some constant C = C(d, o, k(-), Lo, L) we have

1 C
Ix + b(x)h + yh|* < (1 + ga/h)|x +b(x)h|* + ﬁ|yh|4
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1
< (1 —~ 5ah)(l +ah)|x|*+ Ch
1 4
< l—ia/h |x|* + Ch,
which completes the proof. [

Now we can obtain the uniform-in-time fourth moments of the discrete RB—IPS (2.22).

Theorem 4.4. Under Assumptions 2.2 & 4.1, let hy be defined as in Lemma 4.10. If the initial

distribution v € P(R) satisfies

max / Ix'[*v(dx) < M,
I<i<N RAN
and the step size h < hy, then there exists a constant C = C(d, o, k(+), Lo, L1, M) such that
supE|Y|*< C, i=1,---,N. (4.79)
n=0

Proof of Theorem 4.4. The update scheme of the discrete RB—IPS (2.22) is given by

Yi

n+l

=Y. +b(Y))h+y'(Y,)h + cAB., (4.80)

where AB! ~ N (0, h), and y'(+) is defined in (4.3). Since the random variable AB! is inde-

pendent of the numerical solution Y,,, we have

E|Y. |* = E|Y. + b(Y)h + ¥y (V) h|* + 6E|Y! + b(Y))h + ' (Y,)h|* E|cAB! |* + E|cAB: |*
SE|Y. +b(Y)h+ vy (Y,)h|* + CRE]Y! + b(Y)h + ' (Y,)h|* + Ch*
1 . . _
= (1 + gah)Ew,; +b(Y)h+ v (Y,)h|* + Ch. (4.81)
Applying Lemma 4.10 in (4.81), we obatin
i 4 1 1 114 1 114
BVt < |1+ gah (1 - E<m)15,|yn| +Ch|+Ch < (1= Zah|BIY;[* + Ch.

yielding the desired moment bound. [

Main theorem: estimate of ‘W), (val’, n)  Using the uniform-in-time moments, we can derive
the long-time error of the RB-IPS (2.22). As the RB-IPS is a discrete-time Markov chain, a

discrete version of the triangle inequality framework (Lemma 2.6) is required.
Lemma 4.11. Givenm € N, £ > 0and g € (0, 1). If a nonnegative sequence {a, },>o satisfies

a, < €+qau_m, VYn>=m, (4.82)

77



R A2 A 8 ST

then
+Mgn~', Vn>0, (4.83)

where M = max ay.
0<k<m-1

Proof of Lemma 4.11. By induction on the integer s > 1, it is easy to verify if n > sm, then

1 _ S
an < e—L 4 G ap_om. (4.84)
l-¢q
For any integer n > 0, let n = sm + r for some integer s > Oand r € {0, 1,--- ,m — 1}. Then
a, < + Mg® < + Mgn!, (4.85)
l-¢q l-¢q
yielding the inequality (4.83). [

Combining the finite time strong error (Lemma 4.8) and the geometric ergodicity of the
IPS (Theorem 4.2), we employ the triangle inequality in Lemma 4.11 to estimate the long-time

error of the discrete RB—IPS.

Theorem 4.5. Under Assumptions 2.2 & 4.1, let ¢y, ¢ be defined as in Lemma 2.5, and hy be
defined as in Lemma 4.10. If the initial distribution v € P(RN) satisfies

I<i<N

max / X |*v(dx) < M,
RAN
and the constant Ly in Assumption 4.1 and the step size h satisfy

2
C g
L1<J%%—, h < h,

then there exist positive constants 1 = A(d, o, k(+), Ly) and C = C(d, o, k(+), Ly, M) such that
the discrete RB—IPS (2.22) satisfies

W (vQ" 1) < CVR+ Ce ™™, VYn > 0. (4.86)

Proof of Theorem 4.5. For any given integers n > m, we have the following triangle inequality

Wl(vQZ, ) < (Wl(VQh ol vQZ_mith) + ’Wl(vQZ_mith, 7Pon). (4.87)

n-m—m?

