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The random batch method provides an efficient algorithm for computing statistical properties of a
canonical ensemble of interacting particles. In this work, we study the error estimates of the fully
discrete random batch method, especially in terms of approximating the invariant distribution. The triangle
inequality framework employed in this paper is a convenient approach to estimate the long-time sampling
error of the numerical methods. Using the triangle inequality framework, we show that the long-time error
of the discrete random batch method is O(

√
τ + e−λt), where τ is the time step and λ is the convergence

rate, which does not depend on the time step τ or the number of particles N. Our results also apply to the
McKean–Vlasov process, which is the mean-field limit of the interacting particle system as the number
of particles N → ∞.

Keywords: random batch method; interacting particle system; McKean–Vlasov process; mean-field limit;
long-time error analysis.

1. Introduction

Simulation of large interacting particle systems (IPS) has always been an appealing research topic in
computational physics (Frenkel & Smit, 2001; Golse, 2003) and computational chemistry (Lelievre &
Stoltz, 2016; Li et al., 2020a). It is not only because the IPS itself is an important model in molecular
dynamics and quantum mechanics, but also because the IPS has a mathematically well-defined mean-
field limit (Bordenave et al., 2007; Leimkuhler & Matthews, 2015; Golse et al., 2019; Jin & Li, 2022) as
the number of particles tends to infinity. The mean-field dynamics of the IPS is a distribution-dependent
Stochastic differential equation (SDE), also known as the McKean–Vlasov process (MVP), which has
been frequently used in statistical physics to describe the ensemble behavior of a system of particles
(Jabin & Wang, 2017; Bahlali et al., 2020). In this paper, we focus on a simple IPS model, which is
evolved by the overdamped Langevin dynamics with only pairwise interactions.

Consider the system of N particles in R
Nd represented by a collection of position variables Xt =

{Xi
t}N

i=1, where the subscript t � 0 denotes the evolution time and each particle Xi
t ∈ R

d is evolved by
the overdamped Langevin dynamics

dXi
t =

(
b(Xi

t) + 1

N − 1

∑
j �=i

K(Xi
t − Xj

t)

)
dt + σ dWi

t . (1.1)

Here, b : R
d → R

d is the drift force, K : R
d → R

d is the interaction force, σ > 0 is the diffusion
coefficient and {Wi

t }N
i=1 are N independent Wiener processes in R

d. Formally, the mean-field limit of
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ERROR ANALYSIS OF TIME-DISCRETE RBM 1661

(1.1) as N → ∞ is the MVP represented by a single position variable X̄t ∈ R
d

dX̄t =
(

b(X̄t) +
∫
Rd

K(X̄t − z)νt(dz)

)
dt + σ dWt,

νt = Law(X̄t).

(1.2)

Here, Law(·) denotes the distribution law of a random variable, and Wt is the Wiener process in R
d.

The convergence mechanism of the IPS (1.1) towards the MVP (1.2) as N → ∞ in the finite time
has been systemically studied in the theory of the propagation of chaos (Sznitman, 1991; Chaintron
& Diez, 2022).

The goal of this paper is to study the sampling accuracy of the numerical methods for the IPS (1.1)
and the MVP (1.2). To characterize the sampling accuracy of a numerical method at different time scales,
it is reasonable to ask the following two questions:

1. In the finite-time level, does the method produce accurate trajectories?

2. In the long-time level, does the method sample the correct invariant distribution?

The invariant distributions of the IPS (1.1) and the MVP (1.2) are probability distributions in R
Nd

and R
d, respectively, and remain unchanged under the evolution of the corresponding SDEs. Let the

numerical method for the IPS (1.1) with the time step τ produce a discrete-time trajectory {X̃n}n�0 in
R

Nd, where the subscript n is a non-negative integer representing the number of iterations. In the finite-
time level, we expect {X̃n}n�0 to be close to the original IPS trajectory {Xnτ }n�0. In the long-time level,

for sufficiently large n, we expect the numerical distribution law Law(X̃n) to be close to the invariant
distribution of the IPS (1.1).

In this paper, we shall consider the Euler–Maruyama scheme, which provides a simple numerical
method for the IPS (1.1). Fix the time step τ and define tn := nτ , then the IPS (1.1) is approximated by
a system of particles X̃n = {X̃i

n}N
i=1, where each particle X̃i

n ∈ R
d in the time interval [tn, tn+1) is updated

by the following stochastic equation

X̃i
n+1 = X̃i

n +
(

b(X̃i
n) + 1

N − 1

∑
j �=i

K(X̃i
n − X̃j

n)

)
τ + σ(Wi

tn+1
− Wi

tn), (1.3)

which we shall refer to as the discrete IPS thereafter. We note that the discrete IPS (1.3) is also known
as the stochastic particle method (Bossy & Talay, 1997; Antonelli & Kohatsu-Higa, 2002), which can
be applied in a wide class of MVPs, and the associated error analysis can be found in Mattingly
et al. (2002); Malrieu (2003); Ding & Qiao (2021); Bao & Huang (2022). To update the discrete
IPS (1.3) in a single time step, we need to compute all the pairwise interactions K(X̃i

n − X̃j
n), hence

the computational cost per time step is O(N2). Such huge complexity brings great burden when N
is large.

The random batch method (RBM) proposed in Jin et al. (2021a) resolves the complexity burden
in the discrete IPS (1.3) with a simple idea: for each time step, compute the interaction forces within
small random batches. For each n � 0, let the index set {1, · · · , N} be randomly divided into q batches
D = {C1, · · · , Cq}, where each batch C ∈ D has the equal size p = N/q where the integer p � 2.
We compute the interaction force between two particles only when their indices i, j belong to the same
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1662 X.YE AND Z. ZHOU

batch. The discrete IPS (1.3) is then approximated by the discrete random batch interacting particle
system (discrete RB–IPS), represented by a system of particles Ỹn = {Ỹ i

n}N
i=1 in R

Nd, where each particle
Ỹ i

n ∈ R
d is updated by

Ỹ i
n+1 = Ỹ i

n +
(

b(Ỹ i
n) + 1

p − 1

∑
j �=i,j∈C

K(Ỹ i
n − Ỹ j

n)

)
τ + σ(Wi

tn+1
− Wi

tn), i ∈ C. (1.4)

Here, C ∈ D is the unique batch containing i. For the next time interval, the previous division
D is discarded and another random division is employed. At each time step, all the N particles
are randomly divided into N/p batches. Since each batch of size p requires O(p2) complexity to
compute the interaction forces, the discrete RB–IPS (1.4) requires only O(Np) rather than O(N2)

complexity to compute the interaction forces in a time step, which is a significant advance in simulation
efficiency.

Nowadays, the RBM has become a prominent simulation tool for large particle systems. It is not only
a highly efficient numerical method for complex chemical systems (Ye & Zhou, 2021; Guillin et al., 2022;
Jin et al., 2022; Li et al., 2023), but also accelerates the particle ensemble methods (Hairer & Mattingly,
2011; Li et al., 2020b; Carrillo et al., 2021) for optimization or solving PDEs. There have been some
theoretical results on the error analysis of the RBM, but they mainly focus on the continuous-time random
batch interacting particle system (RB–IPS, defined in (3.1)). In the finite-time level, it has been proved in
Jin et al. (2021b) that the strong and weak error are O(

√
τ) and O(τ ), respectively; while in the long-time

level, the authors of Klokov & Veretennikov (2006) have applied the reflection coupling Eberle (2016);
Eberle et al. (2019) to show that the RB–IPS has uniform geometric ergodicity, and the Wasserstein-1
distance between the invariant distributions of the IPS and the RB–IPS is bounded by O(

√
τ). However,

the error analysis of the discrete RB–IPS (1.4) is not a direct consequence of the previous results, since
the update schemes are changing in different time steps, and it is nontrivial to apply the perturbation
theory (Shardlow & Stuart, 2000; Rudolf & Schweizer, 2018) or the Harris ergodic theorem (Mattingly
et al., 2010; Hauray & Mischler, 2014; Reis et al., 2022) to obtain an explicit convergence rate towards
the invariant distribution. Therefore, it is necessary to study the long-time error of the discrete RB–IPS
(1.4), which is the main task of this paper.

The triangle inequality framework employed in this paper is our main technique to study the
long-time sampling error. This framework agrees with the perturbation theory for ergodic Markov
chains Shardlow & Stuart (2000); Rudolf & Schweizer (2018) and is directly inspired by the works
of McKean (1967); Mattingly et al. (2010) and Eberle (2011), and can be conveniently applied in
a wide class of numerical methods. For a given stochastic process and the corresponding numeri-
cal method, the triangle inequality framework is able to utilize the ergodicity of the original pro-
cess and the finite-time error analysis to estimate the long-time error. Furthermore, with the tri-
angle inequality framework, it is easy to produce an explicit convergence rate, which is indepen-
dent of the time step τ and other parameters. In particular, for the IPS (1.1) and its corresponding
numerical method—the discrete RB–IPS (1.4), the convergence rate is independent of the number of
particles N.

Before we elaborate the principle of the triangle inequality framework in Section 2, we state the main
results of this paper. These results are proved by combining the triangle inequality framework and the
error analysis results for the RB–IPS in Klokov & Veretennikov (2006); Jin et al. (2021b).
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ERROR ANALYSIS OF TIME-DISCRETE RBM 1663

1. (Theorem 3.7) The finite-time strong error is O(
√

τ).

When the IPS (1.1) and the discrete RB–IPS (1.4) are driven by the same initial value and the same
Wiener processes, there exists a positive constant C = C(T) such that

sup
0�n�T/τ

(
1

N

N∑
i=1

E|Xi
nτ − Ỹ i

n|2
)

� Cτ . (1.5)

The constant C does not depend on N, τ or p.

2. (Theorem 3.19) The long-time sampling error is O(
√

τ + e−λt).

When the interaction force K is moderately large, there exist constants C, λ > 0 such that

W1(π , Law(Ỹn)) � C
√

τ + Ce−λnτ , ∀n � 0, (1.6)

where π ∈ P(RNd) is the invariant distribution of the IPS (1.1) and W1 is the normalized
Wasserstein-1 distance defined in (3.23). The constants C, λ do not depend on N, τ or p.

In the long-time sampling error (1.6), the order of accuracy in the time step τ may not be optimal.
This is because we have used the strong error estimate (1.5) in the triangle inequality framework to prove
(1.6) (see Section 2.3). Nevertheless, the convergence rate λ does not depend on the number of particles
N, the time step τ or the batch size p.

