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1 Introduction

Gaussian Process Regression (GPR) is a Bayesian nonparametric framework for learn-
ing an unknown mapping f : R — R from noisy observations while quantifying pre-
dictive uncertainty. The central modeling choice is to place a Gaussian process prior
on the entire function so that the mean function and covariance kernel jointly deter-
mine all finite-dimensional laws and encode structural assumptions such as smoothness,
periodicity, and invariances. Given supervised data and a simple noise model, our ob-
jective throughout is to obtain a posterior distribution over functions that characterizes
f together with its uncertainty, rather than a single point estimate, thereby enabling
principled decision making under limited data.

GPR underpins a range of applications in science and engineering where calibrated
uncertainty is essential. In geostatistics, it specializes to kriging for spatial interpola-
tion of environmental and subsurface fields [2]. In computer experiments, it serves as a
surrogate model that supports prediction, design, and Bayesian calibration when simula-
tions are expensive [1]. In PDE-constrained inference and inverse problems, kernels and
linear operators allow data to be fused with governing equations to learn latent states
or parameters [10]. In global black-box optimization, GPR models the objective while
acquisition rules leverage uncertainty to balance exploration and exploitation [%]. For
general foundations and methodology, we refer to Rasmussen and Williams [7].

Next we briefly state the mathematical setup of the GPR. We have {(z;,y;)}Y, with
inputs 2; € R? and noisy responses modeled by

yi = fzi) + &,

where &; ~ N(0,02) are independent measurement errors. The unknown mapping f :
R? — R is assigned a Gaussian process prior f ~ GP(m, k), where the mean function
m and the covariance kernel k jointly determine all finite-dimensional laws and encode
structural assumptions such as smoothness or periodicity. Under this Gaussian noise
model, conjugacy implies that the posterior over functions is again a Gaussian process,
which we denote by f | D ~ GP(mpost, kpost); our goal here is not to derive closed forms
for mpost and kpost but to emphasize that this posterior process furnishes a distribution
on functions that provides point predictions through its mean and principled uncertainty



through its covariance, with hyperparameters either learned from data or endowed with
hyperpriors to reflect domain knowledge.

2 Gaussian processes: basic theory

We now summarize the basic mathematical theory for Gaussian processes, also known
as Gaussian random fields when the index set is a spatial domain. Throughout, we fix a
probability space (€2, F,P) and an index set X C R%. A stochastic process f = {f(z) :
x € X} is called Gaussian if for every finite X = (z1,...,2,) C X the random vector
(f(x1),..., f(zyn)) is multivariate normal. Such a process is uniquely characterized by:

e Mean function: m(x) = E[f(z)];
e Covariance function: k(z,2’) = Cov(f(z), f(z')).

For any finite X = (z1,...,z,) one then has
(f(@1), ..., fzn)) ~ N(m(X), K(X, X)),
where the mean vector m(X) and the covariance matrix are

m(xy) k(xy,21) -+ k(z1,zy)
m(X) = : eR", KX, X)= : : e R™"

m(xy) k(zp,z1) -+ k(zn,zy)

Since multivariate Gaussian laws are completely determined by first and second mo-
ments, specifying m and k specifies the finite-dimensional distributions of f [7, Ch. 2].

The preceding construction is valid whenever k is symmetric and positive semidefi-
nite, meaning that for any finite X = (z1,...,z,) one has

n
Z CiCjk‘($i,:L‘j) 2 0

,j=1

for all ¢1,...,¢, € R. Under this consistency requirement, the Kolmogorov extension
theorem guarantees the existence of a process whose finite-dimensional laws are exactly
the prescribed Gaussian marginals [3, Thm. 6.16]. Regarding sample-path regularity, the
Kolmogorov continuity theorem yields a version with continuous (Hélder) trajectories
under suitable increment bounds; for Matérn kernels, this translates into almost-sure
Hélder smoothness controlled by the kernel smoothness parameter [9].