By Theorem 4.4, vQZ_m has uniform-in-time fourth order moment, i.e., there exists a constant

M =M’'(d,o,«(-), Ly, M) such that

max {sup/ |xi|4(vQZ_m)(dx)} <M. (4.88)
RAN

1<i<N | p>m

Hence by Lemma 4.8, there exists a constant C, = C,(d, o, k(+), Ly, M, mh) such that

W, (vQh_ Q" yO" Py < CVh, Vi = m. (4.89)

n-m—m?
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Note that the constant C; depends on the upper bound of mh, which signifies the evolution time
of the discrete IPS (2.22). By Theorem 4.2, there exist constants Cy, 8 > 0 depending only on
o and «(-) such that

W, (vQ"_ Py 7P ) < Coe P W, (vQ"_ 1), Vn

Vv

m. (4.90)
From (4.87), (4.89) and (4.90) we employ the triangle inequality and obtain
W, (vQ" 7) < CVR + Coe P W, (voQ!_ 1), ¥n = m. (4.91)

For given time step i > 0, we wish to choose m to satisfy Cope P = é, so that Lemma 4.11

can be applied. However, m is restricted to be an integer, thus our choice is

_|logCo+ 1
= i )
It is easy to check mh has an upper bound independent of A,
logCy + 1 logCo+1 1
mh < (B0 |p g 2B, (4.92)
Bh B 2a

hence the constant C; in (4.89) can be made independent of 4, i.e., C, = Ci(d, o, k(+), Lo, M).

Note that for this choice of m we have Cye P™" < é and (4.91) implies
- 1 -
W, (vQ 1) < C,Vh + W, (voQ"_ 1), Vn>m.
e

Applying Lemma 4.11 with a,, := ‘W, (v,Q", n), we have

W, (vQ" 7) < CVh + Mye' ™%, V¥n >0, (4.93)
where the constant
My := sup (WI(VQZ,T[) < sup(Wl(vQZ,ﬂ). (4.94)
O<k<m-1 k=0

Introduce the normalized first moment for v € P (RV) by

M= [ (52 wram,
i=1

then the normalized Wasserstein-1 distance in (4.94) is bounded by
W (A, 1) < My(vQh) + M, (). (4.95)

On the one hand, VQZ has uniform-in-time fourth moments according to Theorem 4.4, hence
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there exists a constant C, = C,(d, o, k(+), Ly, M) such that
sup M, (v < C.. (4.96)
k=0
On the other hand, by Lemma 4.4, for the invariant distribution 7 of the IPS (2.17), there exists
a constant C, = C»(d, o, k(-), Loy, M) such that

Ml(ﬂ') < Cz. (497)
Combining the inequalities (4.95), (4.96) and (4.97), we obtain
W (vQ", 1) < C\Vh+ Cre™m, Vn >0, (4.98)

where both constants C,, C, only depend on (d, o, k(-), Ly, M). Note that by the choice of m
in (4.92) ensures that

n pnh

n
— 2 2 ,
m 10:‘5'8#4_1 logCy + B/(Ra) + 1

hence by defining the constant

A= b
" logCo+ B/(2a) +1°

(4.99)
there holds e™"/™ < e~*""_ Hence (4.98) implies

W, (vQ" 1) < CVh+ Ce ™™, Vn >0,
which is exactly the long-time sampling error of the discrete RB-IPS (2.22). [

Note that the sampling error W), (vQﬁ, m) approaches 0 as the number of steps n — 0 and the
step size h — oco. Hence we obtain the consistency of the discrete RB—IPS (2.21) in sampling

the invariant distribution 7 of the IPS.

Remark 4.5. As shown in (4.99), the decay rate A in the discrete RB—IPS (2.22) is smaller than
the convergence rate [ of the IPS (2.17) and the RB—IPS (2.21). However, A is guaranteed to

be independent of the number of particles N, the batch size p, and the step size h.

Remark 4.6. The batch size p does not explicitly appear in the long-time error (4.86) because
the discretization error, which is of half-order in the step size h, dominates the random batch

error described in Theorem 4.3.
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4.4 Long-time error in approximating MVP

The discrete RB—IPS (2.22) can also function as a sampling algorithm for the MVP (2.18).
Since the MVP is the mean-field limit of the IPS (2.17), the sampling is accurate only when
the number of particles N — oo. To estimate the sampling error of the discrete RB-IPS, it
is necessary to evaluate the difference between the invariant distributions 7 € P (R9Y) of the
IPS and 7 € P (R?) of the MVP. This analysis falls under the classical topic of propagation of
chaos (McKean, 1967; Sznitman, 1991; Guillin and Monmarché, 2021).