Using the results in the propagation of chaos Huang et al. (2006); Chaintron & Diez (2022), we show
that the discrete RB–IPS (1.4) is also a reliable numerical method for the MVP (1.2). Under appropriate
conditions on the drift force b and the interaction force K (see Corollary 4.7), the invariant distribution of
the MVP (1.2) is unique, and can be approximated by the empirical distribution of the discrete RB–IPS
(1.4) by choosing the number of particles N sufficiently large.

1. (Corollary 4.3) The finite-time strong error is O
(√

τ + 1√
N

)
.

When N duplicates of the MVP (1.2) and the discrete RB–IPS (1.4) are driven by the same
initial value and the same Wiener processes, there exists a positive constant C = C(T)

such that

sup
0�n�T/τ

(
1

N

N∑
i=1

E|X̄i
nτ − Ỹ i

n|2
)

� Cτ + C

N
, (1.7)

where {X̄i
t}t�0 is the ith duplicate of the MVP (1.2). The constant C does not depend on N, τ or p.

2. (Corollary 4.9) The long-time sampling error is O
(√

τ + e−λt + 1√
N

)
.

When the interaction force K is moderately large, there exist constants C, λ > 0 such that

E
[
W1(π̄ , μ̃RB

nτ )
]

� C
√

τ + Ce−λnτ + C√
N

, ∀n � 0, (1.8)
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1664 X.YE AND Z. ZHOU

where π̄ ∈ P(Rd) is the invariant distribution of the MVP (1.2), and μ̃RB
nτ is the empirical measure

of the N-particle system {Ỹ i
n}N

i=1, i.e.,

μ̃RB
nτ (x) = 1

N

N∑
i=1

δ(x − Ỹ i
n) ∈ P(Rd). (1.9)

The constants C, λ do not depend on N, τ or p.

The paper is organized as follows. In Section 2, we introduce the triangle inequality framework for
estimating the long-time sampling error. In Section 3, we prove (1.5) and (1.6) for the IPS (1.1). In
Section 4, we prove (1.7) and (1.8) for the MVP (1.2).

2. Triangle inequality for long-time error analysis

In general, the long-time error analysis of a numerical method is much more difficult than the finite-
time error analysis, whose proof is standard and can be found in textbooks, e.g., Chapter 7.5 of Weinan
et al. (2021). Nevertheless, McKean (1967); Mattingly et al. (2010) and Eberle (2011) employed a special
strategy—which we refer to as the triangle inequality framework in this paper—to address the problem
of the long-time error analysis. The idea of this framework is simple. In addition to the known results
in the finite-time error analysis, one only needs the geometric ergodicity of the stochastic dynamics to
perform the long-time error analysis. In short words, the geometric ergodicity with the finite-time error
yields the long-time error.

In the rest part of this section, we first review the original approaches employed in McKean (1967);
Mattingly et al. (2010); Eberle (2011) for the long-time error analysis. Motivated by their results, we
propose a general lemma on the long-time error analysis. Finally, we demonstrate why the triangle
inequality framework can be applied in a wide class of stochastic dynamics, including the discrete RB–
IPS (1.4).

2.1 A historical review

The geometric ergodicity is the key property to describe the long-time behavior of a stochastic process,
and is essential to build up the triangle inequality framework. For simplicity, consider the continuous-time
Markov process {Xt}t�0, whose transition probability is (pt)t�0. LetP(Rd) be the space of all probability
distributions on R

d, then for any ν ∈ P(Rd), νpt ∈ P(Rd) is the distribution law of Xt provided X0 ∼ ν.
Given the metric d(·, ·) on P(Rd), the stochastic process {Xt}t�0 is said to have geometric ergodicity, if
it has an invariant distribution π ∈ P(Rd), and there exist positive constants C, β such that

d(νpt, π) � Ce−βtd(ν, π), ∀ν ∈ P(Rd). (2.1)

In other words, the distribution law νpt converges to the invariant distribution π exponentially, and β is
the convergence rate. Readers interested in the detailed properties of the transition probabilities and the
geometric ergodicity may refer to dos Reis et al. (2022).

Now consider another stochastic process {X̃t}t�0 with transition probability (p̃t)t�0, which can be
viewed as an approximation to the original process {Xt}t�0. For example, {Xt}t�0 is the solution to an

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/44/3/1660/7203656 by Purdue U
niversity user on 05 N

ovem
ber 2025



ERROR ANALYSIS OF TIME-DISCRETE RBM 1665

SDE, while {X̃t}t�0 is given by the Euler–Maruyama scheme. To characterize the long-time error of

{X̃t}t�0, the following two questions are proposed in McKean (1967):

1. Does {X̃t}t�0 has a unique invariant distribution π̃ ∈ P(Rd)?

2. If so, what is the difference between π and π̃?

The first question can be directly addressed by the Harris ergodic theorem (Fehske et al., 2007;
Mattingly et al., 2010; Hauray & Mischler, 2014; Cañizo & Mischler, 2021). For the second question,
a special triangle inequality was adopted in McKean (1967) to estimate the difference between π and
π̃ . Under the same metric d(·, ·), assume the finite-time difference relation between the distribution laws
νpt, νp̃t is known, that is, for any T > 0 there exists a constant ε(T) such that

sup
0�t�T

d(νpt, νp̃t) � ε(T), ∀ν ∈ P(Rd). (2.2)

Here, T is a reference evolution time of the processes {Xt}t�0, {X̃t}t�0, and (pt)t�0, (p̃t)t�0 are the
corresponding transition probabilities. If we choose the the metric d(·, ·) to be the Wasserstein-1 distance,
and derive the finite-time difference relation (2.2) from the standard strong error estimate, then the error
bound ε(T) is approximated by

ε(T) ≈ O(eCT√
τ), (2.3)

where τ > 0 is the time step used in time discretization. (2.3) implies that ε(T) grows exponentially
with the evolution time T , and ε(T) is bounded by O(

√
τ) with a fixed T .

Provided the geometric ergodicity (2.1) and the finite-time difference relation (2.2), we can now use
the triangle inequality to estimate d(π , π̃ ). In fact, for any T > 0, we have

d(π , π̃) = d(πpT , π̃ p̃T)

� d(πpT , π̃pT) + d(π̃pT , π̃ p̃T)

� Ce−βTd(π , π̃) + ε(T). (2.4)

Hence, if we choose T = T0 in (2.4) to satisfy Ce−βT0 = 1/2, then

d(π , π̃) � 2ε(T0), (2.5)

which measures the difference between the invariant distributions π and π̃ . Since T0 is a fixed value, we
have ε(T0) ≈ O(

√
τ), hence we obtain d(π , π̃) � O(

√
τ).

The triangle inequality used in (2.4) is essentially the same as Remark 6.3 of McKean (1967), and
also previously appeared in Shardlow & Stuart (2000); Mattingly et al. (2010). The benefit of the triangle
inequality (2.4) is obvious: it does not require the ergodicity of the approximation {X̃t}t�0 to estimate
the difference between π and π̃ . It only requires the geometric ergodicity of the original process {Xt}t�0,
and the finite-time difference relation (2.2). The drawback of the triangle inequality (2.4) is that it does
not tell how fast the distribution law of {X̃t}t�0 converges to the invariant distribution π̃ ∈ P(Rd).
Although the Harris ergodic theorem ensures that νp̃t converges to π̃ exponentially (McKean, 1967;
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1666 X.YE AND Z. ZHOU

Mattingly et al., 2010), it is usually difficult to make the convergence rate independent of the time step
τ (see Theorem 7.3 of Mattingly et al. (2010) for example).

In a recent paper (Eberle, 2011), the authors have utilized the geometric ergodicity and the triangle
inequality to estimate the long-time sampling error of a given numerical method. Instead of calculating
the difference between invariant distributions d(π , π̃ ) directly, one turns to estimate d(νp̃t, π) for large
t, that is, the difference between the numerical distribution law νp̃t and the true invariant distribution π .
For large t, d(νp̃t, π) can be interpreted as the long-time sampling error of the approximation {X̃t}t�0.
Also, one avoids computing the numerical invariant distribution π̃ directly. Although the proof strategies
used in McKean (1967); Eberle (2011) are quite different, it is clear that the triangle inequality plays an
important role in estimating the long-time sampling error.

Based on the original triangle inequality adopted in McKean (1967), and the idea of using d(νp̃t, π)

instead of d(π , π̃) in Eberle (2011), we describe the triangle inequality framework in the next subsection.
By choosing the metric d(·, ·) to be the Wasserstein-1 distance, we expect the long-time sampling error
d(νp̃t, π) is bounded by

d(νp̃t, π) � O(
√

τ + e−λt), ∀t > 0, (2.6)

where the constant λ > 0 does not depend on the time step τ . Clearly, d(νp̃t, π) consists of two parts:
the finite-time strong error O(

√
τ) and the exponential convergence part O(e−λt). Although λ does not

indicate the geometric ergodicity of the approximation {X̃t}t�0 itself, it does reveal the fact that the

sampling efficiency of {X̃t}t�0 can be uniform in the time step τ .
We summarize the major differences between our work and the results in McKean (1967); Mattingly

et al. (2010); Eberle (2011). First, our work considers the numerical methods for the IPS (1.1), which is a
multi-particle system rather than a single particle. The geometric ergodicity of the IPS (1.1) is guaranteed
by the reflection coupling (Eberle, 2016; Eberle et al., 2019), while their results mainly rely on the
Harris ergodic theorem. This also leads to a difference in the choice of the metric d(·, ·): we shall always
employ the normalized Wasserstein-1 distance, while their results mainly involve the weighted total
variation (Hauray & Mischler, 2014). Second, the numerical method in our work involves the random
batch approximations, which means the update schemes are randomly changing in different time steps,
and thus the discrete RB–IPS (1.4) is more complicated than the standard Euler–Maruyama scheme (1.3).
Finally, the triangle inequality used in this work is a variant of (2.4) in McKean (1967) rather than the
one used in Eberle (2011).

2.2 Main lemma for the long-time error estimate

We state the main lemma for the long-time error estimate, which is the key conclusion of the triangle
inequality framework.

Lemma 2.1 Let {Xt}t�0, {X̃t}t�0 be stochastic processes in R
d with transition probabilities (pt)t�0,

(p̃t)t�0. Given the metric d(·, ·) on P(Rd), assume (pt)t�0 has an invariant distribution π ∈ P(Rd)

and there exist constants C, β > 0 such that

d(νpt, π) � Ce−βtd(ν, π), ∀ν ∈ P(Rd);

and for any T > 0, there exists a constant ε(T) such that

sup
0�t�T

d(νp̃t, νpt) � ε(T), ∀ν ∈ P(Rd).
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ERROR ANALYSIS OF TIME-DISCRETE RBM 1667

Then there exist constants T0, λ > 0 such that

d(νp̃t, π) � 2ε(T0) + 2M0 e−λt, ∀t � 0, (2.7)

where M0 := sups∈[0,T0] d(νp̃s, π).

