

View

Online


Export
Citation

RESEARCH ARTICLE |  MAY 26 2021

Efficient sampling of thermal averages of interacting
quantum particle systems with random batches 
Xuda Ye  ; Zhennan Zhou  

J. Chem. Phys. 154, 204106 (2021)
https://doi.org/10.1063/5.0047437

Articles You May Be Interested In

Random-batch list algorithm for short-range molecular dynamics simulations

J. Chem. Phys. (July 2021)

Variance-reduced random batch Langevin dynamics

J. Chem. Phys. (December 2024)

Energy stable scheme for random batch molecular dynamics

J. Chem. Phys. (January 2024)  05 N
ovem

ber 2025 21:36:51

https://pubs.aip.org/aip/jcp/article/154/20/204106/200136/Efficient-sampling-of-thermal-averages-of
https://pubs.aip.org/aip/jcp/article/154/20/204106/200136/Efficient-sampling-of-thermal-averages-of?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-2585-2969
javascript:;
https://orcid.org/0000-0003-4822-0275
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0047437&domain=pdf&date_stamp=2021-05-26
https://doi.org/10.1063/5.0047437
https://pubs.aip.org/aip/jcp/article/155/4/044108/200601/Random-batch-list-algorithm-for-short-range
https://pubs.aip.org/aip/jcp/article/161/24/244110/3328715/Variance-reduced-random-batch-Langevin-dynamics
https://pubs.aip.org/aip/jcp/article/160/3/034101/2946526/Energy-stable-scheme-for-random-batch-molecular
https://e-11492.adzerk.net/r?e=&s=PF_96tFXrwUU5__52Ep4PLz1xCk


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Efficient sampling of thermal averages
of interacting quantum particle systems
with random batches

Cite as: J. Chem. Phys. 154, 204106 (2021); doi: 10.1063/5.0047437
Submitted: 13 February 2021 • Accepted: 7 May 2021 •
Published Online: 26 May 2021

Xuda Ye1,a) and Zhennan Zhou2,b)

AFFILIATIONS
1 School of Mathematical Sciences, Peking University, Beijing, China
2 Beijing International Center for Mathematical Research, Peking University, Beijing, China

a)Electronic mail: abneryepku@pku.edu.cn
b)Author to whom correspondence should be addressed: zhennan@bicmr.pku.edu.cn

ABSTRACT
An efficient sampling method, the pmmLang + RBM, is proposed to compute the quantum thermal average in the interacting quantum
particle system. Benefiting from the random batch method (RBM), the pmmLang + RBM has the potential to reduce the complexity due to
interaction forces per time step from O(NP2

) to O(NP), where N is the number of beads and P is the number of particles. Although the
RBM introduces a random perturbation of the interaction forces at each time step, the long time effects of the random perturbations along
the sampling process only result in a small bias in the empirical measure of the pmmLang + RBM from the target distribution, which also
implies a small error in the thermal average calculation. We numerically study the convergence of the pmmLang + RBM and quantitatively
investigate the dependence of the error in computing the thermal average on the parameters such as batch size, time step, and so on. We also
propose an extension of the pmmLang + RBM, which is based on the splitting Monte Carlo method and is applicable when the interacting
potential contains a singular part.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0047437

I. INTRODUCTION

Simulating complex chemical systems with quantum effects
has been an appealing subject in computational physics and chem-
istry. In quantum systems, thermal properties are fully described
by the canonical ensemble and a considerable number of meth-
ods of calculating thermal averages are based on the path inte-
gral representation,1–4 which reformulates the quantum system as
a classical ring polymer system. In the past decades, the path
integral Monte Carlo (PIMC)4–6 and the path integral molec-
ular dynamics (PIMD)7–9 techniques have been developed and
successfully applied to the calculation of quantum properties
such as reaction rates,10–12 correlation functions,13,14 and quantum
tunneling.15,16

In this paper, we focus on long-range interacting quantum par-
ticle systems. The complexity to calculate the interaction forces of a
P-particle system is O(P2

), and efficient computational methods are
thus needed to simulate such big systems. Compared to short-range

interactions that can be easily treated with cutoff17 or data struc-
tures such as the cell list,18,19 the long-range nature of the interaction
potential makes it more difficult to reduce the complexity due to
interaction forces.

So far, a large variety of methods have been proposed to cal-
culate the interaction forces for a particle system with electrostatic
interactions. The most representative methods in this class are the
Ewald summation20,21 for problems with periodic boundaries and
the fast multipole method (FMM)22 for open systems, and the com-
plexity of the interaction forces can be reduced to O(P log P) or
even O(P). However, an obvious drawback of these methods is that
they rely on the specific expression of the interaction potential, i.e.,
the Coulomb potential, and can hardly be applied to more general
interacting systems.

Besides the methods that aim at calculating the interaction
forces directly, there are also methods focusing on modifying the
dynamics while maintaining the physical properties of interest. For
example, the generalized Verlet algorithm23 reduces the number
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of times of calculating interaction forces by introducing distance
classes, and the random batch method (RBM)24 simplifies the
dynamics by random sampling at each iteration.

In this paper, the RBM is employed to reduce the complexity
due to interaction forces. The RBM is an efficient sampling method
recently introduced for interacting particle systems and has been
applied to reduce the computational cost of certain examples in real
time dynamics and ensemble average calculation.25,26 In each time
step, the RBM randomly groups all particles into small batches, and
the evolution of the whole system is replaced by the evolution in
those batches, respectively. Due to the random nature of the group-
ing in the RBM, the average force felt by each particle in the RBM
is statistically the same as the force in the original dynamics. Since
interaction forces are only calculated in small batches, the complex-
ity in a time step is reduced from O(P2

) to O(P). Compared to other
efficient sampling methods such as the Ewald summation and the
FMM, the RBM is easier to implement and more flexible to apply in
complex interacting particle systems.

After including quantum effects, the simulation of interacting
particle systems meets additional challenges. In the context of the
PIMD, suppose there are N beads in the reformulated ring poly-
mer system. The complexity due to interaction forces in this refor-
mulated system per time step is O(NP2

), which is N times of the
complexity in the classical case. In addition, the ring polymer sys-
tem suffers from the stiffness of the ring polymer potential when the
number of beads N is large. To resolve the stiffness, one can either
precondition the dynamics by modifying the ring polymer mass
matrix27,28 or using the staging coordinates29,30 or employ other
non-preconditioned methods.14,31–33

In large interacting quantum systems, the compatibility
between the RBM and the technique for resolving the stiffness
must be taken into account. We choose to employ the precon-
ditioned mass-modified Langevin dynamics (pmmLang)28 rather
than the staging coordinates to precondition the dynamics since the
pmmLang sticks to the use of the physical coordinates.

In this paper, we will show that the combination of the pmm-
Lang and the RBM (denoted by the pmmLang + RBM) is a suit-
able sampling method in the large interacting quantum particle
systems. The pmmLang + RBM costs only the O(NP) complex-
ity in a time step to compute the interaction forces and is able to
obtain the accurate thermal average up to a small bias. In addition,
the pmmLang + RBM can be naturally combined with the splitting
Monte Carlo method25 to apply to systems with singular interacting
potentials.

Now, we present our basic setup of this paper. In the P-particle
quantum system in R3P with long-range interactions, we aim to cal-
culate the thermal average of some observable operator Â. Suppose
the potential of the system is V̂ = V(q̂), with V(q) given by

V(q) =
P

∑
i=1

V(o)(qi
) + ∑

1⩽i<j⩽P
V(c)(qi

− qj
), (1)

where q = (q1, . . . , qP
) ∈ R3P is the position and momentum of the

P particles, V (o)
(qi
) is the external potential of qi in R3, and V (c)

(qi
− qj
) is the interacting potential between qi and qj. Assume

each particle has mass m, then the Hamiltonian operator of the
system is

Ĥ =
p̂2

2m
+ V(q̂), q, p ∈ R3P, (2)

and the thermal average of Â is given by

⟨Â⟩ =
1
Z

Tr[e−βĤÂ], Z = Tr[e−βĤ
], (3)

where β > 0 is the inverse temperature.
In the path integral representation, the quantum system (1) is

reformulated as a classical ring polymer system with the potential
function

UN(q) =
m

2β2
N

N

∑
k=1
∣qk − qk+1∣

2
+

N

∑
k=1

V(qk), (4)

where βN = β/N and q = (q1, . . . , qN)
T
∈ RN×3P is the position of the

ring polymer. In this way, the thermal average ⟨Â⟩ can be approx-
imated by the ensemble average in the Boltzmann distribution
π(q)∝ e−βN UN(q). The pmmLang + RBM we propose in this paper,
which aims to sample the distribution π(q), can be implemented in
the following steps:

1. Derive the pmmLang for the ring polymer system UN(q) to
sample the Boltzmann distribution π(q).

2. Numerically integrate the sampling path of the pmmLang,
where the interaction forces are efficiently computed by the
RBM. Time averages of the weight functions are used to
approximate the thermal average ⟨Â⟩.

3. (Optional) If the interacting potential V (c)
(q) contains a sin-

gular part, combine the pmmLang + RBM with the splitting
Monte Carlo method.

The pmmLang + RBM is simple and efficient to calculate the ther-
mal average of the interacting quantum particle systems and benefits
from both the RBM and the pmmLang. Due to the RBM, the com-
plexity of interaction forces in a time step is reduced to O(NP), and
the total complexity in a time step is O(N log NP), which has satis-
factory scaling properties for both N and P. When the interaction
potential contains a singular part (e.g., the Lennard-Jones and the
Morse potential), the pmmLang + RBM method can be extended
by the use of the splitting Monte Carlo method, which lifts the
constraint of using extremely small time steps.

This paper is organized as follows: In Sec. II, we introduce
the PIMD for interacting particle systems and the difficulties in
numerical simulation and then derive the pmmLang. In Sec. III,
we introduce the random batch method and discuss of the error
analysis of the pmmLang + RBM. In Sec. IV, we introduce the split-
ting Monte Carlo method and its combination with the pmmLang
+ RBM and the pmmLang + RBM + split. In Sec. V, we present
the numerical results of the pmmLang + RBM and the pmmLang
+ RBM + split and report the error in the calculation of thermal
averages.