Propagation of chaos While the IPS (2.17) is defined for N particles, the MVP (2.18) char-
acterizes the evolution of the distribution law of a single particle. To compare the difference
between the IPS and the MVP, we introduce N copies {x}Y of the MVP:

Xt = b(x) + (K * fi,)(¥) + o B, (4.100)

where the initial values {x)} | are drawn independently from the same distribution v € P (R9),
{B;}f\i , are N independent Brownian motions in R (identical to those of the IPS), and i, €
P(R?) is the distribution law of each ¥!. Since the distribution laws of x! for different i are
identical, we omit the superscript i in ;.

The key difference between the IPS (2.17) and the MVP system (4.100) is that the particles
in {x! }f.\i | interact with each other, whereas the particles in {x; }f\i , are fully decoupled, meaning
the evolution of the N particles in {X}}" is independent. In the synchronous coupling of the

IPS and the MVP system, we assume that for some distribution v € P (R?), the initial values
XE.):.)EE.)NV, izl,"',N,

are independently sampled from v, and the Brownian motions {B;} | are identical. The strong
error between the IPS and the MVP system is a well-established result in the propagation of

chaos (see Theorem 3.1 of Chaintron and Diez (2021) for reference).

Theorem 4.6. Under Assumption 4.1, forany T > 0, there exists a constant C = C(d, o, Lo, L1, T)
such that the IPS (2.17) and the MVP system (4.100) satisfy

1 & o
NZE[ sup |x§—i§|2
i=1

0<t<T

C
< . 4.101
N (4.101)

We note that the IPS (2.17) in this paper differs slightly from the setting in Chaintron and Diez
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(2021), where the interaction force y'(x) is defined as

i 1 < i j
yi(x) = N}Z:;K(x —x)) (4.102)
instead of
. 1 . )
ix) = —— > K(x' —x%). 4.1
7' (x) N—lj; (x' —) (4.103)

This minor difference in the definition of y* does not affect the final result of the propagation
of chaos. The proof of Theorem 4.6 under the setting (4.103) can be found in Proposition 4.2
of Jin and Li (2022).

We can also express the result of Theorem 4.6 in terms of semigroups. For a given v €
P(RY), let v®N € P(RN) denote the product distribution of N independent copies of v. Then,
V8NP, € P(RN) represents the distribution law of the IPS (2.17), while v®¥ PN € P (RN)
represents the distribution law of the MVP system (4.100). Theorem 4.6 implies

- C
OiltlgT W, (VN PEN yOND ) < 7 (4.104)
Using the strong error of the discrete RB—IPS (2.22) in Lemma 4.8, we obtain the following

finite-time error estimate.

Lemma 4.12. Under Assumption 4.1, if the initial distribution v € P (R%) satisfies

/ Ix[*v(dx) < M,
Rd

thenforanyT > 0, there exist constants C; = C,(d, o, Ly, L1, M,T) and C, = Cy(d, o, Ly, L, T)
such that the MVP system (4.100) and the discrete RB—IPS (2.22) satisfy
1 C
sup E(— %, - Y,g|2) < Ch+—. (4.105)
o<n<t/h \N ; h N

As a consequence, we have the inequality

_ ~ c
sup W (vENPEN yONQM) < VR + —. (4.106)
W S " VN

Estimate of W, (7®",n) To analyze the long-time behavior of the MVP (2.18), it is neces-
sary to quantify the difference W, (7®", rr). This can be obtained using the ergodicity of the
MVP (2.18), as stated below.

Theorem 4.7 (ergodicity of MVP). Under Assumptions 2.2 & 4.1, let f(r), co, po be defined
as in Lemma 2.5, and (P,),¢ be the dual semigroup of the MVP (2.21). If the constant L, in
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Assumption 4.1 satisfies

1 2
L1 < ZCQQDQO' .

then for any probability distributions u, v in R, we have
Wr(uPi,vP) < e P We(p,v), n=0,1,---, (4.107)

where 3 = %co(poo-z. As a consequence, in the normalized Wasserstein-1 distance we have

_ 1
Wy (uP,,vP,) < —e P"Wi(u,v), n=0,1,---. (4.108)
®o

The proof can be conveniently obtained from the ergodicity of the IPS (2.17) in Theorem 4.2,
whose mean-field limit is exactly the MVP (2.18).