Proof. We still estimate d(νp̃t, π) using the triangle inequality. For any T > 0 and t � T ,

d(νp̃t, π) � d(νp̃t−T p̃T , νp̃t−T pT) + d(νp̃t−T pT , πpT)

� ε(T) + Ce−βTd(νp̃t−T , π).

By choosing T = T0 such that Ce−βT0 = 1/2, we have

d(νp̃t, π) � ε(T0) + 1

2
d(νp̃t−T0

, π), ∀t � T0. (2.8)

By induction on the integer n � 0, we obtain

d(νp̃t, π) � 2

(
1 − 1

2n

)
ε(T0) + 1

2n
d(νp̃t−nT0

, π), ∀t � nT0. (2.9)

For any t ∈ [0, +∞), there exists a unique integer n � 0 such that t ∈ [nT0, (n + 1)T0). Then

d(νp̃t, π) � 2ε(T0) + 21−t/T0 sup
s∈[0,T0]

d(νp̃s, π), (2.10)

which implies the long-time error estimate (2.7) with λ = ln 2/T0. �
The conditions in Lemma 2.1 are exactly the geometric ergodicity (2.1) and the finite-time difference

relation (2.2), and the result (2.7) characterizes the long-time sampling error of the stochastic process
{X̃t}t�0. The triangle inequality used in (2.8) is essential in the proof of Lemma 2.1, which is the reason
that Lemma 2.1 is referred to as the triangle inequality framework. In particular, when d(·, ·) is the
Wasserstein-1 distance, ε(T0) is of order O(

√
τ), and thus we recover the result in (2.6). Now we briefly

summarize the pros and cons of the triangle inequality framework.

1. It requires only the geometric ergodicity of the original dynamics {Xt}t�0. The existence of the

invariant distribution for {X̃t}t�0 is not required. This allows us to study the long-time behavior of
a wide class of numerical methods, including the discrete IPS (1.3) and discrete RB–IPS (1.4). It
is also possible to apply the triangle inequality framework in an SDE with nonconstant diffusions.

2. It produces an explicit convergence rate λ > 0, which can be easily made independent of the
time step τ and other parameters. In fact, λ is uniquely determined by the parameters C, β in the
geometric ergodicity condition (2.1). In the discrete IPS (1.3) and the discrete RB–IPS (1.4), λ is
independent of the number of particles N.
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1668 X.YE AND Z. ZHOU

3. The geometric ergodicity condition (2.1) is very restrictive in the choice of the metric d(·, ·). Here,
the metric d(·, ·) must be symmetric in its two arguments and satisfy the triangle inequality. As a
consequence, the convergence in entropy

H(νpt|π) � Ce−βtH(ν|π), ∀ν ∈ P(Rd) (2.11)

cannot be used to prove the geometric ergodicity condition (2.1) because the relative entropy
H(·|π) is not symmetric, despite the fact that it is stronger than the Wasserstein distance
(Talagrand’s inequality; Bobkov et al., 2001) and the total variation (Pinsker’s inequality).

4. The finite-time difference relation (2.2) must be derived with a metric at least stronger than d,
which might make the order of accuracy not optimal. For example, when d is the Wasserstein-1
distance, (2.2) can be naturally derived from the strong error estimate, but the order of accuracy is
only O(

√
τ). It is still challenging for the triangle inequality framework to yield better accuracy in

the time step.

In short words, as long as the original dynamics, {Xt}t�0 satisfies the geometric ergodicity condition
(2.1) in a specific metric d(·, ·), and the finite-time error analysis is valid in the metric d(·, ·), then we
can use the triangle inequality to estimate the long-time sampling error. For example, {Xt}t�0 can be the
IPS (1.1), the MVP (1.2) or the Hamiltonian Monte Carlo, where the geometric ergodicity of {Xt}t�0 is
guaranteed by the reflection coupling (Fehske et al., 2007; Eberle et al., 2019; Bou-Rabee et al., 2020).

Finally, we remark that the triangle inequality framework is remotely reminiscent of the well-known
Lax equivalence theorem in numerical analysis. Here, the geometric ergodicity serves as the stability
and it helps translate the finite-time error estimate to the long-time error estimate without sacrificing the
accuracy order.

2.3 Application in the interacting particle system

A significant advantage of the triangle inequality framework is that it naturally applies to the IPS (not
necessarily in the form of (1.1)). When sampling an IPS, we expect the error bound to be independent of
the number of particles N. This is in general a difficult problem in stochastic analysis, and even more in
the case of the long-time sampling error. Nevertheless, the requirement of the uniform-in-N error bound
can be explicitly interpreted in the triangle inequality framework.

In order to make the long-time sampling error (2.7) independent of the number of particles N, we
need to satisfy the following two conditions:

1. The finite-time error bound ε(T0) is independent of N (for fixed T0).

2. The exponential convergence rate β is independent of N.

The first condition is relatively easy to obtain because ε(T0) only relates to the finite-time error
analysis. If the IPS has a mean-field limit as N → ∞, the theory of the propagation of chaos usually
provides a convenient tool to study ε(T0), see Malrieu (2003); Durmus & Moulines (2017); Bao & Huang
(2022) for example.

The second condition is more demanding because it requires the IPS to have uniform geometric
ergodicity in a specific metric d(·, ·). The Harris ergodic theorem is not suitable to prove the uniform
ergodicity because it is difficult to quantify the minorization condition in high dimensions, Fehske et al.
(2007). The uniform log-Sobolev inequality proved in Ha et al. (2021) has a uniform-in-N convergence
rate, but the relative entropy used to quantify the convergence is not a metric. Therefore, the most natural
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Table 1 Notations of IPS, MVP, discrete IPS, RB–IPS and discrete RB–IPS

dynamics notation transition prob. invariant dist. equation

IPS Xt ∈ R
Nd (pt)t�0 π ∈ P(RNd) (1.1)

MVP X̄t ∈ R
d (p̄t)t�0 π̄ ∈ P(Rd) (1.2)

discrete IPS X̃n ∈ R
Nd (p̃nτ )n�0 – (1.3)

RB–IPS Yt ∈ R
Nd (qnτ )n�0 – (3.1)

discrete RB–IPS Ỹn ∈ R
Nd (q̃nτ )n�0 – (1.4)

choice for the metric d(·, ·) in the IPS is the Wasserstein distance, and the uniform geometric ergodicity
can be verified by the reflection coupling (Eberle, 2016; Eberle et al., 2019).

When both conditions are satisfied, we can use the triangle inequality framework to estimate the
long-time sampling error of a large variety of numerical methods, although the order of accuracy is not
optimal. In particular, for the first time, we show that the discrete RB–IPS (1.4), as a time discretization
of the RBM, possesses a long-time error bound independent of the number of particles N.

3. Error analysis of discrete RB–IPS for IPS

In this section, we analyze the error of the discrete RB–IPS (1.4), as an approximation to the IPS (1.1).
In Section 3.1, we derive the strong error in the finite time. In Section 3.2, we prove the uniform-in-time
moment estimates for the discrete RB–IPS (1.4), which is necessary for the long-time error estimate.
In Section 3.3, we briefly review the geometric ergodicity of the IPS (1.1) derived by the reflection
coupling. In Section 3.4, we combine the results above with the triangle inequality framework to derive
the long-time error in the normalized Wasserstein-1 distance.

For the convenience of analysis, we also introduce the continuous-time RB–IPS, which is represented
by a system of particles Yt = {Yi

t }N
i=1 in R

Nd, where each particle Yi
t ∈ R

Nd in the time interval [tn, tn+1)

is evolved by the following SDE

dYi
t =

(
b(Yi

t ) + 1

p − 1

∑
j �=i,j∈C

K(Yi
t − Yj

t )

)
dt + σ dWi

t , i ∈ C, t ∈ [tn, tn+1). (3.1)

Here, D = {C1, · · · , Cq} is the batch division used in the time interval [tn, tn+1); and for each i ∈
{1, · · · , N}, C ∈ D is the unique batch that contains i. The error analysis for the RB–IPS (3.1) can
be found in Klokov & Veretennikov (2006); Jin et al. (2021b).

We list in Table 1 the notations of all dynamics involved in this paper and their corresponding
transition probabilities, invariant distributions and equation numbers.

Here, ‘–’ in the invariant distribution column means that the existence of such distribution is not
required in our analysis.

3.1 Strong error in finite time

The discrete RB–IPS (1.4) deviates from the IPS (1.1) for two reasons: time discretization and random
batch divisions at each time step. Therefore, it is natural to analyze the impact of these two factors
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1670 X.YE AND Z. ZHOU

separately. Among the four dynamics: IPS (1.1), discrete IPS (1.3), RB–IPS (3.1) and discrete RB–IPS
(1.4), we focus on the following two types of strong error estimates.

1. Time discretization.

discrete RB–IPS vs RB–IPS: sup
0�n�T/τ

(
1

N

N∑
i=1

E|Yi
nτ − Ỹ i

n|2
)

. (3.2)

2. Random batch divisions.

RB–IPS vs IPS: sup
0�n�T/τ

(
1

N

N∑
i=1

E|Xi
nτ − Yi

nτ |2
)

. (3.3)

Here, we assume the four dynamics (1.1), (1.3), (3.1) and (1.4) are in the synchronous coupling, i.e.,
they are driven by the same Wiener processes {Wi

t }N
i=1, the same random batch divisions (if required) at

each time step, and the same initial value X0, where X0 is a random variable on R
Nd with Law(X0) = ν.

Note that the time discretization is the only reason that the discrete RB–IPS (1.4) deviates from the
RB–IPS (3.1) because we impose the same random batch divisions for these two dynamics.

Once we obtain the strong errors (3.2) and (3.3), the strong error between the discrete RB–IPS (1.4)
and the IPS (1.1) defined by

discrete RB–IPS vs IPS: sup
0�n�T/τ

(
1

N

N∑
i=1

E|Xi
nτ − Ỹ i

n|2
)

(3.4)

directly follows from the triangle inequality. In the following, we estimate (3.2) and (3.3), respectively.
Before we begin to estimate (3.2), it is convenient to introduce the strong error below

discrete IPS vs IPS: sup
0�n�T/τ

(
1

N

N∑
i=1

E|Xi
nτ − X̃i

n|2
)

. (3.5)

Since the both (3.2) and (3.5) origin from time discretization, we may apply similar methods to estimate
(3.2) and (3.5). As in the standard routine in the strong error analysis, we impose the global Lipschitz
and boundedness condition on the drift force b and the interaction force K as follows.