II. PIMD FOR INTERACTING PARTICLE SYSTEMS
A. Ring polymer representation and Langevin
sampling

In the path integral representation, the thermal average (3) is
approximated as
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⟨Â⟩ ≈
1

ZN
∫ dq × e−βN UN(q) ×WN(q), (5)

where βN = β/N and

q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q1

⋮

qN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q1
1 . . . qP

1

⋮
. . . ⋮

q1
N . . . qP

N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ RN×3P

is the position of the ring polymer. In the coordinate notation qi
k, the

subscript k indicates the bead index in the ring polymer representa-
tion and the superscript i indicates the particle index in the physical
system. Besides, UN(q) is the total potential of the ring polymer
system defined in (4),

ZN = ∫ dq × e−βN UN(q) (6)

is the partition function, and WN(q) is the weight corresponding to
the observable operator Â. The standard theory of the path integral5

shows that the approximation (5) is exact as the number of beads
N →∞. Define the Boltzmann distribution as

π(q) =
1

ZN
e−βN UN(q), q ∈ RN×3P, (7)

and then (5) can be equivalently written as

⟨Â⟩ ≈ ⟨WN(q)⟩π ∶= ∫ WN(q)π(q)dq, (8)

i.e., ⟨Â⟩ is approximated as the ensemble average of the weight
function WN(q) in the distribution π(q).

In this paper, the observable operators of interest are the
position-dependent operator Â = A(q̂) and the kinetic energy oper-
ator Â = p̂2

/(2m), where A(q) is an analytic function in R3P. For the
position-dependent operator, the weight WN(q) is simply

WN(q) =
1
N

N

∑
k=1

A(qk). (9)

For the kinetic energy operator, the weight WN(q) is chosen as the
virial estimator,34

WN(q) =
3P
2β
+

1
2N

N

∑
k=1
(qk − q̄)T

∇V(qk), (10)

where

q̄ =
1
N

N

∑
k=1

qk ∈ R
3P (11)

is the center of the ring polymer.
To compute the ensemble average ⟨WN(q)⟩π , we employ the

path integral molecular dynamics (PIMD) technique to sample the
distribution π(q). By introducing an auxiliary momentum variable

p ∈ RN×3P, the PIMD couples the Hamiltonian dynamics with a ther-
mostat scheme to preserve the invariant distribution. In practice,
the widely used thermostats include the Andersen thermostat,35 the
Nosé–Hoover thermostat,36 and the Langevin thermostat. In this
paper, we focus on the last one to develop an efficient sampling algo-
rithm with random batches and our underlying dynamics is thus the
second-order Langevin dynamics.

For heuristic purposes, we present in the following the PIMD
with the Langevin thermostat. Introduce the positive definite mass
matrix M ∈ RN×N (maybe different from the physical mass m) and
extend UN(q) to the Hamiltonian

HN(q, p) =
1
2
⟨p, M−1p⟩F +UN(q), (12)

where ⟨⋅, ⋅⟩F is the Frobenius inner product in RN×3P. By adding
damping and diffusion terms in the Hamiltonian dynamics of (12),
we obtain the second-order Langevin dynamics in the PIMD,

dq =M−1pdt, (13)

dp = −∇UN(q)dt − γpdt +
√

2γM
βN

dB,

where γ > 0 is the friction constant and B is the standard Brownian
motion in RN×3P.

The invariant distribution of (13) is

π(q, p)∝ exp(−βN(
1
2
⟨p, M−1p⟩F +UN(q))), (14)

whose marginal distribution in q is exactly π(q) as in (7). From the
ergodicity of the Langevin dynamics, ⟨WN(q)⟩π can be computed by
the infinite time average of WN(q(t)) with the classical trajectory
(q(t), p(t)) propagated by (13), i.e.,

⟨WN(q)⟩π = lim
T→∞

1
T∫

T

0
WN(q(t))dt. (15)

In practice, one employs the discrete time trajectory q(jΔt)
numerically solved by (13) to approximate the time integral in
(15), i.e.,

⟨WN(q)⟩π = lim
J→∞

1
J

J

∑
j=1

WN(q(jΔt)), (16)

where Δt is the time step.
In the large interacting particle system, the costliest part of the

Langevin dynamics (13) is computing the gradient ∇UN(q), which
involves heavy calculation of the interaction forces. As we shall
elaborate in the next part, the complexity due to interaction forces
is O(NP2

).

B. Simulation bottleneck in Langevin sampling
In this paper, we are mainly concerned with the efficiency of

calculating the thermal average (3) for a large quantum interact-
ing particle system, where the numerical challenges mainly originate
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from two aspects of reasons. On the one hand, given a quantum
interacting particle system, the number of beads N in the path inte-
gral representation needs to be sufficiently large to approximate the
thermal average ⟨Â⟩. On the other hand, in order to accurately calcu-
late a wide class of physical quantities, it is often desirable to simulate
in large size systems, for example, the liquid water, since the num-
ber of particles P should be large enough to incorporate the correct
scientific phenomenon.

When N and P are large, one of the major difficulties in the
numerical simulation of (13) is that the computational cost per time
step is extremely heavy. To perform a complexity analysis, we write
the total∇UN(q) as

UN(q) =
1
2
⟨q, Lq⟩F +

N

∑
k=1

V(qk), (17)

where L ∈ RN×N is the second order difference matrix,

L =
m
β2

N

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 . . . −1

−1 2 −1 . . .

−1 2 . . .

⋮ ⋮ ⋮
. . . −1

−1 2 −1

−1 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (18)

The gradient∇UN(q) is thus given by

∇UN(q) = Lq +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇V(q1)

⋮

∇V(qN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ RN×3P, (19)

where each∇V(qk) involves the full interaction forces in system (1).
In fact,

∇V(qk) = [
∂V(qk)

∂q1
k

⋅ ⋅ ⋅
∂V(qk)

∂qP
k
] ∈ R3P, (20)

and the interaction force felt by the ith particle qi
k is

∂V(qk)

∂qi
k
=

P

∑
i=1
∇V(o)(qi

k) +∑
j≠i
∇V(c)(qi

k − qj
k). (21)

Therefore, the complexity of calculating each ∇V(qk) is O(P2
) and

the complexity of calculating the full gradient∇UN(q) is O(NP2
).

It is worth noting that the O(P2
) computational cost per time

step is the common difficulty in the simulation of interacting particle
systems, regardless of the thermostat scheme. As long as one uses
molecular dynamics approaches, heavy calculation of the interaction
forces is inevitable. In the PIMD where an N-bead ring polymer is
used, there are N duplicates of the original interacting system, and
the computational cost becomes O(NP2

).

Except for the interaction forces∇V(c)(qi
k − qj

k), calculation of
the weight WN(q) can also have O(NP2

) time complexity in a sin-
gle time step. For the position-dependent operator Â = A(q̂), if the
analytic function A(q) is given by

A(q) =
1
P ∑

1⩽i<j⩽P
V(c)(qi

− qj
), (22)

then the complexity to compute the weight function (9) is O(NP2
).

In addition, the virial estimator (10) for the kinetic energy
involves the full gradient {∇V(qk)}

N
k=1, and thus, the complexity

is O(NP2
).

The O(NP2
) complexity in the calculation of the interaction

forces and the weight is a huge impediment on efficient sampling,
especially for large P. Hence, we seek effective means to accelerate
the simulation of the PIMD Langevin dynamics (13) by reducing
the computational cost per time step to O(NP). In the classical
case, the Ewald summation20 and FMM22 have been successfully
applied to reduce the complexity of interaction forces, but they are
complicated to implement, cumbersome in the ring polymer rep-
resentation, and only efficacious for specific interacting potentials,
for example, the Coulomb potential. Therefore, we aim to develop
a method to reduce the O(NP2

) complexity, which is easy-to-use,
consistent with the PIMD framework, and applicable for any inter-
action potential V (c)

(q). For this reason, we propose a sampling
algorithm motivated by the recently proposed random batch method
(RBM).24

In the RBM, the group of P particles is randomly divided into
small batches, where the division is chosen independently in differ-
ent time steps. During one time step, the P particles are restricted to
interact within their own batches, and in this way, the total complex-
ity of interaction forces is reduced from O(NP2

) to O(NP). A more
detailed description of incorporating the RBM in Langevin sampling
is presented in Sec. III.

C. Choice of the preconditioning method
Before continuing the discussion on the RBM, we take a short

detour to address another ubiquitous numerical issue in simulating
the PIMD when N is large. The ring polymer potential UN(q) leads
to a stiff term in the Langevin dynamics (13), which prevents the
use of large time steps in integrating the sampling path. To get a
glimpse of the stiffness, note that the condition number of the matrix
L ∈ RN×N defined in (18) is

cond(L) ∶=
λmax(L)
λmin(L)

= (sin
π
N
)
−1

. (23)

Hence, if the mass matrix is simply chosen as

M = mI, (24)

the time step Δt needs to be small as O(1/N) to integrate the highest
oscillation mode of (13), which means the Langevin dynamics (13)
shows stiffness when N is large.

The numerical stiffness can be resolved by certain precondi-
tioning methods, which is often realized by introducing a proper
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change of coordinates or choosing a proper mass matrix. For exam-
ple, the staging coordinate transformation29 given by

q̃1 = q1, q̃k = qk −
(k − 1)qk+1 + q1

k
, k = 2, . . . , N, (25)

has shown to be a powerful technique in relaxing the use of time
steps. However, the staging coordinates are not compatible with the
RBM unless one repeatedly uses the staging coordinate transfor-
mation and its inverse (see Appendix A for a detailed discussion),
which are inconvenient for large systems. In fact, a preconditioning
method that can be directly implemented in the physical coordinates
is preferable to be combined with the RBM.

For this reason, we adopt the preconditioned mass-modified
Langevin dynamics (pmmLang)28 as the preconditioning method,
which we present in the following. In the Langevin dynamics (13),
we choose the mass matrix in such a specific form

M = Lα
∶= L + αI, (26)

where the regularization parameter α > 0 is introduced to make sure
Lα is positive definite. Let

v =M−1p = (Lα
)
−1p ∈ RN×3P (27)

be the velocity, and define the modified potential

Uα
(q) =

N

∑
k=1

V(qk) −
α
2
∣q∣2, (28)

and then (13) becomes

dq = vdt, (29)

dv = −qdt − (Lα
)
−1
∇Uα
(q)dt − γvdt +

¿
Á
ÁÀ2γ(Lα)−1

βN
dB.

The obtained Langevin dynamics (29) is exactly the pmmLang we
aim to derive. Compared to the staging coordinates, the pmmLang
can be conveniently implemented in the physical coordinates and
is naturally compatible with the RBM. A detailed derivation of the
pmmLang and the discussion on its implementation is given in
Appendix A.

Given the regularity parameter α > 0, the invariant distribution
of the pmmLang (29) is

π(q,v)∝ exp(−βN(
1
2
⟨v, Lαv⟩F +

1
2
⟨q, Lαq⟩F +Uα

(q))). (30)

Since the right-hand sides of (14) and (30) are exactly the same
except for the velocity transformation v = (Lα

)
−1p, the pmmLang

(29) produces the correct invariant distribution (Lα
)
−1π(q) in the

marginal of q. If we could neglect the ∇Uα
(q) term in (29), the

Hamiltonian part of the pmmLang is simply

dq = vdt,

dv = −qdt,
(31)

and thus, there is no stiffness in (29). With further analysis, the
pmmLang (29) can be shown to be a successful preconditioning
method28 in the PIMD.