Proof of Theorem 4.7. Given the distributions u, v € P (R?), by Theorem 4.2 we have

1 1
W (uBNP,, vENP,) < ;e‘ﬁ"Wl(u@N,v@N) = ;e‘ﬁ”Wl(,u,v), vt > 0.
0 0

Here, (P;);>( is the semigroup of the IPS in RN, and ‘W, (u, v) denotes the usual Wasserstein- 1

distance between u and v. Using the triangle inequality, we have
W, (uP,, vP,)
=W, (,u®Nj>§W, V®Nj>§z>N)
< (Wl (M®NU_);®N, I.I®NT1‘) + (W] (V®Nj_>;®N, V®N‘J)t) + Wl (/.1®N:Pt, V®N‘:Pz)

- - 1
< WiV PEN 1N P) + W (vENPEN NP Y + —e P W (1, v). (4.109)
®o
By Theorem 4.6, for given ¢ > 0 there exists a constant Cy = Cy(d, o, Ly, Ly, 1) such that
- C
W, (uENPEN, 1BV P,) < NO (4.110)
Using the inequalities (4.109) and (4.110) we obtain
2C 1 _
Wi (uP, vP;) < FNO + %6 PrW, (. v)

Fix t > 0 and let N — oo, we obtain
W, (uP,,vP,) < Ce P W, (u, v),
yielding the desired result. [

Next it is convenient to apply the triangle inequality framework to estimate W, (7", ).
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Theorem 4.8. Under Assumptions 2.2 & 4.1, let f(r), co, @o be defined as in Lemma 2.5, and
(P,)is0 be the dual semigroup of the MVP (2.21). If the constant L, in Assumption 4.1 satisfies
L, < lcogooo-2,

4
then the MVP has a unique invariant distribution © € P(R?), and

1

W (vP,, 1) < —e P"Wi(v,71), Vt>0, (4.111)
%o
where 8 = %609000'2. Furthermore, there exists a constant C = C(d, o, k(-), L) such that
_®N c
W (7%, 1) < —. (4.112)

VN

Since (P;);s0 is a nonlinear dual semigroup, we cannot use the same technique as in the linear

case. Our proof below is partially inspired from Theorem 5.1 of Cafiizo and Mischler (2023).

Proof of Theorem 4.8. First we prove the existence of the invariant distribution 7 € P (R?) of

the MVP (2.18). Choose the constant 7 which satisfies ie"” = 1, then we have

- - 1
(Wl (NTT, VU)T) < E(Wl (/’l’ V)

for any probability distributions u, v € P (R¢). Hence the mapping u — uPr is contractive in
the complete metric space (P;(R?), ‘W;). Using the Banach fixed point theorem, there exists
a unique fixed point & € P;(R) such that

#Pr = 7.

Since (P,),s0 forms a semigroup, for any 7 > 0 we have

(ﬁﬂ)t)i)’l' = ﬁlj)z,

which implies 7P, € P;(R%) is the invariant distribution of the operator P7. Due to the

uniqueness of the invariant distribution 7 for the operator P, we obtain
AP, =a, Vit>=0,

hence 7 € P, (R%) is the invariant distribution of the semigroup (P,);so.
Next we estimate the difference between the invariant distributions 7 € P;(R9V) and
7 € P1(RY). We choose the constant T according to %e‘ﬁT = 1. Using the propagation of

chaos in Theorem 4.6, there exists a constant C = C(d, o, k(-), Ly) such that

(Wl (ﬁ®N, 7'() = (Wl (ﬁ®Nj)®N, 7T:PT)
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< (Wl (77'®N53$N, ﬁ®NiPT) + (Wl (7?®NTPT, 7TTT)
1
< \/LN + %e_ﬁwal (ﬁ®N,ﬂ')

1
= £ + —(Wl(ﬁ®N,7T),

VN 2
which implies the inequality ‘W, (7®N, 1) < \/% n
Main theorem: long-time error in approximating MVP Combining Theorem 4.5 and
Theorem 4.8, we immediately obtain the following result of long-time sampling error of the

discrete RB—IPS (2.22) in approximating the invariant distribution 7 € P (R?).