Assumption 3.1 For the drift force b : Rd → R
d, there exists a constant L0 such that

|b(x)| � L0(|x| + 1), |∇b(x)| � L0, ∀x ∈ R
d. (3.6)

For the interaction force K : Rd → R
d, there exists a constant L1 such that

max{|K(x)|, |∇K(x)|, |∇2K(x)|} � L1, ∀x ∈ R
d. (3.7)
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In the IPS (1.1), define the perturbation force of the ith particle by

γ i(x) := 1

N − 1

∑
j �=i

K(xi − xj), ∀x ∈ R
Nd. (3.8)

Define the total force applied to the ith particle by bi(x) = b(xi) + γ i(x). Then the IPS (1.1) and the
discrete IPS (1.3) can be simply written as

dXi
t = bi(Xt) dt + σ dWi

t , X̃i
n+1 = X̃i

n + bi(X̃n)τ + σ(Wi
tn+1

− Wi
tn), i = 1, · · · , N. (3.9)

According to (3.7), it is easy to verify γ i(x) is uniformly bounded by L1, and

|γ i(x) − γ i(y)| � L1|xi − yi| + L1

N − 1

∑
j �=i

|xj − yj|. (3.10)

Summation over i yields the global Lipschitz condition for the perturbation force

N∑
i=1

|γ i(x) − γ i(y)| � 2L1

N∑
i=1

|xi − yi|, ∀x, y ∈ R
Nd. (3.11)

In the RB–IPS (3.1), suppose the index set {1, · · · , N} is divided to D = {C1, · · · , Cq} to form the
random batch dynamics in the time interval [tn, tn+1). In this case, we slightly abuse the notation and
again define the perturbation force by

γ i(x) = 1

p − 1

∑
j �=i,j∈C

K(xi − xj), ∀x ∈ R
Nd, (3.12)

then with the new total force bi(x) = b(xi) + γ i(x), the RB–IPS (3.1) and the discrete RB–IPS (1.4) are
simply given by

dYi
t = bi(Yt) dt + σ dWi

t , Ỹ i
n+1 = Ỹ i

n + bi(Ỹn)τ + σ(Wi
tn+1

− Wi
tn), i = 1, · · · , N. (3.13)

Although (3.13) is very similar to (3.9), we stress that the dynamics of Yt in (3.13) is valid only in the
time step [tn, tn+1) due to the random batch divisions, and the formulation of γ i(x) varies in different
time steps. Nevertheless, γ i(x) is uniformly bounded by L1 regardless of the batch division D. Also,

|γ i(x) − γ i(y)| � L1|xi − yi| + L1

p − 1

∑
j �=i,j∈C

|xj − yj|. (3.14)

Summation over i ∈ C gives
∑
i∈C

|γ i(x) − γ i(y)| � 2L1

∑
i∈C

|xi − yi|, (3.15)
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and summation over C ∈ D gives

N∑
i=1

|γ i(x) − γ i(y)| � 2L1

N∑
i=1

|xi − yi|. (3.16)

Therefore, the global Lipschitz condition still holds true for the random batch dynamics.
Based on the observation of γ i(x) above, we can prove the following results.

Lemma 3.2 Under Assumption 3.1, if there exists a constant M2 such that

max
1�i�N

E|Xi
0|2 � M2,

then there exists a constant C = C(L0, L1, M2, T , σ) such that

sup
0�t�T

E|Xi
t |2 � C, sup

t∈[tn,tn+1∧T)

E|Xi
t − Xi

tn |2 � Cτ , (3.17)

and

sup
0�t�T

E|Yi
t |2 � C, sup

t∈[tn,tn+1∧T)

E|Yi
t − Yi

tn |2 � Cτ . (3.18)

The proof of Lemma 3.2 is in Appendix A. The proof only requires the fact that |γ i(x)| � L1.

Theorem 3.3 Under Assumption 3.1, if there exists a constant M2 such that

max
1�i�N

E|Xi
0|2 � M2,

then there exists a constant C = C(L0, L1, M2, T , σ) such that

sup
0�n�T/τ

(
1

N

N∑
i=1

E|Xi
nτ − X̃i

n|2
)

� Cτ (3.19)

and

sup
0�n�T/τ

(
1

N

N∑
i=1

E|Yi
nτ − Ỹ i

n|2
)

� Cτ . (3.20)

The proof of Theorem 3.3 is similar to Lemma 7.21 of Weinan et al. (2021) and elaborated in
Appendix A. The proof uses the fact that γ i(x) is global Lipschitz.

Remark 3.4 We have some remarks on Theorem 3.3.

1. If one employs a constant time step τ , the global Lipschitz condition on the drift force b is
necessary to ensure the stability of the numerical method. Even for an ergodic SDE, the Euler–
Maruyama scheme can be unstable when b is not globally Lipschitz, see the example in Section
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6.3 of Mattingly et al. (2010). If there is only local Lipschitz condition on b, the readers may
refer to Malrieu (2003); Ding & Qiao (2021)for the discussion of other types of Euler–Maruyama
schemes.

2. The constant C depends on the second moments of the initial distribution ν ∈ P(RNd), which is
characterized by the constant M2 in Theorem 3.3.

Next we compare the trajectory difference between the IPS (1.1) and the RB–IPS (3.1), which are
both exactly integrated in the time interval [tn, tn+1). Recall that the strong error in this case is

sup
0�n�T/τ

(
1

N

N∑
i=1

E|Xi
nτ − Yi

nτ |2
)

,

where (1.1) and (3.1) are driven by the same Wiener processes {Wi
t }N

i=1 and the same initial random
variable X0 ∼ ν. The estimate of the strong error above directly follows Theorem 3.1 in Jin et al. (2021b),
and we restate this result here.

Theorem 3.5 Under Assumption 3.1, if there exists a constant M4 such that

max
1�i�N

E|Xi
0|4 � M4,

then there exists a constant C = C(L0, L1, M4, T , σ) such that

sup
0�t�T

(
1

N

N∑
i=1

E|Xi
t − Yi

t |2
)

� C

(
τ

p − 1
+ τ 2

)
. (3.21)

Remark 3.6 We have some remarks on Theorem 3.5:

1. Compared to Theorem 3.3, Theorem 3.5 requires the initial distribution ν has finite fourth-order
moments rather than second-order moments. This is because in the original proof in Jin et al.
(2021b), the authors used the second-order Taylor expansion to to estimate the L2 norm of

K(Yi
t − Yj

t ) − K(Yi
nτ − Yi

nτ ),

which naturally produces the fourth order moments.

2. If the linear growth condition of b(x) in (3.6) is replaced by |b(x)| � L0(|x| + 1)q for some q � 2,
then the initial distribution ν should have finite 2qth order moments. In this paper, we only consider
the case of q = 2.

Using Theorems 3.3 and 3.5, we can now estimate the strong error (3.4) between the discrete RB–IPS
(1.4) and the IPS (1.1).

Theorem 3.7 Under Assumption 3.1, if there exists a constant M4 such that

max
1�i�N

E|Xi
0|4 � M4,
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then there exists a constant C = C(L0, L1, M4, T , σ) such that

sup
0�n�T/τ

(
1

N

N∑
i=1

E|Xi
nτ − Ỹ i

n|2
)

� Cτ . (3.22)

Theorem 3.7 implies that applying random batch divisions does not worsen the order of strong error.
However, the constant C in Theorem 3.7 can be much larger than in Theorem 3.3.

A direct consequence of Theorem 3.7 is the finite-time error estimate of the discrete RB–IPS (1.4)
in the Wasserstein-2 distance. For given distributions μ, ν ∈ P(RNd), the normalized Wasserstein-p
distance between μ, ν is defined by

Wp
p (μ, ν) = inf

γ∈Π(μ,ν)

∫
RNd×RNd

(
1

N

N∑
i=1

|xi − yi|p
)

γ (dx dy), (3.23)

where Π(μ, ν) is the transport plans between μ and ν. The readers may also refer to Chaintron & Diez
(2022) for a thorough introduction to the normalized Wasserstein distance.

Let (pt)t�0, (p̃nτ )n�0, (qnτ )n�0 and (q̃nτ )n�0 be the transition probabilities of the four dynamics
(1.1), (1.3), (3.1) and (1.4), respectively. Then for given initial distribution ν ∈ P(RNd), the distribution
laws of Xi

nτ , X̃i
n, Yi

nτ and Ỹ i
n are νpnτ , νp̃nτ , νqnτ and νq̃nτ , respectively (see the notations in Table 1). Here

we note that (pt)t�0 defines a continuous-time Markov process, while (p̃nτ )n�0, (qnτ )n�0, (q̃nτ )n�0 only
define discrete-time Markov chains because of the random batch divisions at each time step. Although,
formally, the transition probability (qt)t�0 for the RB–IPS (3.1) can be defined for any t � 0, (qt)t�0
does not form a Markov semigroup.

Now we have the W2 error estimate for the discrete IPS (1.3) and the discrete RB–IPS (1.4).

Corollary 3.8 Under Assumption 3.1, if there exists a constant M4 such that

max
1�i�N

∫
RNd

|xi|4ν(dx) � M4,

then there exists a constant C = C(L0, L1, M4, T , σ) such that

max
{

sup
0�n�T/τ

W2(νpnτ , νp̃nτ ), sup
0�n�T/τ

W2(νpnτ , νq̃nτ )

}
� C

√
τ . (3.24)

Note that the left-hand side (LHS) of (3.24) only involves the transition probabilities pnτ , p̃nτ , q̃nτ ,
and does not require the dynamics (1.1), (1.3) and (1.4) to be coupled. This is because the Wasserstein
distance compares the distribution laws rather than trajectories.

3.2 Uniform-in-time moment estimate

To investigate the long-time behavior of the numerical methods, we need some preliminary results on
the moment estimates. Under appropriate dissipation conditions, it can be proved that the discrete IPS
(1.3) and the discrete RB–IPS (1.4) have uniform-in-time moment estimates.
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Assumption 3.9 For the drift force b : Rd → R
d, there exist constants α, θ > 0 such that

− x · b(x) � α|x|2 − θ , ∀x ∈ R
d. (3.25)

The following result is crucial to establish the recurrence relations of both E|X̃i
n|4 and E|Ỹ i

n|4.

Lemma 3.10 Under Assumptions 3.1 and 3.9, let f (x, τ) := x+b(x)τ and τ0 := min{α/(2L2
0), 1/(2α)}.