It is worth pointing out that the pmmLang has also been stud-
ied in some recent work,37,38 where the authors obtained a quanti-
tative analysis of the convergence rate with its dependence on the
regularization constant α. A qualitative corollary of their result is
that α being close to zero or too large, both slowdowns the simu-
lation efficiency of the pmmLang. From our point of view, if α is
close to zero, the entries of the matrix (Lα

)
−1 in (29) will be large

as O(1/α); hence, the magnitude of (Lα
)
−1
∇UN(q) restricts the

time step for numerical stability. For mathematical well-posedness,
α should be chosen to ensure that the modified potential Uα

(q) is
confined, i.e.,

lim
∣q∣→∞

Uα
(q) = +∞. (32)

While it is not a trivial task to choose the optimal parameter α in the
pmmLang, there are other non-preconditioned numerical integra-
tors for the PIMD Langevin dynamics, which are parameter free.14,33

Nevertheless, how to choose α is not the focus of this work, and we
employ the pmmLang as a preconditioning method in the PIMD
under certain simplified conditions given below.

We assume that the external potential V (o)
(q) in the quantum

system (1) is harmonic, i.e., for some constant α0 > 0,

V(o)(q) =
α0

2
∣q∣2, q ∈ R3. (33)

For example, the value of α0 may be specified according to (72),
which involves the number of particles P in the interacting system.
In this case, we choose the regularization parameter α to coincide
with the constant α0 in (33); thus, the modified potential Uα

(q) is
simply the sum of all interacting potentials,

Uα
(q) =

N

∑
k=1

∑
1⩽i<j⩽N

V(c)(qi
k − qj

k), (34)

and the pmmLang (29) can be equivalently written as

dqi
= vidt, (35)

dvi
= −qidt − (Lα

)
−1
∑
j≠i
∇V(c)(qi

− qj
)dt − γvidt

+

¿
Á
ÁÀ2γ(Lα)−1

βN
dBi

(i = 1, . . . , P).

For simplicity, the incorporation of the RBM will be discussed only
for (35), under the assumption of (33). Clearly, the RBM can be
applied without (33), and there will be additional terms in Uα

(q)
except the interacting potentials in (34). These additional terms con-
tribute only the O(NP) complexity in a single time step and does not
change the major difficulties since the O(NP2

) complexity is only
due to interaction forces∇V(c)(qi

k − qj
k).
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III. RANDOM BATCH METHOD IN LANGEVIN
SAMPLING

A. RBM for the pmmLang
In the simulation of large interacting particle systems, the high

computational cost per time step has always been an impediment to
efficient sampling. With the setup in Sec. II, to integrate the sam-
pling trajectory for a single time step, it requires the cost of O(NP2

)

complexity to compute all the interaction forces V (c)
(qi
− qj
). Since

the calculation of the interaction forces is rather expensive when P is
large, reducing the complexity due to interaction forces is crucial to
attain high efficiency in the PIMD simulation of interacting particle
systems.

The recently proposed random batch method (RBM) provides
a simple approach to fulfill such a reduction of cost in force evalua-
tion. The RBM avoids calculation of the full interaction by randomly
dividing the group of P particles into small-size batches and only
allowing interactions within each small batch with adjusted inter-
action strength. Since for each time step, a new random division
is conducted, after sufficiently many times, each particle will not
only have an equal probability to interact with any other particles
in the group, but also will have plenty of random interactions with
the rest of the particles. This is why we expect the RBM to pro-
duce the correct statistical properties of the interacting system in
the long time simulation. One does not necessarily need to trace
the interactions between a typical particle and every other parti-
cle to have an accurate prediction of the statistical properties, but
rather, the interactions with other particles may vastly cancel each
other and result in an average field to the typical particle. For heuris-
tic purpose, we present the RBM for the pmmLang (35) in the
following.

During each time step, we first randomly divide the group
of P particles into n batches 𝒞 1, . . . ,𝒞 q, where each batch is of
size p and n = P/p. The batch size p should be far less than P to
avoid massive calculation of interaction forces and be at least two to
capture the pairwise interactions ∇V (c)

(qi
− qj
). Then, we approx-

imate the full interaction of the P-particle system with the interac-
tion forces within each small batch 𝒞 l, and adjust the interaction
strength to ensure statistical consistency. To be specific, the interac-
tion force felt by the ith particle qi

∈ RN×3P in the original pmmLang
(35) is

∑
j≠i
∇V(c)(qi

− qj
) ∈ RN×3. (36)

With the use of RBM, each qi is assigned to a batch 𝒞 l for some
l = 1, . . . , q, and hence, the approximation of the interaction force
(36) within 𝒞 l is

P − 1
p − 1 ∑

j∈𝒞 l ,j≠i
∇V(c)(qi

− qj
). (37)

Recall that the division 𝒞 1, . . . ,𝒞 q is randomly generated for each
time step; thus, for fixed qi, the batch 𝒞 l that contains qi is also ran-
dom. Therefore, (37) can be interpreted as a (p − 1)-term sample
approximation of a (P − 1)-term summation (36). In addition, the
approximation (37) is unbiased, i.e.,

E
⎛

⎝

P − 1
p − 1 ∑

j∈𝒞 l ,j≠i
∇V(c)(qi

− qj
)
⎞

⎠
=∑

j≠i
∇V(c)(qi

− qj
). (38)

In this way, the random-batch approximated pmmLang within the
batch 𝒞 l is given by

dqi
= vidt, (39)

dvi
= −qidt −

P − 1
p − 1

(Lα
)
−1
∑

j∈𝒞 l ,j≠i
∇V(c)(qi

− qj
)dt − γvidt

+

¿
Á
ÁÀ2γ(Lα)−1

βN
dBi

(i∈ 𝒞 l),

and the RBM for the pmmLang (denoted by the pmmLang + RBM)
in a single time step Δt just evolves (39) for all batches 𝒞 l,
l = 1, . . . , n, as shown in Algorithm 1. In consecutive time steps, the
previous divisions are discarded and new sets of divisions are ran-
domly chosen. Hence, a fixed particle qi

∈ RN×3 can be assigned to
different batches 𝒞 l in different time steps and only interacts with
the particles in the current batch.

In Algorithm 1, to generate a random division 𝒞 1, . . . ,𝒞 q, one
may use the Fisher–Yates shuffle39 with O(P) complexity to obtain a
random permutation of 1, . . . , P and then divide it into n batches
in order. Note that there are p(p−1)

2 pairs of interactions within
each batch 𝒞 l, the complexity of Algorithm 35 due to interaction
forces is

n ×N ×
p(p − 1)

2
= N ×

P(p − 1)
2

= O(NPp). (40)

Hence, the batch size p should be small to attain high efficiency in the
pmmLang + RBM. In particular, if p is chosen as small integers such
as 2 and 4, the complexity due to interaction forces is only O(NP). In
this way, we can employ the pmmLang + RBM (Algorithm 1), which
is much more efficient than the original pmmLang (35), to compute
the ensemble average ⟨WN(q)⟩π .

Finally, we point out that the RBM has an analogy to the
stochastic gradient descent (SGD),40–43 the stochastic optimization
method widely used in machine learning. In machine learning prob-
lems, the size of the dataset can be extremely large, and the SGD
approximates the full gradient with the average calculated from sam-
ples in a randomly chosen small batch. Although the RBM and
the SGD share the idea of full gradient approximation, the high
dimensional natures of their underlying problems are different. In
an optimization problem where the SGD applies, the dimension of
the parameter space does not increase with respect to the size of the
dataset. However, in an interacting particle system where the RBM
applies, the dimension of the coordinate space grows linearly with
the number of particles P.

B. Error analysis in PIMD with the RBM
In this section, we aim to investigate the error in calculating

the ensemble average ⟨WN(q)⟩π due to the use of the RBM. By
the ergodicity of the pmmLang (35), ⟨WN(q)⟩π can be accurately
computed from the time average,
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Algorithm 1. RBM for the pmmLang in a time step Δt.

1
J

J

∑
j=1

WN(q(jΔt)), (41)

as the number of samples J →∞, where {q(t)}t⩾0 is the pmm-
Lang trajectory evolved by (35) and Δt is the time step specified in
Algorithm 1. Correspondingly, the pmmLang + RBM uses the
following time average to estimate ⟨WN(q)⟩π :

1
J

J

∑
j=1

WN(q̃(jΔt))), (42)

where {q̃(t)}t⩾0 is the pmmLang + RBM trajectory evolved by
Algorithm 1. Therefore, the error analysis in the RBM is actually ask-
ing whether the time average (42) is a good estimator of ⟨WN(q)⟩π
for sufficiently large J.

In general, exploring the effects of the consecutive uses of
random-batch approximations (37) along the sampling process
is difficult. To our knowledge, the strong error in a contracting
dynamics24 and the weak error in a short period44 have been rig-
orously justified, whereas none of those theoretical results apply to
the RBM in the long time sampling process.

If the adoption of the RBM results in a small strong error
in the long time simulation, i.e., the pmmLang + RBM trajectory
q̃(t) almost coincides with the pmmLang trajectory q(t) all the
time, we can certainly deduce that the RBM also leads to a small
error in the ensemble average calculation. However, this is not true.
As we shall show in the following, it is likely that the pmmLang
+ RBM trajectory q̃(t) drifts significantly apart from q(t) in a short
time, but still q̃(t) provides a faithful and accurate approximation
of ⟨WN(q)⟩π in the long time simulation. We shall further ratio-
nalize the error induced by the use of the RBM in the PIMD in the
following.

1. Strong error analysis
The strong error characterizes the deviation of the numerically

computed trajectory from the exact one in the form of the mean
squared error.45 The strong error of the pmmLang + RBM is then
defined as

e(t) =
√
E∣q̃(t) − q(t)∣2, t ⩾ 0, (43)

where we assume that the pmmLang + RBM trajectory q̃(t) and the
pmmLang trajectory q(t) are driven by the same Brownian motion
B(t) and the same initial state. In addition, the expectation is taken
over all possible Brownian motions and choices of random batches
in the time interval [0, t]. When (35) and (39) are integrated exactly,
the deviation of q̃(t) from q(t) is solely due to the use of the random
batches.

According to Algorithm 1, the pmmLang + RBM trajectory
q̃(t) coincides with q(t) when the batch size p = P or in the limit
Δt → 0. In fact, the batch size p = P implies that the interaction
forces are calculated accurately, while in the limit Δt → 0 each parti-
cle is supposed to be driven by the average effects. Nevertheless, such
parameters are impractical to apply in the pmmLang+RBM because
choosing either p = P or Δt → 0 greatly increases the total computa-
tion cost and contradicts with our original intention to use the RBM.
To be specific, the cost due to interaction forces of the pmmLang
+ RBM in the time interval [0, T] is

O(
p

Δt
TP2
),

which is extremely large when p = P or Δt → 0.
When the parameters p, Δt are chosen such that the pmm-

Lang + RBM becomes an efficient sampling method, i.e., the batch
size p is small and the time step Δt is relatively large, we can-
not expect the pmmLang + RBM to produce the accurate pmm-
Lang trajectory q(t). In contrast, the strong error e(t) shortly
grows large in a short time period, as we show in the following
example.