Theorem 4.9. Under Assumptions 2.2 & 4.1, let cy, ¢y be defined as in Lemma 2.5, and hy be

defined as in Lemma 4.10. If the initial distribution v € P(RN) satisfies

I<i<N

max / Ix'[*v(dx) < M,
RAN
and the constant Ly in Assumption 4.1 and the step size h satisfy

2
L, < Coﬁ)‘f . h< hy,

then there exist positive constants A = A(d, o, «(-), Ly), C; = Ci(d, o, k(+), Ly, M) and C, =
Cy(d, o, k(+), Lo) such that the discrete RB—IPS (2.22) satisfies
- C
W, (v, 7Ny < C;Vh + Cle™™ + ==, VYn> 0. (4.113)
VN

If we define the empirical distribution of the N-particle system {¥;}Y as
1 N
i (x) = v Z S(x—Y) e PRY, xeRY (4.114)
i=1

then /1" (x) is a random probability distribution in R?. According to Proposition 2.14 of Hauray
and Mischler (2014), we can also write (4.113) as

E[Wi(@,7)] < CVh+ Cre™™ + 5—% Vn > 0. (4.115)

Theorem 4.9 characterizes the long-time sampling error of the discrete RB-IPS (2.22)

in approximating the invariant distribution 7 € $(R9). The error terms in (4.113) consist of

three components: (1) C, Vh, error due to time discretization and random batch divisions; (2)

Cye """ error from the exponential convergence of the discrete RB-IPS; (3) C,/ VN, error

from the uniform-in-time propagation of chaos. In particular, the constants C;, C, and A do
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not depend on the number of particles N, the batch size p and the step size i, showing that the
reliability of the discrete RB—IPS to sample the distribution 7.

4.5 Numerical tests

We perform numerical tests to evaluate the convergence and accuracy of the discrete RB—
IPS (2.22) in sampling the IPS. Assume the drift force b(x) = —VU(x) and the interaction
force K (x) = —VV(x) with o = V2, so that the invariant distribution 7(x) is given by (2.20):

N
. 1 . )
_ iy _ - i dN
m(x) o exp ZU(x) N1 Z Vix'=x')|, xeR.
i=1 1<i<j<N
Example: non-convex potential with aggregation interaction Let the external potential
U(x) and the interaction potential V(x) be given by

2

1
Ux) = 5x2 +3.5e" 0N y(x) = —e, (4.116)

and it is evident from Figure 4.2 that U(x) is a non-convex double-well potential, while V(x)

induces an aggregation effect on the interacting particles.

8 0

02+f

04t

E g B

-0.61

-0.8 1

0 -1
-4 -2 0 2 4 -4 -2 0 2 4

Figure 4.2 Graphs of the potential functions U(x) and V(x) in (4.116).

Next, we fix the number of particles to N = 64 and simulate the IPS (2.17) (without
random batch approximations) with a step size of & = 3—12 and a simulation time of 7 = 10”. The
sampling trajectory of the first particle, x;, is shown in Figure 4.3, and the marginal distribution

of the target distribution 7 (x) is shown in Figure 4.4.
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Figure 4.3 Sampling trajectory of x; from the IPS (2.17) over a finite time.
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Figure 4.4 Marginal of 7(x) in blue, and the distribution exp(-U(x)) in red.

From Figure 4.3, we observe that the IPS (2.17) is ergodic, with the particle x! alternately
switching between the two basins of the potential function U (x). In Figure 4.4, we see that the
marginal distribution of 7(x) slightly differs from the distribution exp(—U(x)). The presence
of the interaction potential causes the target distribution to be more concentrated around the
global minimum of U (x).