1. There exists a constant C = C(α, θ) such that if τ < τ0,

|f (x, τ)|4 � (1 − ατ)|x|4 + Cτ . (3.26)

2. For any γ ∈ R
d with |γ | � L1, there exists a constant C = C(α, θ , L1) such that if τ < τ0,

|f (x, τ) + γ τ |4 �
(

1 − ατ

2

)
|x|4 + Cτ . (3.27)

The proof of Lemma 3.10 is elementary and is in Appendix A. In Lemma 3.10, f (x, τ) = x + b(x)τ
can be viewed as a simplified Euler–Maruyama scheme, where the time step τ is restricted to be smaller
than τ0 to ensure the stability. In the following, we shall always adopt τ0 := min{α/(2L2

0), 1/(2α)} as
the upper bound of the time step τ . Note that τ0 is uniquely determined from Assumptions 3.1 and 3.9
and does not depend on N.

Using Lemma 3.10, we have the following uniform-in-time moments estimate for the discrete IPS
(1.3) and the discrete RB–IPS (1.4).

Theorem 3.11 Under Assumptions 3.1 and 3.9, if there exists a constant M4 such that

max
1�i�N

E|Xi
0|4 � M4,

and if the time step τ satisfies

τ < min
{

α

2L2
0

,
1

2α

}
,

then there exists a constant C = C(α, θ , L1, σ) such that

max
{

sup
n�0

E|X̃i
n|4, sup

n�0
E|Ỹ i

n|4
}

� max{M4, C}, i = 1, · · · , N. (3.28)

The proof of Theorem 3.11 is in Appendix A.
Theorem 3.11 tells that when the time step τ < τ0, the fourth-order moments of the discrete IPS

(1.3) and the discrete RB–IPS (1.4) can be bounded uniformly in time.

Remark 3.12 We have some remarks on Theorem 3.11.

1. We estimate the fourth-order moments of X̃i
n and Ỹ i

n rather than the second-order moments because
applying Theorem 3.7 requires the initial distribution to have finite fourth-order moments.
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2. Utilization of the dissipation condition (3.25) in essential in the proof of Theorem 3.11. From
the geometric perspective, the drift force b(x) pulls the particle x ∈ R

d back when x is far from
the origin, hence the particle system shall stay in a bounded region for most of the time, and the
moments are bounded uniformly in time. It can also be proved that, if the initial distribution ν

has finite moments of order 2m for positive some integer m ∈ N, then E|X̃i
n|2m and E|Ỹ i

n|2m are
bounded uniformly in time. Readers may also refer to Proposition 5.1 of Benachour et al. (1998)
or Lemma 5.2 of Mattingly et al. (2002).

3. The constant C = C(α, β, L1) in Theorem 3.11 does not depend on L0, which is related to the
boundedness of the drift force b. In other words, the moment upper bound is completely controlled
by the dissipation condition (3.25).

3.3 Geometric ergodicity of IPS

In order to investigate the long-time behavior of the IPS (1.1) and its mean-field limit, the MVP (1.2),
it is important that the distribution law of the IPS (1.1) converges to the equilibrium with a convergence
rate β independent of the number of particles N. If the independence of β on N holds true, hopefully
the distribution law of the MVP (1.2) also converges with the convergence rate β, which allows us to
prove the geometric ergodicity of the nonlinear MVP (1.2). Therefore, a natural question in studying the
ergodicity is to find the conditions ensuring the IPS (1.1) have a convergence rate independent of N.

On the one hand, the interaction force K needs to be moderately large to ensure the uniform-in-N
convergence rate. If the drift force b is not the gradient of a strongly convex function, it is well-known
that the MVP (1.2) can have multiple invariant distributions when the interaction force K is too large,
see Durmus et al. (2020, 2022) for example. In this case the IPS (1.1) must not have a convergence rate
independent of N.

On the other hand, it is sufficient for the interaction force K to be moderately large to ensure
the uniform-in-N convergence rate. To our knowledge, two major approaches to derive the uniform
geometric ergodicity of the IPS (1.1) are the log-Sobolev inequality (Ha et al., 2021) and the reflection
coupling technique (Fehske et al., 2007; Eberle et al., 2019). Under appropriate dissipation conditions,
Ha et al. (2021) proves the ergodicity in the sense of relative entropy, while Fehske et al. (2007); Eberle
et al. (2019) proves the ergodicity in the W1 distance. Although the relative entropy is stronger than
the W1 distance, in this paper we shall use the W1 distance because it is compatible with the triangle
inequality framework.

In the following, we restate the result of the geometric ergodicity of the IPS (1.1) in theW1 distance in
Eberle et al. (2019). The dissipation of the drift force b is characterized by a function κ : (0, +∞) → R,
satisfying

κ(r) �
{

− 2

σ 2

(x − y) · (b(x) − b(y))

|x − y|2 : x, y ∈ R
d, |x − y| = r

}
. (3.29)

Assumption 3.9 is now replaced by the asymptotic positivity of κ(r).

Assumption 3.13 The function κ(r) defined in (3.29) satisfies

1. κ(r) is continuous for r ∈ (0, +∞);

2. κ(r) has a lower bound for r ∈ (0, +∞);

3. limr→∞ κ(r) > 0.
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We note that Assumption 3.13 is stronger than Assumption 3.9. In fact, the asymptotic positivity of κ(r)
implies that there exist positive constants α, β > 0 such that

r2κ(r) � αr2 − β, ∀r > 0. (3.30)

Then we easily obtain

− (x − y) · (b(x) − b(y)) � σ 2

2
(α|x − y|2 − β), (3.31)

and thus (3.25) holds. Under Assumption 3.13, we can construct a concave function f : [0, +∞) →
[0, +∞), satisfying the following.

Lemma 3.14 Under Assumption 3.13, there exists a function f : [0, +∞) → [0, +∞), satisfying

1. f (0) = 0, and f (r) is concave and strictly increasing in r ∈ [0, +∞);

2. f ∈ C2[0, +∞) and there exists a constant c0 > 0 such that

f ′′(r) − 1

4
rκ(r)f ′(r) � −c0

2
f (r), ∀r � 0. (3.32)

3. There exists a constant ϕ0 > 0 such that

ϕ0

4
r � f (r) � r. (3.33)

The proof of Lemma 3.14 can be seen in Theorem 1 of Eberle et al. (2019) or Lemma 2.1 of Klokov
& Veretennikov (2006). Although Lemma 3.14 serves as part of the proof of the geometric ergodicity
for the IPS (1.1) and is not directly related to the topic of this paper, it does provide an explicit upper
bound of the constant L1 in (3.7), which is used in the statement of the main theorem.

Define the space of probability distributions with finite first-order moments by

P1(R
Nd) =

{
ν ∈ P(RNd) : max

1�i�N

∫
RNd

|xi|ν(dx) < +∞
}

. (3.34)

Equipped with the normalized Wasserstein-1 distance, (P1(R
Nd),W1) is a complete metric space. Now

we have the following result of the geometric ergodicity for the IPS (1.1).

Theorem 3.15 Under Assumptions 3.1 and 3.13, if the constant L1 in (3.7) satisfies

L1 <
c0ϕ0σ

2

16
,

then for β := c0σ
2/2 there exists a positive constant C = C(κ , σ) such that

W1(μpt, νpt) � Ce−βtW1(μ, ν), ∀t � 0 (3.35)

for any probability distributions μ, ν ∈ P1(R
Nd).
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1678 X.YE AND Z. ZHOU

The proof of Theorem 3.15 can be seen in Corollary 2 of Eberle et al. (2019) or Theorem 2.2 of
Klokov & Veretennikov (2006).

Remark 3.16 We have some remarks on Theorem 3.15.

1. Using the reflection coupling technique, we can actually prove that the IPS (1.1) is contractive in
the Wasserstein-f distance:

Wf (μpt, νpt) � e−βtWf (μ, ν), (3.36)

where Wf (·, ·) is the normalized Wasserstein-1 distance induced by the function f ,

Wf (μ, ν) = inf
γ∈Π(μ,ν)

∫
RNd×RNd

(
1

N

N∑
i=1

f (|xi − yi|)
)

γ (dx dy). (3.37)

Since f (r) is equivalent to the usual Euclidean norm, (3.35) is a direct consequence of (3.37).

2. The explicit convergence rate β = c0σ
2/2 and the upper bound c0ϕ0σ

2/16 only depend on κ(r)
and σ . In particular, these parameters do not depend on the number of particles N. Hence, the IPS
(1.1) has an exponential convergence rate independent of N.

3. The positivity of the diffusion constant σ is essential in the proof by reflection coupling. In fact,
for given interaction force K, the MVP (1.2) can be nonergodic if σ is too small (Del Moral &
Tugaut, 2014).

Using Theorem 3.15, the existence and uniqueness of the invariant distribution π ∈ P(RNd) can be
derived using the Banach fixed point theorem.

Corollary 3.17 Under Assumptions 3.1 and 3.13, if the constant L1 in (3.7) satisfies

L1 <
c0ϕ0σ

2

16
,

then the IPS (1.1) has a unique invariant distribution π ∈ P1(R
Nd), and for β := c0σ

2/2 there exist a
positive constant C = C(κ , σ) such that

W1(νpt, π) � Ce−βtW1(ν, π), ∀t � 0 (3.38)

for any probability distributions ν ∈ P1(R
Nd).

The proof of Corollary 3.17 can be seen in Corollary 3 of Eberle et al. (2019) or Theorem 3.1 of
Klokov & Veretennikov (2006).

3.4 Wasserstein-1 error in long time

We estimate the long-time sampling error of the discrete IPS (1.3) and the discrete RB–IPS (1.4) in the
W1 distance using the triangle inequality and results in previous subsections. We begin with the following
induction lemma, which can be viewed as a discrete version of Lemma 2.1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/44/3/1660/7203656 by Purdue U
niversity user on 05 N

ovem
ber 2025



ERROR ANALYSIS OF TIME-DISCRETE RBM 1679

Lemma 3.18 Given m ∈ N, ε > 0 and q ∈ (0, 1). If a non-negative sequence {an}n�0 satisfies

an � ε + qan−m, ∀n � m, (3.39)

then

an � ε

1 − q
+ Mq

n
m −1, ∀n � 0, (3.40)

where M = max0�k�m−1 ak.

The proof of Lemma 3.18 is in Appendix A. Lemma 3.18 implies that if q < 1 in the recurrence
relation (3.39), then the asymptotic form of an is O(ε) plus an exponential part.