In the Coulomb interacting system [the potential function is
defined in (68) in Sec. V], we show in Fig. 1 how the pmm-
Lang + RBM trajectory q̃(t) deviates from q(t) and the strong
error e(t) grows large along the sampling process. It can be
seen from Fig. 1 that the pmmLang + RBM trajectory q̃(t)
drifts apart from q(t) at about t ≈ 5, and the strong error e(t)
grows large at t ≈ 1, no matter how small the time step Δt is.
Therefore, there will always be large deviation in the pmmLang
+ RBM trajectory q̃(t) from the pmmLang trajectory q(t), unless
one chooses p = P or Δt → 0. As we shall show next, requiring
a small path-wise error is totally unnecessary in thermal average
calculation.
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FIG. 1. (a) Typical samples of the pmmLang trajectory q(t) and the pmmLang
+ RBM trajectory q̃(t) with the time step Δt = 1/4. Only the first component of
q ∈ RN×3P is plotted. (b) Strong error e(t) defined in (43) with Δt = 1/4,
1/8, 1/16. 10 000 independent trajectories are used to compute the expecta-
tions. In the Coulomb interacting system, m = 1, β = 4, P = 8, N = 32, T = 20,
and p = 2.

2. Weak error analysis
The weak error measures the difference in the approximate and

the exact values of the ensemble average.45 In the PIMD, the weight
function of interest is WN(q), which takes different forms for dif-
ferent observables. To be specific, the weak error of the pmmLang
+ RBM is defined as

e(t) = EWN(q̃(t)) − EWN(q(t)), (44)

where the expectation is taken over all possible Brownian motions
and choices of random batches, where the observable operator is the
kinetic energy, and the corresponding weight function of interest is

FIG. 2. Expectations EWN(q(t)) and EWN(q̃(t)) computed by the pmmLang
and the pmmLang + RBM in the Coulomb interacting system, where the observ-
able operator is the kinetic energy. m = 1, β = 4, P = 8, N = 32, Δt = 1/4, 1/16,
T = 20, and p = 2. 10 000 independent trajectories are used to compute the
expectations. The blue curve is associated with the pmmLang with Δt = 1/16,
and the red and yellow curves are associated with the pmmLang + RBM with Δt
= 1/16 and 1/4, respectively. The difference between the curves of the pmmLang
and the pmmLang + RBM is exactly the weak error e(t) defined in (44).

the virial estimator (10). To give a first impression of the weak error,
we plot in Fig. 2 the expectations EWN(q(t)) and EWN(q̃(t)) with
various time steps in the Coulomb interacting system. Unlike the
strong error (43), the curve of EWN(q̃(t)) associated with the pmm-
Lang + RBM is very close to the curve of EWN(q(t)) associated
with the pmmLang, and the weak error (44) remains small all along
the sampling process. It can be seen from Fig. 2 that the ring poly-
mer system quickly goes into equilibrium about t ≈ 2.5 for both the
pmmLang and the pmmLang + RBM dynamics; hence, the intro-
duction of the batch force approximation (37) does not influence
the convergence mechanism of the original pmmLang (35). In addi-
tion, the stochastic error in computing WN(q(t)) due to the use
of the force approximation (37) cancels over all possible choices of
random batches, which finally results in a small bias on the average
EWN(q(t)), even if the batch size p is small and the time step Δt is
relatively large.

However, in the long time simulation, it is impossible to use
EWN(q(t)) or EWN(q̃(t)) to estimate ⟨WN(q)⟩π since the calcula-
tion of the expectations in (44) requires a large number of sampling
trajectories. In practice, it is more feasible to use the time aver-
ages [(41) and (42)] to compute ⟨WN(q)⟩π , which are obtained by
numerically integrating one sampling path, respectively.

If the numerical error is neglected, we know that due to the
ergodicity of the Langevin dynamics, the time average (41) generated
by the pmmLang converges to the correct limit as the number of
samples J →∞, i.e.,

lim
J→∞

1
J

J

∑
j=1

WN(q(jΔt)) = ⟨WN(q)⟩π . (45)

We can actually view such a convergence from the perspective of
the relative entropy. Recall that we aim to sample the Boltzmann
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distribution π(q) as in (7), and for any distribution f (q), we can use
the relative entropy46,47

D( f ∥π) = E f
(log

f
π
) (46)

to measure how much the distribution f deviates from the target
distribution π. The relative entropy is always non-negative, and it is
zero only when the two distributions are identical. Note that we can
define a family of empirical distributions from the samples generated
by the pmmLang, which are given by

μJ(q) =
1
J

J

∑
j=1

δ(q − q(jΔt)). (47)

Thus, the convergence (45) can be interpreted as

lim
J→∞

D(μJ∥π) = 0. (48)

The diminishing of the relative entropy manifests the time irre-
versibility and the ergodicity of the sampling trajectory. That is, the
thermostat effect of the Langevin dynamics brings in dissipation
to the relative entropy with respect to the invariant measure such
that the empirical measure μJ(q) converges to the target Boltzmann
distribution π(q) in the weak sense.

However, when the random batches are used along a sampling
path, the empirical distributions are repeated perturbed, mostly
likely away from the Boltzmann distribution. In fact, when the ran-
dom batches are used for each time, although the force can be viewed
as an unbiased approximation from the total interaction force, the
sampling path deviates from the Langevin dynamics without the use
of random batches with a deterministic bias for each specific choice
of the random divisions. Let us denote the empirical measure of the
pmmLang + RBM by μ̃J(q), which is defined by

μ̃J(q) =
1
J

J

∑
j=1

δ(q − q̃(jΔt)). (49)

Because the random divisions are chosen independently, we cannot
expect μ̃J(q) to converge as J →∞. However, as we shall demon-
strate with the following numerical example, the accumulation of
the bias for each use of the random batches does not add up to an
unbounded error. On the contrary, the perturbations of the inter-
action forces along the sampling path only result in a small bias in
μ̃J(q) from the target distribution π(q).

We present a numerical experiment to observe the difference
between μ̃J(q) and π(q) for sufficiently large J. Note that π(q)
is defined over the high-dimensional coordinate space RN×3P, it
is intractable to directly compute D(μ̃J∥π), and hence, we instead
numerically simulate the distributions of certain observables associ-
ated with μ̃J(q) and π(q). In this example, we choose the observ-
able operator to be the position q1

1 ∈ R3 and the pairwise distance
∣q1

1 − q2
1∣ ∈ R. Recall that the superscript denotes the index of par-

ticles, while the subscript denotes the index of beads. We plot
the relative entropy between μ̃J(q) and π(q) in the observables
along the sampling process in Fig. 3. As a comparison, the relative
entropy for μJ(q), the empirical measure of the pmmLang, is also
plotted.

FIG. 3. Relative entropy in the numerical simulation of the Coulomb interacting
system. (a) and (b) are associated with the observables in the position q1

1 ∈ R3 and
the pairwise distance ∣q1

1 − q2
1∣ ∈ R, respectively. m = 1, β = 4, P = 8, N = 32,

Δt = 1/4, T = 105, and p = 2. The target distribution π(q) is computed by the
pmmLang with a total sampling time of T = 5 × 105.

We observe from Fig. 3 that the empirical measure of the pmm-
Lang + RBM converges to π(q) as fast as the pmmLang when
the sampling time T < 104. However, as T > 104, there is a sig-
nificant slowdown in the convergence of the pmmLang + RBM,
especially in Fig. 3(b) where the observable is the pairwise dis-
tance ∣q1

1 − q2
1∣ ∈ R. Finally, there is a certain bias of the empir-

ical measure μ̃J(q) from the target distribution π(q). The slow-
down in Fig. 3(b) is more noticeable than the top one because
the RBM modifies the interaction forces and directly impacts the
calculation of the pairwise distance. Meanwhile, the RBM has
relatively less influence on the marginal distribution of a single
particle.

The convergence of μ̃J(q) to π(q) also implies the convergence
of the time average (42) to ⟨WN(q)⟩π , which can be verified in the
following example. We plot the time averages [(41) and (42)] of the
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pmmLang and the pmmLang + RBM in Fig. 4, where the observable
operator is the kinetic energy. It can be seen from Fig. 4 that although
(42) deviates from (41) at the first phase of the sampling process, (42)
gradually converges to a fixed limit as time evolves. Furthermore, the
bias of (41) from ⟨Â⟩ is small and diminishes if we shrink the time
step.

To understand the approximation property of the pmmLang
+ RBM, we present a heuristic explanation on the decay of the
relative entropy D(μ̃J∥π). Our key observation lies in the fact
that the use of the random batches does not affect the thermo-
stat part of the Langevin dynamics. In addition, thus, the pmm-
Lang + RBM can be viewed as an integrated process, where the
thermostat part is constantly driving the empirical distribution
approaching the target measure and the use of random batches
gives rise to a sequence of random perturbations, which presents the

FIG. 4. pmmLang time average (41) and pmmLang + RBM time average (42)
in the Coulomb interacting system, where the observable operator is the kinetic
energy. [(a) and (b)] Two phases of the Langevin sampling, respectively. m = 1,
β = 4, P = 8, N = 32, Δt = 1/4, 1/16, T = 5000, and p = 2.

convergences of the empirical distribution. The numerical results
strong suggest that the thermostat effect is dominating the ran-
dom perturbations, and as a consequence, although the empirical
distribution μ̃J(q) does not converge, it stays in a relatively small
vicinity of the target distribution π(q) for J sufficiently large. To
further analyze the dominance of the thermostat in such an inte-
grated process, we continue the discussion in two distinct phases of
sampling.

In the first phase of sampling, the samples generated by the
Langevin dynamics are statistically dependent on the choice of
the initial state, and within a fairly short time, the sampling path
becomes uncorrelated with the initial state. This period roughly cor-
responds to the upper plot in Fig. 3. During this phase of sampling,
we observe that the time average of pmmLang + RBM is actually
not very close to that of pmmLang, but the trends of both run-
ning averages are similar: After a short time, both of them start to
fluctuate within a same small neighborhood. We remark that, in
practice, the samples from the first phase are “burned-in” anyway
due to their low qualify, but it is crucial that the consecutive random
perturbations are suppressed by the thermostatting mechanism of
the Langevin dynamics such that the running average of the pmm-
Lang + RBM is able to approach a small vicinity of the true value
by the end of the first phase. In probability language, it means that
the difference between the probability distribution function of the
stochastic process pmmLang + RBM and the target distribution sig-
nificantly reduces within a short time period, after which the pmm-
Lang + RBM is able to produce the correct samples from the target
distribution.