It is useful to record several closure properties. If L is any fixed linear operator acting
on functions of z (for example, differentiation or integration in the weak sense), then L f
is again a Gaussian process with mean Lm and covariance (x,z’) + L, Lyk(x,x"), where
subscripts indicate the argument of action; this follows from the preservation of Gaus-
sianity under linear transformations. In particular, if £ is sufficiently smooth, pointwise
derivatives x — 0% f(x) exist in mean square and form a jointly Gaussian family, which



is the basis for encoding linear constraints or constructing likelihoods from residuals in
PDE-informed models [7, 10]. Conditioning a jointly Gaussian family remains Gaus-
sian as well, and therefore posterior processes induced by Gaussian likelihoods are also
Gaussian; this observation underlies the GPR formulation in the previous section.

On a compact set D C R? with a continuous, symmetric, positive semidefinite kernel
k, the associated integral operator

(Te) (@) = /D ke, ') (e!) da’

is compact and self-adjoint. By Mercer’s theorem, there exist orthonormal eigenfunctions
{#;};>1 in L?(D) with nonnegative eigenvalues {)\;};>1 such that

k(a,a') =) Njoj(@)8;(a")
j=1

with convergence in L?(D x D) and, under continuity, uniformly on D x D [6]. If f is
zero-mean with covariance k, then the Karhunen—Loeve expansion reads

F@) ="V ¢5(x),
=1

where {¢;};>1 are independent standard normal variables; the series converges in L?({ x
D) and, under mild assumptions, uniformly in = [5, Ch. 2]. This representation clar-
ifies that sample paths live in the closure of the span of the eigenfunctions and that
truncations yield optimal mean-square low-rank approximations.

We distinguish the global index domain X, the compact subdomain D C X" used to
invoke Mercer’s theorem and the Karhunen—Loeéve expansion, and the finite sampling
set X ={z1,...,2,} C X used to form finite-dimensional marginals.

When the kernel is stationary, meaning k(z, z') = k(x — '), a spectral representation
is available. Bochner’s theorem states that a continuous function k : R* — R is positive
definite if and only if it is the Fourier transform of a finite nonnegative measure p on
R?, that is, k(h) = [pa €™ p(dw). In this case, one may realize the process as a random
Fourier integral

fla) = [ e /S W (),

where S is the spectral density when g is absolutely continuous and W is a complex
Gaussian random measure with orthogonal increments [9, Chs. 2-3]. This representation
explains the frequency content induced by a stationary kernel and underlies random
Fourier feature approximations.

Finally, we note the connection with reproducing kernel Hilbert spaces (RKHS) and
the Cameron—Martin space. Every positive semidefinite kernel k defines an RKHS Hy,
with reproducing property (f,k(-,z))n, = f(z). For a zero-mean Gaussian process
with covariance k, the Cameron—Martin space is isometrically isomorphic to Hy, and it



describes the directions that yield absolutely continuous shifts of the law [I, Chs. 1-3].
This viewpoint clarifies how linear functionals act on f and provides a bridge between
probabilistic modeling and deterministic approximation theory [7, Ch. 6]. We adopt
these conventions throughout the remainder of this document.

3 Gaussian processes: examples and realizations

We collect several canonical Gaussian processes by specifying their covariance kernels
and, for each, give representative realizations either as a Karhunen-Loeve (KL) series
on a compact domain or as a random Fourier integral on R? when the kernel is station-
ary. Throughout, amplitudes and noise levels use the notational convention o¢ and oy,
lengths are denoted by ¢, and r = ||z — 2/||. The acronym ARD (Automatic Relevance
Determination) means that each input coordinate is given its own length scale; alge-
braically one replaces the isotropic metric £2 by a diagonal metric A = diag(¢?, ... ,63)
so that sensitivity along each coordinate can differ.

3.1 RBEF (squared exponential): periodic domains and full space

The isotropic RBF (Gaussian, squared exponential) kernel prescribes exponentially de-
caying correlations with respect to squared distance,
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rBF(T,2") = of exp 52

and its ARD variant replaces £2I by the diagonal matrix A, which yields kgrpp(z,2’) =
ofexp( — 3(z — 2/)TA71(z — 2’)). On a periodic box D = [0, L] with Fourier modes
wg = 2k for k € Z%, one obtains a discrete spectral (Fourier-KL) representation that

expands the process in complex exponentials whose coefficients are Gaussian,

f@) =" V/Srpr(w) & e,

kezd

where {£;,} are independent complex Gaussian variables constrained by £_j = & so that
f is real valued. The corresponding spectral density under the stated Fourier convention
is