Combining the finite-time difference relation (3.24) in Corollary 3.8 and the geometric ergodicity
in Theorem 3.15, we employ the triangle inequality to estimate the long-time sampling error of the
numerical methods (1.3) and (1.4). Recall that the transition probabilities of the discrete IPS (1.3) and
the discrete RB–IPS (1.4) are p̃nτ and q̃nτ , respectively.

Theorem 3.19 Under Assumptions 3.1 and 3.13, if there exists a constant M4 such that

max
1�i�N

∫
RNd

|xi|4ν(dx) � M4,

and the constant L1 in (3.7) and the time step τ satisfy

L1 <
c0ϕ0σ

2

16
, τ < min

{
α

2L2
0

,
1

2α

}
,

then there exist positive constants λ = λ(κ , L0, σ) and C = C(κ , L0, M4, σ) such that

1. The transition probability (p̃nτ )n�0 of discrete IPS (1.3) satisfies

W1(νp̃nτ , π) � C
√

τ + Ce−λnτ , ∀n � 0. (3.41)

2. The transition probability (q̃nτ )n�0 of discrete RB–IPS (1.4) satisfies

W1(νq̃nτ , π) � C
√

τ + Ce−λnτ , ∀n � 0. (3.42)

Proof. For any given integers n � m, we have the following triangle inequality

W1(νp̃nτ , π) � W1(νp̃(n−m)τ p̃mτ , νp̃(n−m)τ pmτ ) + W1(ν0p̃(n−m)τ pmτ , πpmτ ). (3.43)
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1680 X.YE AND Z. ZHOU

By Theorem 3.11, νp̃(n−m)τ has uniform-in-time fourth order moment, i.e., there exists a constant
M′

4 = M′
4(κ , M4, σ) such that

max
1�i�N

{
sup
n�m

∫
RNd

|xi|4(νp̃(n−m)τ

)
(dx)

}
� M′

4. (3.44)

Hence, by Corollary 3.8, there exists a constant C1 = C1(κ , L0, M4, mτ , σ) such that

W1(νp̃(n−m)τ p̃mτ , νp̃(n−m)τ pmτ ) � C1
√

τ , ∀n � m. (3.45)

Note that the constant C1 depends on the upper bound of mτ , which is the evolution time of the IPS (1.1)
and the discrete IPS (1.3). By Theorem 3.15, there exists a constant C0 = C0(κ , σ) such that

W1(νp̃(n−m)τ pmτ , πpmτ ) � C0 e−βmτW1(νp̃(n−m)τ , π), ∀n � m. (3.46)

From (3.43), (3.45) and (3.46), we employ the triangle inequality and obtain

W1(νp̃nτ , π) � C1
√

τ + C0 e−βmτW1(ν0p̃(n−m)τ , π), ∀n � m. (3.47)

For given time step τ > 0, we wish to choose m to satisfy C0 e−βmτ = 1/e, so that Lemma 3.18 can be
applied. However, m is restricted to be an integer, thus our choice is

m =
⌈

log C0 + 1

βτ

⌉
. (3.48)

It is easy to check mτ has an upper bound independent of τ ,

mτ �
(

log C0 + 1

βτ
+ 1

)
τ � log C0 + 1

β
+ 1

2α
, (3.49)

hence the constant C1 in (3.45) can be made independent of τ , i.e., C1 = C1(κ , L0, M4, σ). Note that for
this choice of m we have C0 e−βmτ � 1/e, and (3.47) implies

W1(νp̃nτ , π) � C1
√

τ + 1

e
W1(ν0p̃(n−m)τ , π), ∀n � m. (3.50)

Applying Lemma 3.18 with an := W1(ν0p̃nτ , π), we have

W1(νp̃nτ , π) � C1
√

τ + M0 e1− n
m , ∀n � 0, (3.51)

where the constant

M0 := sup
0�k�m−1

W1(νp̃kτ , π) � sup
k�0

W1(νp̃kτ , π). (3.52)
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ERROR ANALYSIS OF TIME-DISCRETE RBM 1681

Introduce the normalized moment for ν ∈ P1(R
Nd) by

M1(ν) =
∫
RNd

(
1

N

N∑
i=1

|xi|
)

ν(dx), (3.53)

then the W1 distance in (3.52) is bounded by

W1(νp̃kτ , π) � M1(νp̃kτ ) + M1(π). (3.54)

On the one hand, νp̃kτ has uniform-in-time fourth-order moments, hence there exists a constant C2 =
C2(κ , L0, M4, σ) such that

sup
k�0

M1(νp̃kτ ) � C2. (3.55)

On the other hand, by Lemma 3.1 of Klokov & Veretennikov (2006), for the invariant distribution π of
the IPS (1.1), there exists a constant C2 = C2(κ , L0, M4, σ) such that

M1(π) � C2. (3.56)

Combining (3.51)–(3.56), we obtain

W1(νp̃nτ , π) � C1
√

τ + C2e− n
m , ∀n � 0, (3.57)

where both constants C1, C2 only depend on κ , L0, M4, σ . Note that by the choice of m

n

m
� n

log C0+1
cτ + 1

� βnτ

log C0 + β/(2α) + 1
, (3.58)

hence by defining

λ := β

log C0 + β/(2α) + 1
, (3.59)

there holds e−n/m � e−λnτ . Hence, (3.57) implies

W1(νp̃nτ , π) � C
√

τ + Ce−λnτ , ∀n � 0, (3.60)

which is exactly the long-time sampling error. The proof for the discrete RB–IPS (1.4) is the same as
above. �

Theorem 3.19 produces the long-time sampling error of the two numerical methods, the discrete
IPS (1.3) and the discrete RB–IPS (1.4), in the W1 distance. The error in (3.41) and (3.42) consists
of two parts: C

√
τ represents the bias between the invariant distribution π and the asymptotic limit of
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1682 X.YE AND Z. ZHOU

νp̃nτ or νq̃nτ , while Ce−λnτ represents the exponential convergence of the numerical methods. Here the
convergence rate λ = λ(κ , L0, σ) can be different from the convergence rate β := c0σ

2/2 of the IPS
(1.1). Still, λ is independent of the number of particles N, the time step τ , the batch size p and the choice
of the initial distribution ν.

Remark 3.20 We have some remarks on Theorem 3.19.

1. Assumption 3.9 is a corollary of Assumption 3.13, and the constants α, θ in (3.25) can be directly
derived from Assumption 3.13.

2. The constant C in (3.42) depends on M4, the fourth-order moments of initial distribution ν.
However, the convergence rate λ does not depend on M4. In practical simulation, one may choose
the initial distribution as the Dirac distribution centered at origin to sample the invariant distribution
π , and in this case the dependence of C on M4 can be ignored.

3. Since we are studying the long-time behavior of the numerical methods, it is natural to ask: do
the numerical methods (1.3) and (1.4) have invariant distributions? If so, does the convergence
rate depends on N? The existence of the invariant distributions can be proved by the Harris
ergodic theorem under appropriate Lyapunov conditions, see Mattingly et al. (2010); Eberle (2011)
Hauray & Mischler (2014);. However, the convergence rate derived from the Harris ergodic
theorem is very implicit. Still, there are a few results which proved that the convergence rate
of the numerical method can be independent of N, under global boundedness condition of the
drift force b (Lacker, 2018), which are too strong for practical use. In this paper, we follow the
idea in Eberle (2011) and avoid discussing the geometric ergodicity of the numerical methods
themselves.

4. Error analysis of discrete RB–IPS for MVP

In this section, we analyze the error of the discrete RB–IPS (3.1), which is a numerical approximation
to the MVP (1.2). Thanks to the theory of propagation of chaos, we can easily extend our results in
Section 3 for the IPS (1.1) to the case of the MVP (1.2). Nevertheless, we should be careful that the
major difference between the IPS (1.1) and the MVP (1.2) is the linearity of the transition probability,
as we illustrate follows.

The transition probability (pt)t�0 of the IPS (1.1) forms a linear semigroup, that is,

1. For any ν ∈ P(RNd), (νpt)ps = νpt+s.

2. For any t > 0, the mapping ν �→ νpt is linear in ν ∈ P(RNd).

Denote the transition probability of the MVP (1.2) by (p̄t)t�0, then for any ν ∈ P(Rd), νp̄t is the
distribution law of X̄t in the MVP (1.2). Although (p̄t)t�0 still satisfies the semigroup property (νp̄t)p̄s =
νp̄t+s, (p̄t)t�0 does not form a linear semigroup, because the MVP (1.2) is a distribution dependent SDE,
and thus the mapping ν �→ νp̄t is nonlinear. Readers may also refer to Wang (2018) for a complete guide
to distribution-dependent SDEs and nonlinear semigroups.

4.1 Strong error in finite time

To estimate the strong error between the IPS (1.1) in R
Nd and the MVP (1.2) in R

d, we need to define
the synchronous coupling between (1.1) and (1.2). Given the initial distribution ν ∈ P(Rd) and N

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/44/3/1660/7203656 by Purdue U
niversity user on 05 N

ovem
ber 2025



ERROR ANALYSIS OF TIME-DISCRETE RBM 1683

independent Wiener processes {Wi
t }N

i=1, the strong solution to the IPS (1.1) is

Xi
t = Xi

0 +
∫ t

0

(
b(Xi

s) + 1

N − 1

∑
j �=i

K(Xi
s − Xj

s)

)
ds + σWi

t , i = 1, · · · , N, (4.1)

where the initial value {Xi
0}N

i=1 are sampled from ν independently. Introduce N duplicates of the MVP
(1.2) represented by {X̄i

t}N
i=1, where each X̄i

t is the strong solution to the SDE

X̄i
t = Xi

0 +
∫ t

0

(
b(X̄i

s) + (K ∗ Law(X̄i
s))(X̄

i
s)

)
ds + σ dWi

t , i = 1, · · · , N. (4.2)

Here, ‘∗’ denotes the convolution of a density kernel with a probability distribution,

(K ∗ μ)(x) =
∫
Rd

K(x − z)μ(dz). (4.3)

It can be observed from (4.1) and (4.2) that each X̄i
t uses the same initial value Xi

0 ∼ ν and the same
Wiener process Wi

t with Xi
t . The major difference between (4.1) and (4.2) is that the particles in {Xi

t}N
i=1

are interacting with each other, while the particles in {X̄i
t}N

i=1 are fully decoupled, i.e., the evolution of
the N particles in {X̄i

t}N
i=1 is mutually independent.

The estimate of the strong error between (4.1) and (4.2) is a classical topic in the theory of propagation
of chaos. McKean proved the following result in his celebrated work (Meyn & Tweedie, 2012).