In the second phase of sampling, the Langevin dynamics effec-
tively produces a vast amount of samples of the target distribution
such that the empirical measure is converging to the target Boltz-
mann distribution π(q), which is manifested by the decaying of the
relative entropy. When the random batches are used, the generated
position samples q̃(jΔt) from pmmLang + RBM are not, unfortu-
nately, unbiased samples from π(q). However, the thermostatting
effect that dissipates the relative entropy with respect to π(q) still
cause that the difference between the empirical measure μ̃J(q) and
the Boltzmann distribution π(q) diminishes in time. This argument
is further confirmed by the numerical tests, as shown in Fig. 3, where
we observe that the relative entropy of D(μ̃J∥π) from pmmLang
+ RBM decays exponentially in time, although the convergence
speed may be slightly reduced comparing with the decaying of
D(μJ∥π). This implies that a large number of small biases induced
by the use of the RBM in long time sampling only add to a small
bias in the empirical measure. Furthermore, we conclude that the
use of random batches only leads to small random perturbations to
the sample values of the observables, and thus, by the law of large
numbers, we expect a small bias in the thermal average calculations.

We summarize the weak error analysis for pmmLang + RBM in
the following mathematical statement: There exists a small constant
Cp,Δt depending only on the batch size p and the time step Δt such
that for J ≫ 1,

∣
1
J

J

∑
j=1

WN(q̃(jΔt)) − ⟨WN(q)⟩π∣ < Cp,Δt . (50)

In other words, the fluctuation–dissipation relationship for the
pmmLang + RBM can be established in an approximate sense, when
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the RBM mechanism is incorporated. The rigorous justification of
this statement is not yet complete and beyond the scope of this
paper.

C. Efficient calculation of the weight function
In Sec. II, we have mentioned that the calculation of the weight

WN(q) also has the O(NP2
) complexity if the observable operator

is the kinetic energy or in the form of a summation over pairwise
contributions. Using again the idea of random batches, we can make
an unbiased approximation of WN(q) and reduce the complexity of
calculating WN(q) from O(NP2

) to O(NP).
For the kinetic energy Â = p̂2

/(2m), rewrite the virial estimator
(10) as

WN(q) =
3P
2β
+

1
2N
⟨q − q̄, αq +∇Uα

(q)⟩F , (51)

where the modified potential Uα
(q) defined in (34) is the sum

of all interacting potentials V(c)(qi
k − qj

k). We can directly obtain
an unbiased approximation of ∇Uα

(q) [and thus WN(q)] from
the random-batch approximation (37). For the position-dependent
operator Â = A(q̂) with A(q) given in the form

A(q) =
1
P ∑

1⩽i<j⩽P
a(qi
− qj
), (52)

we randomly pick a batch 𝒞 of size p from the group of P particles
(a full division is not required now) and approximate A(q) as

A(q) ≈
P − 1

p(p − 1) ∑i,j∈𝒞 ,i<j
a(qi
− qj
), (53)

which is unbiased. Hence, the weight WN(q) can be efficiently
computed by

WN(q) ≈
P − 1

Np(p − 1)

N

∑
k=1

∑
i,j∈𝒞 ,i<j

a(qi
k − qj

k). (54)

Finally, we emphasize that such approximation of the weight
WN(q) does not change the original dynamics.

IV. SPLITTING MONTE CARLO METHOD
In Sec. III, we have shown that the pmmLang + RBM is an effi-

cient approximate integrator of the pmmLang (35). However, when
the interaction potential V (c)

(q) is singular (e.g., Lennard-Jones or
Morse potential), extremely small time steps Δt are needed to inte-
grate the dynamics near the singular kernel, no matter if the RBM is
used.

In the simulation of the pmmLang, the singular kernel of
V (c)
(q) limits the time step when the collision occurs, i.e., there are

two particles qi, qj close enough to each other. Although the collision
is a rare event, the requirement for small time steps largely increases
the computational cost. To overcome the singularity of the interac-
tion potential, the pmmLang (35) should be modified to avoid mak-
ing use of gradients of singular potentials, be compatible with the

random batch method, and do not change the invariant distribution
(30) of the pmmLang (35).

In this section, we introduce a modified version of the pmm-
Lang, which is based on the splitting Monte Carlo method.25

Briefly speaking, we split the potential Uα
(q) into the smooth part

U1(q) and the singular part U2(q). At each time step, a proposal
point q∗ is generated by evolving the pmmLang driven by U1(q)
and is accepted or rejected according to the potential difference
U2(q∗) −U2(q). Therefore, the splitting Monte Carlo method can
be seen as a variant of the Metropolis-adjusted Langevin algorithm
(MALA).48

To illustrate the splitting Monte Carlo method, we split the
interaction potential V (c)

(q) into

V(c)(q) = V(c)1 (q) + V(c)2 (q), q ∈ R3, (55)

where V(c)2 (q) is short-ranged and captures the singular part of
V (c)
(q), and thus, V(c)1 (q) is smooth. Define

U1(q) =
N

∑
k=1
∑

1⩽i<j⩽P
V(c)1 (q

i
k − qj

k), (56)

U2(q) =
N

∑
k=1
∑

1⩽i<j⩽P
V(c)2 (q

i
k − qj

k), (57)

and then Uα
(q) is split into the sum of the smooth potential U1(q)

and the singular potential U2(q). On the one hand, the pmmLang
driven by the smooth U1(q) is

dqi
= vidt, (58)

dvi
= −qidt − (Lα

)
−1
∑
j≠i
∇V(c)1 (q

i
− qj
)dt − γvidt

+

¿
Á
ÁÀ2γ(Lα)−1

βN
dBi

(i = 1, . . . , P),

whose invariant distribution is

π1(q,v)∝ exp(−βN(
1
2
⟨v, Lαv⟩F +

1
2
⟨q, Lαq⟩F +U1(q))). (59)

On the other hand, when the proposal q∗ is accepted with
probability

a(q, q∗) = min{1, e−βN(U2(q∗)−U2(q))}, (60)

the Metropolis algorithm for the singular potential U2(q) samples
its distribution

π2(q)∝ e−βN U2(q). (61)

Therefore, the key to assure that the coupled dynamics of the pmm-
Lang (58) driven by U1(q) and the Metropolis algorithm for U2(q)
is the obvious relation

π(q,v)∝ π1(q,v)π2(q). (62)

Since the pmmLang is the second-order Langevin dynam-
ics, special care should be taken to preserve the detailed balance.
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Algorithm 2. Splitting Monte Carlo method for the pmmLang in a time step Δt.

According to Ref. 49, the detailed balance of the second-order
Langevin dynamics is given by

π(q,v)TΔt((q,v), (q′,v′)) = π(q′,−v′)TΔt((q′,−v′), (q,−v)),
(63)

where TΔt((q,v), (q′,v′)) is the transition probability density from
(q,v) to (q′,v′) in a time step Δt. The velocities v,v′ appear-
ing in the right-hand side of (63) are flipped as −v,−v′; thus,
in the Metropolis algorithm for U2(q), the velocity v should also
be flipped if the proposal q∗ is rejected. To sum up, the splitting
Monte Carlo method for the pmmLang (denoted by the pmmLang
+ split) is given in Algorithm 2. The correctness of Algorithm 2 is
guaranteed by the following theorem.

Theorem IV.1. Let TΔt((q,v), (q′,v′)) be the transition
probability density of the splitting Monte Carlo method (Algorithm 2)
in a time step Δt, which satisfies

∫ TΔt((q,v), (q′,v′))dq′dv′ = 1, (64)

and then the detailed balance holds

π(q,v)TΔt((q,v), (q′,v′)) = π(q′,−v′)TΔt((q′,−v′), (q,−v)).
(65)

The detailed balance (65) implies that π(q,v) is the invariant distri-
bution of the splitting Monte Carlo method (Algorithm 2),

∫ π(q,v)TΔt((q,v), (q′,v′))dqdv = π(q′,v′). (66)

In the large interacting particle system, the computational cost
of Algorithm 2 within a single time step originates from evaluating
the interaction forces ∇V(c)1 (q

i
k − qj

k) and the potential difference
U2(q∗) −U2(q). Note that U2(q) defined in (56) and (57) is the
sum of all short-ranged interacting potentials V(c)2 (q

i
k − qj

k) and thus
can be efficiently calculated by cutoff or using data structures such as
the cell list.18 In this paper, we employ the cutoff method to compute
U2(q), i.e., the particle pair (qi

k, qj
k) is counted in the summation

(56) and (57) only when their distance ∣qi
k − qj

k∣ is less than the cut-
off distance. Therefore, for large interacting particle systems, the

Algorithm 3. RBM with splitting Monte Carlo for the pmmLang in a time step Δt.
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majority of the computational cost is still the calculation of the
interaction forces∇V(c)1 (q

i
k − qj

k).
Now, we employ the RBM to reduce the complexity due to

interaction forces ∇V(c)1 (q
i
k − qj

k). At each iteration, we randomly
divide the P particles to n = P/p batches, where each batch 𝒞 is of
size p. The pmmLang driven by the smooth potential U1(q) within
the batch 𝒞 is then

dqi
= vidt, (67)

dvi
= −qidt −

P − 1
p − 1

(Lα
)
−1
∑

j∈𝒞 ,j≠i
∇V(c)1 (q

i
− qj
)dt − γvidt

+

¿
Á
ÁÀ2γ(Lα)−1

βN
dB (i ∈ 𝒞 ).

By coupling the random-batch approximated pmmLang (67)
driven by U1(q) and the Metropolis–Hastings algorithm for U2(q),
we obtain the RBM with splitting Monte Carlo for the pmm-
Lang (denoted by the pmmLang + RBM + split, presented in
Algorithm 3).

To show how the splitting Monte Carlo method accelerates the
sampling efficiency, we compare the performance of the pmmLang
and the pmmLang + split in the numerical example below. In the
mixed Coulomb–Lennard-Jones system [the potential function and
the splitting scheme are defined in (69)–(71) of Sec. V], we plot in
Fig. 5 the time averages computed by the pmmLang and the pmm-
Lang + split with various time steps. Different inverse temperatures
β = 1, 4 are tested.

We observe from Fig. 5 that the time average of the pmm-
Lang is very sensitive to the time step Δt, while in the pmmLang

FIG. 5. Time averages computed of the pmmLang and the pmmLang + split in the mixed Coulomb–Lennard-Jones system, where the observable operator is defined in
(76). The left [ (a) and (c)] and right [ (b) and (d)] panels are for the pmmLang and the pmmLang + split, and the top [(a) and (b)] and bottom [ (c) and (d)] panels are
associated with the inverse temperature β = 1, 4. m = 1, P = 8, N = 8, T = 6000, γ = 2, and p = 2.
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+ split, we can adopt relatively large time steps to obtain the cor-
rect thermal average, which greatly improves the efficiency of the
simulation.