2 d/2 pd 2 2
Srpr(w) = of (2m)¥“ ¢ exp( — 5”“’” >

On the full space R?, stationarity allows the random Fourier integral realization

flx) = /Rd elw® V SrerF (W) W (dw),

where W is a complex Gaussian random measure with orthogonal increments, meaning
that the increments over disjoint frequency sets are independent. On a general compact
D ¢ R? without periodic structure, one uses the KL expansion f(z) = dis1 VA& 95(),
where (Aj, ¢;) are the Mercer eigenpairs of the integral operator defined by k.
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Figure 1 displays zero-mean Gaussian-process prior samples on [—4, 4] using the RBF
(Gaussian/squared exponential) kernel with hyperparameters £ = 1.0 and of = 1.0. For
numerical stability we add a small jitter o, = 1076 to the covariance diagonal. The grid
has N = 300 points and we draw m = 6 independent trajectories from f ~ GP(0, krpr),
where krpr(z, ) = of exp(—||z — 2'||?/(2¢%)).

Zero-mean GP with RBF kernel: prior sample paths

2+ £=1.0,0¢,=1.0 (jitter: o, =1le —06)

Figure 1: Zero-mean GP prior samples with the RBF kernel on [—4,4]; m = 6 indepen-
dent draws on a grid of N = 300 points.
3.2 Matérn family: smoothness controlled by v

The Matérn family introduces a smoothness parameter v > 0 that directly controls
mean-square differentiability. In isotropic form,

kentatérn (1) = OF il(:; (\/Q;VT)VKV(\/QZVT),

where K, is the modified Bessel function; sample paths are mean-square |v |-times differ-
entiable, and as v — oo the kernel approaches the RBF limit. For half-integers v = p+ %,
one can realize the process in one dimension via a finite-order Markov state-space model
after augmenting the state with derivatives. The spectral density on R? has a rational
form,

o, [ 2V —(v+d/2)
SMatérn(w) = O'f2 Cd,ug 21/(572 + HWH2> )
d/2 v d
with Cg, = (2m) (12‘2) (V+2). Hence on a periodic box the process admits the discrete
spectral series
F@) =" /Sutatern (wi) & €7,
kezd



where the same real-valuedness constraint on coefficients applies, and on R? the realiza-
tion is the random Fourier integral

flz) = /Rdeiw“ V/ Satern (@) W (dw).

On a general compact D, one again reverts to the KL expansion with Mercer eigenpairs;
an ARD version is obtained by replacing r with the anisotropic distance induced by a
diagonal metric A.

Figure 2 displays zero-mean Gaussian-process prior samples on [—4,4] using the
Matérn kernel with hyperparameters ¢ = 1.2, of = 1.0, and v = 1.5; for numerical
stability a small jitter o, = 1079 is added to the covariance diagonal. The grid has
N = 300 points and we draw m = 6 independent trajectories from f ~ GP(0, knfatérn)-

Zero-mean GP with Matérn kernel (nu=1.5): prior sample paths

1712, 0¢,=1.0,v=1.5 (jitter: 0, =1e —06)
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Figure 2: Zero-mean GP prior samples with the Matérn kernel on [—4,4]; m = 6 inde-
pendent draws on a grid of N = 300 points.

3.3 Other Gaussian processes: kernels and realizations

Beyond RBF and Matérn, several kernels are widely used and fit the same realization
patterns. The rational quadratic kernel

|z — 2|2

kRQ(IIZ‘,x/) = O'f2 (]. + W)

can be interpreted as a continuous mixture of RBF kernels over length scales, producing
a heavy-tailed spectrum that captures multi-scale correlations. An exactly periodic one-
dimensional kernel with period p > 0 is

9 _
kper(z,2') = o? exp( — = sin? (wx v )),



and multiplying this kernel by an RBF or Matérn kernel yields smooth periodic priors
with tunable local regularity. Trend and measurement noise are modeled, respectively, by
linear kernels and by the white-noise kernel kyy(z,2') = 02 1{x = 2’}. More expressive
stationary structure is available through spectral mixture kernels whose spectral density
is a finite Gaussian mixture; these lead to discrete spectral series on periodic domains
and random Fourier integrals on R%. In all cases, ARD variants replace £ by A to
decouple relevance by coordinate, while realizations on compact sets follow from KL
expansions and realizations on the full space follow from the spectral integral with the
appropriate S(w).