Theorem 4.1 Under Assumption 3.1, there exists a constant C = C(L0, L1, T , σ) such that

1

N

N∑
i=1

E

[
sup
t�T

|Xi
t − X̄i

t |2
]

� C

N
. (4.4)

As in the synchronous coupling, the expectation is taken over the Wiener processes {Wi
t }N

i=1 in the
time interval [0, T] and the random variables {Xi

0}N
i=1. We note that the IPS (1.1) in this paper is slightly

different from the original setting in Meyn & Tweedie (2012), where the perturbation force γ i(x) is
given by

γ i(x) = 1

N

N∑
j=1

K(xi − xj) (4.5)

rather than

γ i(x) = 1

N − 1

∑
j �=i

K(xi − xj). (4.6)

This minor difference in the choice of γ i does not impact the final result of propagation of chaos. The
proof of Theorem 4.1 under the settings (4.5) and (4.6) can be found in Theorem 3.1 of Chaintron &
Diez (2022) and Proposition 4.2 of Jin et al. (2020), respectively.
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1684 X.YE AND Z. ZHOU

Combining Theorems 3.3 and 4.1, we directly obtain the strong error of the discrete IPS (1.3).

Corollary 4.2 Under Assumption 3.1, if there exists a constant M2 such that

∫
Rd

|x|2ν(dx) � M2,

then there exist constants C1 = C1(L0, L1, M2, T , σ) and C2 = C2(L0, L1, T , σ) such that

sup
0�n�T/τ

(
1

N

N∑
i=1

E|X̄i
nτ − X̃i

n|2
)

� C1τ + C2

N
. (4.7)

Combining Theorems 3.7 and 4.1, we obtain the strong error of the discrete RB–IPS (1.4).

Corollary 4.3 Under Assumption 3.1, if there exists a constant M4 such that

∫
Rd

|x|4ν(dx) � M4,

then there exist constants C1 = C1(L0, L1, M4, T , σ) and C2 = C2(L0, L1, T , σ) such that

sup
0�n�T/τ

(
1

N

N∑
i=1

E|X̄i
nτ − Ỹ i

n|2
)

� C1τ + C2

N
. (4.8)

In the W2 distance, the finite-time error of the discrete IPS (1.3) and the discrete RB–IPS (1.4) are
estimated as follows.

Corollary 4.4 Under Assumption 3.1, if there exists a constant M4 such that

∫
Rd

|x|4ν(dx) � M4,

then there exists constant C1 = C1(L0, L1, M4, T , σ) and C2 = C2(L0, L1, T , σ) such that

max
{

sup
0�n�T/τ

W2(ν
⊗Np̄⊗N

nτ , ν⊗Np̃nτ ), sup
0�n�T/τ

W2(ν
⊗Np̄⊗N

nτ , ν⊗Nq̃nτ )

}
� C1

√
τ + C2√

N
. (4.9)

Here, ν⊗N ∈ P(RNd) denotes the tensor product of the distribution ν ∈ P(Rd), and p̄⊗N
t denotes the

product of p̄t in R
Nd. Recall that the N duplicates {X̄i

t}N
i=1 of the MVP (1.2) are mutually independent,

hence ν⊗Np̄⊗N
nτ = (νp̄nτ )

⊗N .
Let [μ]1 ∈ P(Rd) denote the marginal distribution of a symmetric distribution μ ∈ P(RNd) (see

Definition 2.1 of Chaintron & Diez, 2022). Note that (4.7) and (4.8) can be written as

max
{

sup
0�n�T/τ

E|X̄1
nτ − X̃1

n |2 sup
0�n�T/τ

E|X̄1
nτ − Ỹ1

n |2
}

� C1τ + C2

N
, (4.10)

hence in the sense of marginal distributions we have the following.
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Corollary 4.5 Under Assumption 3.1, if there exists a constant M4 such that

∫
Rd

|x|4ν(dx) � M4,

then there exist constants C1 = C1(L0, L1, M4, T , σ) and C2 = C2(L0, L1, T , σ) such that

max
{

sup
0�n�T/τ

W2

(
νp̄nτ , [ν⊗Np̃nτ ]1

)
, sup

0�n�T/τ

W2

(
νp̄nτ , [ν⊗Nq̃nτ ]1

)}
� C1

√
τ + C2√

N
. (4.11)

In Corollary 4.5, νp̄nτ is the distribution law of the MVP (1.2) and does not depend on N. Hence,
Corollary 4.5 implies that we can obtain the correct distribution law νp̄nτ = Law(X̄nτ ) by choosing N
sufficiently large and τ sufficiently small.

4.2 Geometric ergodicity of MVP

It has been proved that when the interaction force K is moderately large, the IPS (1.1) has a convergence
rate β uniform in the number of particles N. Since the MVP (1.2) is the mean-field limit of the IPS (1.1),
it is natural to expect that the MVP (1.2) also has the convergence rate β. In fact, the geometric ergodicity
of the MVP (1.2) can be directly derived from Theorem 3.15.

Theorem 4.6 Under Assumptions 3.1 and 3.13, if the constant L1 in (3.7) satisfies

L1 <
c0ϕ0σ

2

16
,

then for β := c0σ
2/2 there exist a positive constant C = C(κ , σ) such that

W1(μp̄t, νp̄t) � Ce−βtW1(μ, ν), ∀t � 0 (4.12)

for any probability distributions μ, ν ∈ P1(R
d).

The proof of Theorem 4.6 is in Appendix A. As a consequence, we can prove that the MVP (1.2) has
a unique invariant distribution π̄ ∈ P1(R

d). Also, the W1 distance between the invariant distributions
π ∈ P1(R

Nd) and π̄ ∈ P1(R
d) can be controlled.

Corollary 4.7 Under Assumptions 3.1 and 3.13, if the constant L1 in (3.7) satisfies

L1 <
c0ϕ0σ

2

16
,

then the invariant distribution π̄ ∈ P1(R
d) of the MVP (1.2) is unique, and for β := c0σ

2/2 there exists
a positive constant C = C(κ , σ) such that

W1(νp̄t, π̄) � Ce−βtW1(ν, π̄ ), ∀t � 0 (4.13)
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for any ν ∈ P1(R
d). Furthermore, there exists a constant C = C(κ , L0, σ) such that

W1(π̄
⊗N , π) � C√

N
. (4.14)

The proof of Corollary 4.7 is in Appendix A. We note that (4.14) can also viewed as the corollary of
the uniform-in-time propagation of chaos, see Theorem 2 of Durmus et al. (2022) for example.

4.3 Wasserstein-1 error in long time

Combining Theorem 3.19 and Corollary 4.7, we immediately obtain the following result of long-time
sampling error of the discrete IPS (1.3) and the discrete RB–IPS (1.4).

Theorem 4.8 Under Assumptions 3.1 and 3.13, if there exists a constant M4 such that

max
1�i�N

∫
RNd

|xi|4ν(dx) � M4,

and the constant L1 in (3.7) and the time step τ satisfy

L1 <
c0ϕ0σ

2

16
, τ < min

{
α

2L2
0

,
1

2α

}
,

then there exist positive constants λ = λ(κ , L0, σ), C1 = C1(κ , L0, M4, σ) and C2 = C2(κ , L0, σ)

1. The transition probability (p̃nτ )n�0 of discrete IPS (1.3) satisfies

W1(νp̃nτ , π̄⊗N) � C1
√

τ + C1 e−λnτ + C2√
N

, ∀n � 0. (4.15)

2. The transition probability (q̃nτ )n�0 of discrete RB–IPS (1.4) satisfies

W1(νq̃nτ , π̄⊗N) � C1
√

τ + C1 e−λnτ + C2√
N

, ∀n � 0. (4.16)

Using the theory of the propagation of chaos, we may translate the normalized Wasserstein-1 distance
in P(RNd) to the Wasserstein-1 distance in P(P(Rd)). Denote the empirical distributions of the discrete
IPS (1.3) and the discrete RB–IPS (1.4) by μ̃nτ ∈ P(Rd) and μ̃RB

nτ ∈ P(Rd), i.e.,

μ̃nτ (x) = 1

N

N∑
i=1

δ(x − X̃i
nτ ) ∈ P(Rd), μ̃RB

nτ (x) = 1

N

N∑
i=1

δ(x − Ỹ i
nτ ) ∈ P(Rd). (4.17)

Since X̃nτ , Ỹnτ are random variables with distribution laws νp̃nτ , νq̃nτ , the empirical distributions
μ̃nτ , μ̃RB

nτ are actually random measures on R
d, and thus their distribution laws Law(μ̃nτ ), Law(μ̃RB

nτ )
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can be identified as elements of P(P(Rd)). By Proposition 2.14 of Huang et al. (2006), we have

W1(νp̃nτ , π̄⊗N) = W1(Law(μ̃nτ ), δπ̄ ), W1(νq̃nτ , π̄⊗N) = W1(Law(μ̃RB
nτ ), δπ̄ ). (4.18)

Here, W1 on the LHS is the normalized Wasserstein-1 distance in P(RNd) defined in (3.23), and W1
on the right-hand side (RHS) is the Wasserstein-1 distance in P(P(Rd)) defined in Definition 3.5 of
Chaintron & Diez (2022). Since δπ̄ is the Dirac measure in P(P(Rd)), we have

W1(Law(μ̃nτ ), δπ̄ ) = E
[
W1(μ̃nτ , π̄)

]
, W1(Law(μ̃RB

nτ ), δπ̄ ) = E
[
W1(μ̃

RB
nτ , π̄)

]
. (4.19)

Concluding the discussion above, we have the following equivalent form of Theorem 4.8.

Corollary 4.9 Under Assumptions 3.1 and 3.13, if there exists a constant M4 such that

max
1�i�N

∫
RNd

|xi|4ν(dx) � M4,

and the constant L1 in (3.7) and the time step τ satisfy

L1 <
c0ϕ0σ

2

16
, τ < min

{
α

2L2
0

,
1

2α

}
,

then there exist positive constants λ = λ(κ , L0, σ), C1 = C1(κ , L0, M4, σ) and C2 = C2(κ , L0, σ)

max
{
E

[
W1(μ̃nτ , π̄ )

]
,E

[
W1(μ̃

RB
nτ , π̄)

]}
� C1

√
τ + C1 e−λnτ + C2√

N
, ∀n � 0. (4.20)

Corollary 4.9 characterizes the long-time sampling error of the numerical methods (1.3) and (1.4)
for the MVP (1.2). The error terms in the RHS of (4.20) consist of three parts:

1. C1
√

τ : time discretization and random batch divisions;

2. C1 e−λnτ : exponential convergence of the numerical method;

3. C2/
√

N: uniform-in-time propagation of chaos.