Despite of the satisfactory performance of the pmmLang + split
in this example, the numerical efficiency of this Monte Carlo-type
method can be influenced by the rejection rate along the sampling
process. When the number of beads N or the number of particles P
is large, it is likely that the high-dimensional nature of the dynam-
ics will slow down the simulation since the rejection rate is high. A
detailed numerical investigation of the rejection rate with different
parameters is presented in Sec. V.

V. NUMERICAL TESTS
A. Examples of the interacting particle system

In Sec. III, we have proposed and analyzed the efficient sam-
pling method for the quantum interacting particle systems, the
pmmLang + RBM. To further explore this method, we present in
this section more numerical results, where different parameters and
interaction potentials are tested. The efficiency and the error in the
computing thermal average ⟨Â⟩ are primarily used to quantify the
numerical performance of the pmmLang + RBM.

In the quantum system (1), we choose the interacting potential
V (c)
(q) as either the Coulomb potential

V(c)(q) =
κ
r

, q ∈ R3 (68)

or the mixed Coulomb–Lennard-Jones potential

V(c)(q) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
6
((

σ
r
)

12
− (

σ
r
)

6
) + 1, r < σ

σ
r

, r ⩾ σ,
(69)

where κ = 1, σ = 0.3, and r = ∣q∣. The kernel of (69) is provided by
the Lennard-Jones potential and is much more singular than the
Coulomb potential. Hence, we employ the splitting Monte Carlo
method introduced in Sec. IV to split the mixed potential (69) into
the sum of

V(c)1 (q) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 −
r
σ

, r < σ
σ
r

, r ⩾ σ
(70)

and

V(c)2 (q) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
6
((

σ
r
)

12
− (

σ
r
)

6
) + 1, r < σ

0, r ⩾ σ,
(71)

where V(c)1 (q) is smooth and V(c)2 is short-ranged. The graphs of
the Coulomb potential (68) and the mixed potential (69) with its
splitting scheme (70) and (71) are shown in Fig. 6.

In the quantum system (1), the external potential is assumed
to be harmonic (33). We choose the constant α0 (and thus the
regularization parameter α) as

FIG. 6. Interacting potential V (c)
(q) with its splitting scheme. (a) Coulomb potential

(68). (b) Mixed Coulomb–Lennard-Jones potential (69) and the splitting potentials
V(c)

1 (q), V(c)
2 (q).

α0 = α = P−
2
3 , (72)

where P is the number of particles.
The idea behind the choice (72) is explained as follows: For a

single particle placed in the external potential V (o)
(q), its Boltzmann

distribution π0(q) is

π0(q)∝ exp(−βV(o)(q)) = exp(−
βα0

2
∣q∣2), q ∈ R3. (73)

This particle is then thought to be confined in a finite region in R3,
roughly determined by the inequality

exp(−
βα0

2
∣q∣2) ⩾ c (74)
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for some small constant c. The region (74) is actually a ball with

volume (−2 log c
βα0
)

3
2 , and the choice α0 = P−

2
3 assures that the region

volume is of order O(P). Thus, if all the P particles are confined in
the external potential, they can be distributed within the region (74)
with a proper pairwise distance.

The position-dependent observable Â = A(q̂) is chosen in the
form of (53). For the Coulomb system (68), choose a(q) = V (c)

(q)
and then

A(q) =
1
P ∑

1⩽i<j⩽P

κ
∣qi − qj∣

, q ∈ R3P, (75)

is the average interacting potential of the system. For the mixed
system (69), choose a(q) = e−θ∣q∣2 with θ = 0.1 and then

A(q) =
1
P ∑

1⩽i<j⩽P
e−θ∣qi

−qj
∣
2

, q ∈ R3P. (76)

B. Outline of the numerical simulation method
We outline the procedure to compute the thermal average ⟨Â⟩

defined in (42) in this paper. By choosing sufficiently large N, ⟨Â⟩ is
approximated by the ensemble average ⟨WN(q)⟩π . Then, the pmm-
Lang and the pmmLang + RBM estimate ⟨WN(q)⟩π by the time
averages [(41) and (42)].

We stress that the calculation of the time averages only requires
a single sampling path; thus, (41) and (42) are both random vari-
ables. That is to say, the values of (41) and (42) depend on the
Brownian motion and the choices of random divisions along the
sampling process. In the numerical experiments below, only one typ-
ical sampling path is used to compute the time averages [(41) and
(42)].

We use the BAOAB scheme50,51 to integrate the pmmLang
dynamics numerically. By combining the velocity Verlet method51

with the Langevin thermostat, we obtain the BAOAB scheme for the
pmmLang (29) in a time step Δt,

vj∗
= vj
− (qj

+ (Lα
)
−1
∇Uα
(qj
))

Δt
2

,

qj+ 1
2 = qj

+ vj∗Δt
2

,

vj∗∗
= e−γΔtvj∗

+

¿
Á
ÁÀ1 − e−2γΔt

βN
η,

qj+1
= qj+ 1

2 + vj∗∗Δt
2

,

vj+1
= vj∗∗

− (qj+1
+ (Lα

)
−1
∇Uα
(qj+1

))
Δt
2

,

where η ∈ RN×3P is a random variable and each column of η obeys
the Gaussian distribution N(0, (Lα

)
−1
). Similar BAOAB schemes

can be derived for the pmmLang within the batch (39) or the
pmmLang in the splitting Monte Carlo method [(58) and (67)].

Since the spectrum of Lα is known, we can sample from the
Gaussian distribution N(0, (Lα

)
−1
) using the fast Fourier transform

(FFT), whose complexity is only O(N log N) (see Appendix A for
a detailed mathematical formulation). Therefore, the computational
cost due to algebraic operations is O(N log NP). In the interacting
particle system with N being not relatively large, the complexity

from the interaction forces is still the dominant difficulty in the
numerical simulation.

Finally, we point out that the performance of the BAOAB
scheme for the pmmLang may depend on N, although the
continuous-time pmmLang dynamics has been shown to have
a dimension-independent convergence rate.28 Designing a
dimension-independent integrator for the pmmLang is beyond the
scope of this article.

C. Tests of the pmmLang + RBM
1. Autocorrelation

First, we aim to investigate the impacts of the RBM on the
variance of the estimator, by computing the autocorrelation (abbre-
viated by AC) of the time averages [(41) and (42)] numerically.

Recall that in Sec. III, we propose the RBM approach to reduce
the complexity due to weight function WN(q) if the observable
operator is in specific forms. Thus, in practice, there are two ways
to implement the pmmLang + RBM: one is to use the RBM in
the dynamics (Algorithm 35) but compute WN(q) as it is and the
other is to use the RBM in both the dynamics and calculation of the
weight function. To analyze the effects of the RBM, we will test both
versions of the pmmLang + RBM.

In the Coulomb system, we compute the pmmLang and the
pmmLang + RBM time averages [(41) and (42)], where the observ-
able operator of interest is the kinetic energy and both versions of
the pmmLang + RBM are considered. The autocorrelation of the
time averages is shown in Fig. 7. In Fig. 7 and Table I, the autocor-
relation of the pmmLang + RBM decays faster than the pmmLang.
Since the random divisions at different time steps are independent,
it is likely that the weak correlation of the interaction forces in dif-
ferent time steps leads to a small autocorrelation in the pmmLang
+ RBM. Still, the randomness in the batch force approximation
(37) enlarged the effective variance of the estimator. Compared to

FIG. 7. Autocorrelation of the time averages [(41) and (42)] in the Coulomb inter-
acting system. The blue, red, and yellow curves are the autocorrelations of the
pmmLang, the pmmLang + RBM (version 1), and the pmmLang + RBM (version
2), respectively. m = 1, β = 4, P = 16, N = 16, Δt = 1/16, T = 6000, γ = 2, and
p = 2.
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TABLE I. Autocorrelation time, effective variance, and mean squared error of the time
averages [(41) and (42)]. The first column is for the pmmLang, and the second and
the third columns are for the two versions of the pmmLang + RBM, respectively. The
reference value is calculated by the pmmLang with Δt = 1/64.

Methods pmmLang w/RBM (ver. 1) w/RBM (ver. 2)

AC time 1.10 0.38 0.40
Variance 2.18 × 10−5 5.94 × 10−5 2.40 × 10−4

MSE 1.10 × 10−3 5.37 × 10−3 5.55 × 10−3

the pmmLang of version 1, version 2 computes the weight func-
tion WN(q) approximately and thus has additional variance in the
estimator.

Since the random approximation to the weight function
WN(q) is necessary to reduce the computational cost per time step,
in the following tests, we always employ the pmmLang + RBM of
version 2. That is to say, we use the RBM in both the dynamics and
the calculation of the weight function.

2. Convergence with the number of beads
We study the convergence of pmmLang + RBM with the

number of beads N. In the PIMD representation, the ensemble

TABLE II. Effective variance of the time averages [(41) and (42)] in the pmmLang and
the pmmLang + RBM when the number of particles P = 16.

No. of Beads pmmLang w/RBM, p = 2 w/RBM, p = 4

4 2.50 × 10−5 9.83 × 10−4 1.09 × 10−4

8 2.76 × 10−5 1.13 × 10−3 1.85 × 10−4

16 2.42 × 10−5 2.87 × 10−4 8.34 × 10−5

32 2.18 × 10−5 2.40 × 10−4 5.03 × 10−5

64 2.22 × 10−5 2.42 × 10−4 4.82 × 10−5

128 2.03 × 10−5 1.47 × 10−4 4.18 × 10−5

average ⟨WN(q)⟩π converges to the exact thermal average ⟨Â⟩ as
the number of beads N →∞; hence, it is necessary to check if the
pmmLang + RBM time averages (42) also possess this convergence
property.

In the Coulomb interacting system, we plot in Fig. 8 the time
averages [(41) and (42)] of the pmmLang and the pmmLang + RBM,
where the observable operator of interest is the kinetic energy. Dif-
ferent numbers of beads are tested to study the convergence of
the pmmLang and the pmmLang + RBM. When the number of
particles P = 16, we record the effective variance of (41) and (42)

FIG. 8. Time averages [(41) and (42)] of the pmmLang and the pmmLang + RBM in the Coulomb interacting system. (a)–(d) are associated with the number of particles
P = 8, 16, 24, 32, respectively. The blue curve is for the pmmLang, and the red and yellow curves are for the pmmLang + RBM with batch sizes p = 2, 4. m = 1, β = 4,
Δt = 1/16, and T = 6000. In the x-axis, the number of beads N varies in 4, 8, . . . , 128.
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FIG. 9. Time averages [(41) and (42)] of the pmmLang and the pmmLang + RBM in the Coulomb interacting system. The left [(a), (c), (e), and (g)] and right [ (b), (d), (f), and
(h)] panels represent the inverse temperature β = 1 and 4. The top to bottom panels [ (a) and (b), (c) and (d), (e) and (f), and (g) and (h)] are associated with the number of
particles P = 8, 16, 24, 32, respectively, and the corresponding spread in the y-axis is 0.02, 0.04, 0.08, 0.12. m = 1, N = 16, Δt = 1/16, T = 10 000, γ = 2, and p = 2. In the
x-axis, the time step Δt varies in 1/2, 1/4, . . . , 1/64.
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TABLE III. Relative error of the time averages [(41) and (42)] of the pmmLang and
the pmmLang + RBM when β = 4. The top and bottom tables are for the time step
Δt = 1/4, 1/16, respectively. The reference values are computed by the pmmLang
with Δt = 1/64.