In the following, we fix the simulation time at T = 10° and test the convergence of the
discrete RB—IPS (2.22) with different choices of step size #. We also test the convergence of
the discrete IPS, which can be viewed as a special case of the discrete RB—IPS with batch size
p = N. The sampling errors of the algorithms are computed from the quadratic mean of the

errors in calculating the averages of the following five test functions:

_ 2 _ _ 2 _ 2 _ _ 2 _ 2
{e 22, 2(x-04) ,=2(x+0.4) [ -2(x-0.8) ,-2(x+0.8) }
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We compute the sampling errors for these algorithms with step sizes h = %, }‘, %, % and batch

sizes p = 2,4. The results are shown in Figure 4.5 and Table 4.2.

012 T T T S B s S B B R B B LN BN AN AR R R
—o—discrete IPS
—o—discrete RB-IPS (p = 2)

0.1 discrete RB-IPS (p = 4) -

0.08

0.06

sampling error

0.04

0.02

0\ s L L 1 L L L L 1 L N SR TR N SN S T N S S S S B S S B AN AN S N N
0.1 0.15 02 025 0.3 0.350.40450.5
h
Figure 4.5 Sampling error of the discrete IPS and the discrete RB—IPS for various step sizes
h= 13,1 % i&. The batch sizes p are set to 2 and 4.

. 1 1 1 1
step size h 3 1 g T

discrete IPS 0.0993 | 0.0532 | 0.0215 | 0.0067
discrete RB-IPS (p = 2) | 0.1022 | 0.0570 | 0.0241 | 0.0076

discrete RB-IPS (p = 4) | 0.1001 | 0.0545 | 0.0219 | 0.0069

Table 4.2 Sampling error of the discrete IPS and the discrete RB—IPS for various step sizes
h=1,1. % 1. The batch sizes p are set to 2 and 4.

From Figure 4.5 and Table 4.2, we observe that the discrete RB-IPS (2.22) exhibits a con-
vergence order of 1 with respect to the step size i, which exceeds the theoretical result in
Theorem 4.5. Additionally, since the interaction force is small and the discretization error

dominates the error bound, the sampling results remain highly accurate even when p = 2.

4.6 Brief summary

The RB-IPS (2.21) serves as an efficient sampling method for interacting particle systems,

with the discrete RB—IPS (2.22) being its time discretization. In this work, we rigorously
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established the long-time behavior of the RB—IPS (Theorem 4.1) and analyzed the long-time
error of the discrete RB-IPS (Theorem 4.5). We demonstrated that the convergence order
with respect to the step size is O(Vh) in general. Moreover, when the interaction force is
moderately large, the convergence rate is independent of the number of particles N, the batch
size p, and the step size h. By combining error analysis with the propagation of chaos, we
further showed that the discrete RB-IPS can reliably sample the invariant distribution of the
MVP (2.18) (Theorem 4.9).
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Chapter 5  Conclusion

This thesis has explored fundamental aspects of ergodicity and long-time behavior in
high-dimensional stochastic processes, focusing on two critical sampling methodologies: Path
Integral Molecular Dynamics (PIMD) and the Random Batch Method (RBM). By addressing
theoretical challenges and providing practical insights, the work contributes significantly to
the field of computational mathematics and physics.

The main contributions of this thesis include a rigorous establishment of the uniform-in-
N ergodicity of the underdamped Langevin dynamics in Path Integral Molecular Dynamics
(PIMD), ensuring that the convergence rate remains independent of the number of beads. This
advancement significantly enhances the theoretical applicability of PIMD. Additionally, the
thesis provides a systematic study of the ergodicity properties of the Random Batch Interacting
Particle System (RB-IPS), along with an in-depth analysis of the long-time error of the discrete
RB-IPS. These results offer a solid theoretical foundation for related sampling methods.

Building upon these findings, several potential directions for future research are proposed.
A rigorous error analysis of stochastic gradient-based sampling methods is an ongoing effort,
aiming to further refine the theoretical framework. Moreover, leveraging machine learning
techniques and extending generative models could lead to the development of new and effi-
cient sampling algorithms for complex distribution sampling. Another promising direction
involves designing specialized sampling algorithms tailored to practical applications, such as
high-dimensional physical and data science problems, to enhance their performance in real-
world scenarios.

In conclusion, this thesis has provided both theoretical insights and practical tools for
high-dimensional sampling. The uniform-in-N properties and rigorous error analyses pre-
sented here not only deepen the understanding of PIMD and RBM but also establish a founda-

tion for future innovations in computational mathematics and physics.
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