4 Characterization of posterior distribution

We derive the posterior law in Gaussian process (GP) regression directly from Bayes’
formula and show that it is again a GP. Let D = {(z;, y,-)}f\il with inputs z; € R and
observation model

yi = f(xi) + &, g; ~ N(0, orzl) independent of f.

The prior on the latent function is f ~ GP(m,k). Denote X = (z1,...,2n), y =
(1, yn) T, m(X) = (m(z1),...,m(zy)) ", and Kxx = k(X, X). For any test inputs
X, = (a7,...,23,) write Kx, = k(X,X.), K.x = K)T(*, and K, = k(X,, X,). The
noise covariance is Y, = aﬁl N.

Step 1: Bayes formula at the training points. The likelihood and prior in finite
dimensions are

ply | F(X) =N(y; £(X),Zn),  p(f(X)) = N(f(X);m(X), Kxx).
Bayes’ rule gives
Tao
p(FX) [9) o exp (= 5y - F(X) 57 (y = f(X)))
T
exp (= 5(/(X) = m(X)) K3k (F(X) = m(X))).
Collect the quadratic and linear terms in f(X); with K = Kxx and myx = m(X),
T 1 1 T
~logp(£(X) | y) = 3 T(K7"+37")f = Sy + K 'mx ) f + const,
where f = f(X). Completing the square shows that the posterior is Gaussian with
precision K ! + ¥-1 hence
-1 S\t -1 -1
Epost = <K + En ) s Mpost (X) = Epost <En Y+ K mX) .
Using the matrix inversion lemma and its linear-form identity yields the standard GP

expressions

Spost = K — K (K +3,) "

K, mpost(X) =mx + K(K +3,) ' (y — mx).
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These formulas show that the kernel hyperparameters (for example of and length scales
in k) and the noise variance o2 enter only through K and %,,.

Step 2: Conditioning to obtain predictions at new inputs. Under the prior,

( Yy ) N (m(X)> Kxx +3¥n Kxu
F(x.) mx))\ Kx  K.))
Since conditioning a jointly Gaussian vector is Gaussian, the posterior predictive law is

f(Xa) [ D~ N(mpost(X*)a Kpost(X*7X*)>’

with
Mpost (Xx) = m(X,) + Kix (Kxx + En)_1 (y — m(X)),

-1
Kpost(X*,X*) = K — * X (KXX + En) KX*'

Conclusion: posterior is again a GP. Passing from finite sets to the process level,
the posterior is a Gaussian process

f ’ D ~GP (mpOSt7 kpost)a

where for any z,z’ € R?

mpost(x) = m(x) + k(x7X> (KXX + Zn)il(y - m(X))

kpost (7, 7') = k(z,2") — k(z, X) (Kxx + 5n) k(X 2')

These are the formulas for the posterior mean mp.st and covariance Kpost(-, -), obtained
by an explicit Bayes derivation via completing the square and Gaussian conditioning.
To sample from the posterior distribution it suffices to work on a finite set of inputs
Xy = (x;*)]]vil, since a Gaussian process is fully determined by its finite-dimensional Gaus-
sian marginals. Concretely, with mpest and kpost as derived above, the posterior vector of

function values satisfies f(X,) | D ~ N (m., K.), where m, = (mpost(2}), - . ., Mpost (CI:*M))T

and K, = [kpost(xf,m;)]%:r In practice one adds a tiny numerical jitter €2, to the

diagonal for stability, computes a Cholesky factorization K, + 2, Iry = LLT, draws
2z ~ N(0,1p), and sets f(X.) = ms + Lz; repeating this step yields independent pos-
terior sample paths on X,. If noisy predictions are needed, form y, = f(X,) + € with
€ ~ N(0,021)) (or a general noise covariance). On a compact domain one may also
approximate continuous trajectories by truncating the Karhunen—Loéve expansion of
kpost, while for stationary kernels on R? random Fourier integral constructions offer
spectral samplers; nevertheless, the finite-set Cholesky scheme above is the default, ro-
bust method for posterior sampling in computation and visualization.



Algorithm 1: Gaussian Process Regression: Posterior Characterization

)T.

?