No. of Particles pmmLang (%) w/RBM, p=2 w/RBM, p=4

8 0.26 0.84 0.55
16 0.27 1.89 0.84
24 0.33 2.48 1.16
32 0.14 3.20 1.43

No. of Particles pmmLang (%) w/RBM, p=2 (%) w/RBM, p=4 (%)

8 0.07 0.43 0.06
16 0.06 1.07 0.35
24 0.06 1.84 0.56
32 0.01 2.39 0.78

TABLE IV. Cost of CPU time (second) in one single time step of the pmmLang and
the pmmLang + RBM.

No. of Particles pmmLang w/RBM, p = 2 w/RBM, p = 4

8 7.6 × 10−3 1.3 × 10−3 2.7 × 10−3

16 2.2 × 10−2 2.4 × 10−3 5.3 × 10−3

24 5.1 × 10−2 3.3 × 10−3 7.5 × 10−3

32 1.0 × 10−1 4.5 × 10−3 9.6 × 10−3

in Table II. In Fig. 8, we observe that pmmLang + RBM time aver-
ages (42) converge as the number of beads N enlarges. Besides,
Table II shows that the variance of the estimator is not sensi-
tive to the number of beads N; thus, it is safe increase N in the
pmmLang + RBM to obtain a more accurate approximation of the
thermal average.

TABLE V. Rejection rates of the pmmLang + split and the pmmLang + RBM + split with numbers of particles P along
the sampling process. The tables from top to bottom correspond to the time step Δt = 1/8, 1/16, 1/32, respectively. The
number of beads N = 16, the inverse temperature β = 4, and the mass m = 1. The rejection rates are computed with the
total sampling time T = 500.

No. of Particles pmmLang + split (%) w/RBM, p = 2 (%) w/RBM, p = 4 (%)

8 9.73 9.40 9.53
16 15.37 17.92 15.25
24 19.43 23.60 21.75
32 26.40 29.93 27.72

No. of Particles pmmLang + split (%) w/RBM, p = 2 (%) w/RBM, p = 4 (%)

8 6.05 5.70 4.79
16 10.85 11.54 10.27
24 13.05 18.71 14.22
32 17.50 23.54 20.59

No. of Particles pmmLang + split (%) w/RBM, p = 2 (%) w/RBM, p = 4 (%)

8 2.95 2.58 3.60
16 6.00 5.33 5.45
24 8.26 9.31 8.93
32 10.50 13.69 11.69

TABLE VI. Rejection rates of the pmmLang and the pmmLang + RBM + split with different numbers of beads N along
the sampling process. The tables from top to bottom correspond to the time step Δt = 1/8, 1/16, respectively. The number
of particles P = 16, the inverse temperature β = 4, and the mass m = 1. The rejection rates are computed with the total
sampling time T = 500.

No. of Beads pmmLang + split (%) w/RBM, p = 2 (%) w/RBM, p = 4 (%)

16 15.54 18.29 18.21
32 26.19 30.83 28.63
64 47.38 47.00 47.75
128 74.62 75.62 71.25

No. of Beads pmmLang + split (%) w/RBM, p = 2 (%) w/RBM, p = 4 (%)

16 9.94 10.87 11.10
32 19.10 16.13 18.94
64 34.31 37.81 38.84
128 66.44 58.28 67.52
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FIG. 10. Time averages of the pmmLang + split and the pmmLang + RBM + split in the mixed Coulomb–Lennard-Jones system. The left [figures (a), (c), (e), and (g)]
and right [figures (b), (d), (f), and (h)] panels represent the inverse temperature β = 1 and 4. The top to bottom panels [(a) and (b), (c) and (d), (e) and (f), and (g) and
(h)] are associated with the number of particles P = 8, 16, 24, 32, respectively, and the corresponding spread in the y-axis is 0.05, 0.15, 0.2, 0.3. m = 1, N = 16, Δt = 1/16,
T = 10 000, γ = 2, and p = 2. In the x-axis, the time step Δt varies in 1/2, 1/4, . . . , 1/64.
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We also note that, even if N is sufficiently large, there is a bias
of the pmmLang + RBM time average (42) from ⟨Â⟩. Moreover, the
bias becomes significant when the number of particles P grows large
or the batch size p is small as 2. This bias though can be reduced
with fixed batch size p by decreasing the time step Δt, which are to
be confirmed in the tests of Subsection V C 3. Overall, the pmm-
Lang + RBM time average (42) is still an accurate approximation
of ⟨Â⟩. When N = 128, the relative error of (42) from ⟨Â⟩ is no
more than 2.5%. This bias though can be reduced with fixed batch
size p by decreasing the time step Δt, which are to be confirmed in
the follow-up tests. For simplicity, in the following, we will take the
number of beads N = 16 in both the pmmLang and the pmmLang
+ RBM.

3. Error in the calculation of the thermal average
In this part, we test the error of time average (42) of the pmm-

Lang + RBM with respect to varying time steps Δt. In the Coulomb
interacting system, we employ the pmmLang and the pmmLang
+ RBM to compute the time averages [(41) and (42)], where the
observable of interest is the position-dependent one with A(q) given
in (75). In Fig. 9, we plot the time averages [(41) and (42)] with
different time steps. Different numbers of particles are used to test
the sampling methods. The relative error of the time averages for
β = 4 is shown in Table III. In Fig. 9, we observe that the bias of
the pmmLang + RBM time average (42) from ⟨Â⟩ diminishes as
the time step Δt approaches 0. In addition, the bias associated with
the batch size p = 4 is much less than p = 2. The numerical results
above confirm our arguments on the constant Cp,Δt in the weak error
analysis (50).

Finally, we report the time complexity of the pmmLang and
the pmmLang + RBM in Table IV. When the number of particles
P is large, the pmmLang + RBM is much more efficient than the
pmmLang, while the relative error always still keeps small.

D. Tests of the pmmLang + RBM + split
1. Rejection rates

We focus on the mixed Coulomb–Lennard-Jones system,
where the pairwise interacting potential V (c)

(q) is very singular. As

we have demonstrated in Sec. IV, we shall use the splitting Monte
Carlo method to avoid using too small time steps. In this case, the
rejection rate is an important index to assess the numerical effi-
ciency of the method. Below, we compute the rejection rates of the
pmmLang + split and the pmmLang + RBM + split with different
parameters such as N, P, p, and Δt.

In Tables V and VI, we fix the number of beads N = 16 and the
number of particles P = 16, respectively, and compute the rejection
rate of the pmmLang + split and the pmmLang + RBM + split. The
parameters used are inverse temperature, β = 4, mass, m = 1, and
different batch sizes, p, and time steps, Δt.

Under the proper scaling α = P−
2
3 specified in (72), Table V

shows that the rejection rate gently grows with the number of parti-
cles P and can be significantly reduced by shrinking the time step.
For example, when N = 16 and P = 32, the time step Δt = 1/16
makes sure the rejection rate not larger than 25%. Additionally,
the application of the RBM does not change the rejection rate too
much.

However, when we fix the number of particles P, Table VI
shows that the rejection rate rapidly deteriorates with the number
of beads N, even in the pmmLang + split without the use of ran-
dom batches. This is due to growing N makes a particle qi

∈ RN×3

more easily to collide with other particles. How to properly design
the splitting Monte Carlo method to overcome the effects of the sin-
gular potential within the PIMD framework remains a topic to study
in the future.

2. Error in the calculation of the thermal average
Next, we test the error of the time average computed by the

pmmLang + RBM + split with respect to varying time steps Δt. In
the mixed Coulomb–Lennard-Jones system, we employ the pmm-
Lang + split and the pmmLang + RBM + split to compute the time
averages, where the observable of interest is the position-dependent
one with A(q) given in (76). In Fig. 10, we plot the time averages
computed by the pmLang + split and the pmmLang + RBM + split
with different time steps. Different numbers of particles are used to
test the sampling methods. The relative error of the time averages
for β = 4 is in Table VII. It can be seen from Fig. 10 and Table VII

TABLE VII. Relative error of the time averages of the pmmLang + split and the pmmLang + RBM + split when β = 4. The top
and bottom tables are for the time step Δt = 1/4, 1/16, respectively. The reference values are computed by the pmmLang +
split with Δt = 1/64.

No. of Particles pmmLang + split (%) w/RBM, p = 2 (%) w/RBM, p = 4 (%)

8 0.20 1.43 0.39
16 0.11 3.23 1.16
24 0.14 5.42 2.40
32 0.12 7.27 2.84

No. of Particles pmmLang + split (%) w/RBM, p = 2 (%) w/RBM, p = 4 (%)

8 0.08 0.46 0.10
16 0.03 1.40 0.41
24 0.06 2.10 0.82
32 0.03 3.32 0.85
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TABLE VIII. Cost of CPU time (second) in one single time step of the pmmLang
+ split and the pmmLang + RBM + split.

No. of Particles pmmLang + split w/RBM, p = 2 w/RBM, p = 4

8 5.7 × 10−3 1.6 × 10−3 3.2 × 10−3

16 2.5 × 10−2 2.9 × 10−3 6.1 × 10−3

24 5.8 × 10−2 4.0 × 10−3 8.6 × 10−3

32 1.1 × 10−1 5.9 × 10−3 1.1 × 10−2

that the error estimation (50) also holds for the pmmLang + RBM
+ split. That is to say, the bias of the time average computed by the
pmmLang + RBM + split diminishes as the time step Δt → 0 or the
batch size p increases.

Finally, we report the time complexity of the pmmLang and the
pmmLang + RBM in Table VIII. Comparing the results in Tables IV
and VIII, we observe that the pmmLang + RBM + split is slightly
slower than the pmmLang + RBM but is still much more efficient
than the pmmLang + split. Therefore, the additional calculation
of the potential difference U2(q∗) −U2(q) in the splitting Monte
Carlo method does not increase the total computational cost too
much.

VI. CONCLUSION
We have proposed the pmmLang + RBM, an efficient sampling

method of the quantum interacting particle system in the PIMD
framework. The pmmLang + RBM properly combines the precon-
ditioned mass-modified Langevin dynamics (pmmLang) and the
random batch method (RBM) to resolve the stiffness of the ring
polymer and reduce the complexity due to interaction forces. In
the pmmLang + RBM, the computational cost due to interaction
forces in a time step is reduced from O(NP2

) to O(NP), where N
is the number of beads in the ring polymer and P is the number of
particles.

In the extensive numerical tests, the pmmLang + RBM shows
fine performance in the calculation of the thermal average. The
pmmLang + RBM shares a similar convergence mechanism with
the original pmmLang and results in a small bias from the tar-
get distribution even for large N and P. Nevertheless, a rigorous
error estimation of the pmmLang + RBM remains to be studied
further.

Under the circumstances of singular interacting potentials (e.g.,
the Lennard-Jones potential), we introduce the pmmLang + split
and the pmmLang + RBM + split to avoid using extremely small
time steps. When the pmmLang + split has a low rejection rate, the
pmmLang + RBM + split greatly reduces the computational cost
per time step, keeps small error in computing the thermal average,
and does not increase the rejection rate too much. It will be valu-
able to explore how to control the rejection rate when N or P is
large.
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APPENDIX A: DISCUSSION
ON THE PRECONDITIONING METHODS
1. Design of the preconditioning methods

In this section, we briefly introduce the theory of the precondi-
tioning methods in the PIMD, which aim to resolve the stiffness in
the ring polymer. As we have shown in Sec. II, the stiffness originates
from the stiffness matrix L ∈ RN×N , which is defined by

L =
m
β2

N

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 . . . −1

−1 2 −1 . . .

−1 2 . . .

⋮ ⋮ ⋮
. . . −1

−1 2 −1

−1 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now, let us focus on the Hamiltonian dynamics of the ring polymer
system,

dq = −M−1pdt,

dp = −Lqdt,
(A1)

where M ∈ RN×N is the positive definite mass matrix.
The first step of preconditioning is to use a coordinate trans-

formation q = Dq̃ to decompose (A1) into different modes. To be
specific, using the transformation

q̃ = D−1q, p̃ = DTp, (A2)

we can rewrite (A1) as

dq̃ = −(DTMD)−1p̃dt,

dp̃ = −(DTLD)q̃dt,
(A3)

where we require DTMD and DTLD to be both diagonal. In this, a
preconditioning method in the PIMD is designed via the following
steps:

1. Find a transformation matrix D ∈ RN×N such that

DTLD = diag{λ1, . . . , λN}. (A4)

2. For some suitable constants μ1, . . . , μN > 0, choose the mass
matrix

M = D−T diag{μ1, . . . , μN}D−1. (A5)

The transformed Hamiltonian dynamics (A3) is then decom-
posed into different modes, where the frequency of the kth mode is

ωk =

√
λk

μk
, k = 1, . . . , N, (A6)
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and the stiffness is resolved if the frequencies ωk are uniform for
k = 1, . . . , N.

In the following, we introduce two specific preconditioning
methods, the staging coordinates and the preconditioned mass-
modified Langevin dynamics (pmmLang).

2. Staging coordinates
The staging coordinate transformation is given by

q̃1 = q1, q̃k = qk −
(k − 1)qk+1 + q1

k
, k = 2, . . . , N, (A7)

which directly yields the transformation matrix D. Using this trans-
formation, the ring polymer potential becomes

N

∑
k=1
∣qk − qk+1∣

2
=

N

∑
k=1

mk∣q̃k∣
2, (A8)

where m1 = 0 and mk =
k

k−1 for k = 2, . . . , N. Therefore, L ∈ RN×N is
diagonalized as in (A4), where

λ1 = 0, λk =
k

k − 1
⋅

m
β2

N
, k = 2, . . . , N. (A9)

In the staging coordinate method, the constants μ1, . . . , μN are
chosen to be

μ1 = m, μk =
k

k − 1
m, k = 1, . . . , N. (A10)

Thus, the mass matrix M ∈ RN×N is given by

M = β2
N L +mD−TE11D, (A11)

where E11 ∈ RN×N is the matrix with only (1, 1) entry equal to 1. If
one attempts to use the staging coordinates in the physical coordi-
nates q, p, then it will be a tough task to deal with the algebra of M
in (A11).

3. Preconditioned mass-modified Langevin dynamics
The pmmLang is based on the spectral decomposition of L, and

the corresponding transformation matrix D is orthogonal. For sim-
plicity, assume the number of beads N is even. Then, L ∈ RN×N is
orthogonally diagonalized as in (A4), where

λ1 = 0 :Dj,1 =
1
√

N
,

λN =
4m
β2

N
:Dj,N =

(−1)j
√

N
,

λ2k =
4m
β2

N
sin2 πk

N
:Dj,2k =

√
2
N

cos
2πkj

N
,

λ2k+1 =
4m
β2

N
sin2 πk

N
:Dj,2k+1 =

√
2
N

sin
2πkj

N

(j = 1, . . . , N; k = 1, . . . ,
N
2
− 1).

The constants μ1, . . . , μN are simply chosen to be

μk = λk + α, k = 1, . . . , N, (A12)

where the regularization parameter α > 0 is a fixed constant and the
corresponding mass matrix is M = Lα

∶= L + αI.
The advantage of the pmmLang is that it is simple and can be

directly applied in the spatial coordinates q. On the contrary, the
mass matrix of the staging coordinates is complicated in the spa-
tial coordinates q and is inconvenient to combine with the RBM;
hence, we choose the pmmLang as the preconditioning method in
the interacting particle system.

Finally, we discuss the complexity due to algebraic operations
in the pmmLang. In the BAOAB scheme in a time step, one needs to
solve the linear system

(Lα
)
−1
∇Uα
(q) (A13)

and compute the matrix-vector multiplication

(Lα
)
− 1

2 ξ, ξ ∼ N(0, 1)N×3P (A14)

to obtain the Gaussian random variable η ∼ N(0, (Lα
)
−1
). Since Lα

is tridiagonal, the complexity of the linear system is O(NP). With
the use of the spectrum of L given above, the matrix-vector multi-
plication (Lα

)
− 1

2 ξ can be calculated by the fast Fourier transform,
and the complexity is O(N log NP). In conclusion, the complex-
ity due to algebraic operations in the pmmLang in a time step is
O(N log NP).

APPENDIX B: SPLITTING MONTE CARLO METHOD

In this section, we establish the detailed balance for the split-
ting Monte Carlo method and prove that the corresponding second-
order Langevin dynamics preserves the desired Boltzmann distri-
bution. To simplify our arguments, consider the target Boltzmann
distribution

π(q, v) = exp(−β(
1
2
⟨v, Mv⟩ +U(q))), (B1)

where q, v ∈ Rd is the position and velocity, M ∈ Rd×d is the positive
definite mass matrix, and β > 0 is the inverse temperature.

The Langevin dynamics that preserves the distribution π(q, v)
is given by

dq = vdt,

dv = −M−1
∇U(q)dt − γvdt +

¿
Á
ÁÀ2γM−1

β
dB,

(B2)

where B is the standard Brownian motion in Rd and γ > 0 is the
friction constant. The detailed balance for (B2) reads as follows:49

Theorem B.1. Let T((q, v), (q′, v′)) be the transition proba-
bility density of the Langevin dynamics (B2) in time t, and then the
detailed balance holds

π(q, v)T((q, v), (q′, v′)) = π(q′,−v′)T((q′,−v′), (q,−v)), (B3)

J. Chem. Phys. 154, 204106 (2021); doi: 10.1063/5.0047437 154, 204106-22

Published under license by AIP Publishing

 05 N
ovem

ber 2025 21:36:51

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

which implies that π(q, v) is the invariant distribution of (B2),

∫R2d
π(q, v)T((q, v), (q′, v′))dqdv = π(q′, v′). (B4)

When the potential function U(q) is singular, we split it
into

U(q) = U1(q) +U2(q), (B5)

where U1(q) is smooth and U2(q) is short-ranged and singular.
Then, we obtain the splitting Monte Carlo method (Algorithm 4),
which preserves the Boltzmann distribution π(q, v) and avoids the
gradient of the singular part of U1(q). The detailed balance of this
method is given in the following theorem.

Theorem B.2. Let T((q, v), (q′, v′)) be the transition proba-
bility density of Algorithm 4, and then the detailed balance holds

π(q, v)T((q, v), (q′, v′)) = π(q′,−v′)T((q′,−v′), (q,−v)), (B6)

which implies that π(q, v) is the invariant distribution of the splitting
Monte Carlo method (Algorithm 4),

∫R2d
π(q, v)T((q, v), (q′, v′))dqdv = π(q′, v′). (B7)

Proof. Define the distributions

π1(q, v) = exp(−β(
1
2
⟨v, Mv⟩ +U1(q))), (B8)

π2(q) = exp(−βU2(q)), (B9)

and then the target distribution π(q, v) = π1(q, v)π2(q). Define the
acceptance probability

a(q, q∗) = min{1, e−β(U2(q∗)−U2(q))}, (B10)

and then π2(q) satisfies

π2(q)a(q, q′) = π2(q′)a(q′, q) (B11)

with the acceptance probability a(⋅, ⋅) defined above. Let
T1((q, v), (q′, v′)) be the transition probability density of the
Langevin dynamics in a time step Δt,

dq = vdt,

dv = −M−1
∇U1(q)dt − γvdt +

√
2γ
β

M−
1
2 dB,

(B12)

and then from the detailed balance (63), we obtain

π1((q, v), (q′, v′))T1((q, v), (q′, v′))

= π1(q′,−v′)T1((q′,−v′), (q,−v)). (B13)

Note that the transition probability density of Algorithm 4 is

T((q, v), (q′, v′)) = T1((q, v), (q′, v′))a(q, q′)

+ δ(q′ − q)δ(v′ + v)(1 − A(q, v)), (B14)

where A(q, v) is the average acceptance probability at (q, v),

A(q, v) = ∫R2d
T1((q, v), (q′, v′)). (B15)

To prove the detailed balance (B6), we just need to verify

π(q, v)T1((q, v), (q′, v′))a(q, q′)

= π(q′,−v′)T1((q′,−v′), (q,−v))a(q′, q) (B16)

and

π(q, v)δ(q′ − q)δ(v′ + v)(1 − A(q, v))

= π(q′,−v′)δ(q′ − q)δ(v′ + v)(1 − A(q′,−v′)). (B17)

In fact, (B16) is the product of (B11) and (B14), and (B17) holds for
q = q′, v = −v′. Hence, Theorem B.2 is proved.

Theorem B.2 directly applies to the pmmLang (35) with the
splitting scheme Uα

(q) = U1(q) +U2(q), yielding theorem IV.1
within the PIMD framework.

Algorithm 4. Splitting Monte Carlo method for the Langevin dynamics in a time step Δt.
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