Input : Training inputs X = (z;)Y,, training outputs y = (y1,...,yn
mean function m : R — R; kernel k(-, -; #) with hyperparameters 6;
noise variance o2; optional test inputs X, = (:c;)]”il

Output: Posterior GP f | D ~ GP(mpost kpost);

1 Build blocks. Set
mx =m(X), Kxx=kX,X), Yo =02y,
If X, is provided, also set
me =m(X,), Kx.=kX,X,), Kx=Ky, Ka=kX.,X,).
2 Solve the data-fit system. Form the centered targets r = y — mx and solve

a = (KXX + En)_lT.

Numerical note: use a Cholesky factorization of Kxx + ¥i,.

3 Posterior GP (process level). For any z,z’ € RY,

Mpost () = m(z) + k(z, X) o

kpost (2, 27) = k(z,2") — k(z, X) (Kxx 4+ 5n) " k(X, 2')

which defines f | D ~ GP(mpost; kpost)-

5 numerical experiments

We present a PDE-informed Gaussian process (GP) regression experiment to visualize
the posterior distribution of a function on a one-dimensional domain. The latent field
uw on [0,1] is given a zero-mean GP prior with the RBF (Gaussian/squared exponen-
tial) kernel k(z,2") = of exp(—||z — 2/[|?/(2¢?)). To encode physics, we introduce linear
observations arising from the differential operator L = % +¢; specifically, we use the ho-
mogeneous Helmholtz/Poisson-type relation Lu = 0 with Dirichlet boundary conditions.
For a concrete target we set ¢ = 72, so that the reference solution wugre(z) = sin(mwx)
satisfies Lugrye = 0 and ugrue(0) = urue(1) = 0. The dataset combines three kinds of
linear information: (i) boundary values u(0) and u(1), (ii) a few noisy interior pointwise
values u(z;), and (iii) noisy PDE residuals (Lu)(z;) ~ 0 at collocation points. Measure-
ment noise is modeled as independent Gaussian with variances collected in a diagonal
matrix, adding a nugget o2 to ensure numerical stability. Because GPs are closed un-
der linear maps, the likelihood for all constraints is jointly Gaussian, and the posterior
u | D is again a GP with mean and covariance obtained by the standard conditioning



formulas derived earlier; in practice we compute the posterior mean and the pointwise
variances on a dense grid via a Cholesky factorization of the combined covariance of all
observations.

The resulting figure reports the posterior mean curve together with a 95% pointwise
credible band (mean 42 standard deviations), as well as the underlying reference solu-
tion and the locations of the measurements. As expected, the credible band tightens
near boundary and interior value observations and remains narrow where the PDE resid-
ual constraints are dense, demonstrating how the linear-physics information effectively
reduces posterior uncertainty while preserving Bayesian coherence.

PDE-informed GP posterioron [0, 1]: u" +cu =0

1.0t true u(x)
posterior mean
95% band
0.8} value obs (u)
»  PDE residual obs
0.6
X
=]
0.4
0.2
0.0F D T T I A I e e
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: PDE-informed GP posterior on [0, 1] for Lu = 0 with L = j—; + 2. The plot
shows the posterior mean (dashed) and its 95% credible band, together with the reference
solution and the observation locations (boundary values, interior pointwise values, and
PDE residual collocation points).

6 concluding remarks

In summary, we presented Gaussian Process Regression (GPR) as a Bayesian nonpara-
metric framework in which a prior over functions is specified by a mean and a covariance
kernel, finite—dimensional laws are characterized explicitly, and sample—path representa-
tions arise via Karhunen—Loéve expansions on compact domains and spectral represen-
tations for stationary kernels. Building on these foundations, we derived the posterior
distribution directly from Bayes’ formula and Gaussian conditioning, thereby obtaining
closed-form expressions for the posterior mean and covariance, and we demonstrated in a
PDE-informed experiment how linear physics constraints and noisy data can be fused to
deliver calibrated uncertainty quantification. Looking ahead, the same principles extend
to learning hyperparameters by marginal likelihood or hierarchical priors, to designing
structured kernels (ARD, periodic, spectral mixtures) that encode inductive bias, to
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handling non-Gaussian likelihoods through approximate inference, and to scalable ap-
proximations (inducing points, low-rank factorizations, iterative solvers) that preserve
posterior calibration. These directions, together with multi-output and operator-valued
extensions, provide a practical pathway from the theory summarized here to large-scale
scientific and engineering applications.
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