If we aim to achieve O(ε) error in the W1 distance, then the parameters of the numerical methods
should be chosen as

N = O(ε−2), τ = O(ε2), nτ = O(log ε−1), (4.21)

then for fixed batch size p, the complexity of the discrete IPS (1.3) and the discrete RB–IPS (1.4) is
O(ε−6 log ε−1) and O(ε−4 log ε−1), respectively. In this way, the discrete RB–IPS (1.4) consumes less
complexity to achieve the desired error tolerance.
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5. Conclusion

In this paper, we have employed the triangle inequality framework to study the long-time sampling
error of the discrete RB–IPS (1.4), and showed that the discrete RB–IPS (1.4) is a reliable numerical
approximation to the IPS (1.1) and the MVP (1.2). The triangle inequality framework is a flexible
approach to estimate the long-time sampling error using the geometric ergodicity and the finite-time
error analysis. It is expected that such an error analysis framework can be used to estimate the long-
time sampling error of a wide class of numerical methods. However, this framework also has some
limitations—it requires strict conditions on the geometric ergodicity, and is only compatible with the
strong error analysis. In particular, when applied on a numerical method, the long-time sampling error
is at most half-order in the time step.
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Appendix A. Additional proofs for Sections 3 and 4

Proof of Lemma 3.2. WLOG assume the time step τ � T . Consider the IPS (1.1) first. By Ito’s formula,

d|Xi
t |2 = 2Xi

t · (bi(Xi
t) dt + σ dWi

t ) + dσ 2 dt. (A.1)

Hence,

E|Xi
t |2 = E|Xi

0|2 + 2
∫ t

0
Xi

s · bi(Xs) ds + dσ 2t

= E|Xi
0|2 + 2

∫ t

0
Xi

s · (
b(Xi

s) + γ i(Xs)
)

ds + dσ 2t.
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On the one hand, γ i is uniformly bounded by L1, hence

2
∫ t

0
Xi

s · γ i(Xs) ds � 2L1

∫ t

0
|Xi

s| ds � L1

∫ t

0
|Xi

s|2 ds + L1t. (A.2)

On the other hand, using the linear growth condition on b, one has

2
∫ t

0
Xi

s · b(Xi
s) ds � 2L0

∫ t

0
(|Xi

s|2 + |Xi
s|) ds

� L0

∫ t

0
(3|Xi

s|2 + 1) ds

� 3L0

∫ t

0
|Xi

s|2 + L0t. (A.3)

Using these inequalities, one obtains

2
∫ t

0
Xi

s · (
b(Xi

s) + γ i(Xs)
)

ds � (3L0 + L1)

∫ t

0
|Xi

s|2 ds + (L0 + L1)t. (A.4)

Let L := 3L0 + L1 + dσ 2, then for any t ∈ [0, T],

E|Xi
t |2 � E|Xi

0|2 + L
∫ t

0
|Xi

s|2 ds + Lt

� M + LT + L
∫ t

0
|Xi

s|2 ds.

Using the Gronwall’s inequality (see the proof of Lemma 7.21 of Weinan et al., 2021),

E|Xi
t |2 � (M + LT) exp(LT), t ∈ [0, T], (A.5)

which yields the first inequality of (3.17). For the second inequality of (3.17), use the SDE

Xi
t − Xi

tn =
∫ t

tn
bi(Xs) ds + σ(Wi

t − Wi
tn). (A.6)

Hence,

E|Xi
t − Xi

tn |2 � 2E

∣∣∣∣
∫ t

tn
bi(Xs) ds

∣∣∣∣
2

+ 2dσ 2τ � 2τ

∫ t

tn
E|bi(Xs)|2 ds + 2dσ 2τ . (A.7)

Using the linear growth condition

|bi(x)| � |b(xi)| + |γ i(x)| � L0(|xi| + 1) + L1 � L(|xi| + 1), (A.8)

then one has |bi(x)|2 � 2L2(|xi|2 + 1), and thus

E|Xi
t − Xi

tn |2 � 4L2τ

∫ t

tn

(
E|Xi

s|2 + 1
)

ds + 2dσ 2τ

� 4L2TCτ + 2dσ 2τ = Cτ ,

which is exactly the desired result. The proof above also holds true for the RB–IPS (3.1) because we
only need to use |γ i(x)| � L1 in each time step [tn, tn+1). �
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Proof of Theorem 3.3. WLOG assume the time step τ � T . Define the trajectory difference ei
n = Xi

tn −
X̃i

n. The IPS (1.1) and the discrete IPS (1.3) are given by

Xi
tn+1

= Xi
tn +

∫ tn+1

tn
bi(Xt) dt + σWi

τ , X̃i
n+1 = X̃n +

∫ tn+1

tn
bi(X̃n) dt + σWi

τ , (A.9)

where Wi
τ := Wi

tn+1
− Wi

tn ∼ N (0, τ). Then ei
n satisfies the recurrence relation

ei
n+1 = ei

n +
∫ tn+1

tn
(bi(Xt) − bi(X̃n)) dt. (A.10)

Recall bi(x) = b(xi) + γ i(x). Squaring both sides of (A.10), we obtain

|ei
n+1|2 � (1 + τ)|ei

n|2 +
(

1 + 1

τ

)( ∫ tn+1

tn
(bi(Xt) − bi(X̃n)) dt

)2

� (1 + τ)|ei
n|2 + (1 + τ)

∫ tn+1

tn
|bi(Xt) − bi(X̃n)|2 dt

� (1 + τ)|ei
n|2 + 2(1 + τ)

∫ tn+1

tn
|b(Xi

t) − b(X̃i
n)|2 dt + 2(1 + τ)

∫ tn+1

tn
|γ i(Xt) − γ i(X̃n)|2 dt.

On the one hand, the global Lipschitz condition of b implies

|b(Xi
t) − b(X̃i

n)| � L0|Xi
t − X̃i

n| �⇒
∫ tn+1

tn
|b(Xi

t) − b(X̃i
n)|2 � L2

0

∫ tn+1

tn
|Xi

t − X̃i
n|2 dt. (A.11)

On the other hand, the boundedness of γ i implies

|γ i(Xt) − γ i(X̃n)| � L1|Xi
t − X̃i

n| + L1

N − 1

∑
j �=i

|Xj
t − X̃j

n|

�⇒ |γ i(Xt) − γ i(X̃n)|2 � 2L2
1|Xi

t − X̃i
n|2 + 2L2

1

(
1

N − 1

∑
j �=i

|Xj
t − X̃j

n|
)2

� 2L2
1|Xi

t − X̃i
n|2 + 2L2

1

N − 1

∑
j �=i

|Xj
t − X̃j

n|2

�⇒
∫ tn+1

tn
|γ i(Xt) − γ i(X̃n)|2 dt � 2L2

1

∫ tn+1

tn
|Xi

t − X̃i
n|2 dt + 2L2

1

N − 1

∑
j �=i

∫ tn+1

tn
|Xj

t − X̃j
n|2 dt. (A.12)

Combining (A.11) and (A.12), ei
n+1 can be bounded by

|ei
n+1|2 � (1 + τ)|ei

n|2 + (1 + τ)(2L2
0 + 4L2

1)

∫ tn+1

tn
|Xi

t − X̃i
n|2 dt

+ (1 + τ)
4L2

1

N − 1

∑
j �=i

∫ tn+1

tn
|Xj

t − X̃j
n|2 dt.
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Summation over i gives

N∑
i=1

|ei
n+1|2 � (1 + τ)

N∑
i=1

|ei
n|2 + (1 + τ)(2L2

0 + 8L2
1)

N∑
i=1

∫ tn+1

tn
|Xi

t − X̃i
n|2 dt. (A.13)

Note that by the Cauchy’s inequality

|Xi
t − X̃i

n|2 � 2|Xi
t − Xi

tn |2 + 2|Xi
tn − X̃i

n|2, (A.14)

from Lemma 3.2, we have

E|Xi
t − X̃i

n|2 � Cτ + 2E|ei
n|2. (A.15)

Integrating (A.15) in the time interval [tn, tn+1) gives
∫ tn+1

tn
E|Xi

t − X̃i
n|2 � Cτ 2 + 2τE|ei

n|2. (A.16)

Taking the expectation in (A.13) gives

N∑
i=1

E|ei
n+1|2 � (1 + τ)

N∑
i=1

E|ei
n|2 + C(1 + τ)

(
Nτ 2 + τ

N∑
i=1

E|ei
n|2

)

� (1 + Cτ)

N∑
i=1

E|ei
n|2 + CNτ 2. (A.17)

Note that ei
0 ≡ 0, the discrete Gronwall’s inequality thus gives

1

N

N∑
i=1

E|ei
n|2 � τ

(
(1 + Cτ)n − 1

)
� eCTτ = Cτ , (A.18)

which implies the strong error is bounded by Cτ for 0 � n � T/τ .
Now we turn to the random batch case. Let ei

n = Yi
tn − Ỹ i

n, then ei
n satisfies

|ei
n+1|2 � (1 + τ)|ei

n|2 + 2(1 + τ)

∫ tn+1

tn
|b(Yi

t ) − b(Ỹ i
n)|2 dt + 2(1 + τ)

∫ tn+1

tn
|γ i(Yt) − γ i(Ỹn)|2 dt.

(A.19)

Again we stress that the perturbation force γ i(x) depends on the batch division D = {C1, · · · , Cq}.
Regardless of the batch division in the time interval [tn, tn+1), we have the inequalities

∫ tn+1

tn
|b(Yi

t ) − b(Ỹ i
n)|2 � L2

0

∫ tn+1

tn
|Yi

t − Ỹ i
n|2 dt (A.20)

and

|γ i(Yt) − γ i(Ỹn)| � 2L2
1

∫ tn+1

tn
|Yi

t − Ỹ i
n|2 dt + 2L2

1

p − 1

∑
j �=i,j∈C

∫ tn+1

tn
|Yj

t − Ỹ j
n|2 dt. (A.21)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/44/3/1660/7203656 by Purdue U
niversity user on 05 N

ovem
ber 2025



1694 X.YE AND Z. ZHOU

Combining (A.20) and (A.21), ei
n+1 has the estimate

|ei
n+1|2 � (1 + τ)|ei

n|2 + (1 + τ)(2L2
0 + 4L2

1)

∫ tn+1

tn
|Yi

t − Ỹ i
n|2 dt

+ (1 + τ)
4L2

1

p − 1

∑
j �=i,j∈C

∫ tn+1

tn
|Yj

t − Ỹ j
n|2 dt.

Summation over i ∈ C and C ∈ D recovers
N∑

i=1

|ei
n+1|2 � (1 + τ)

N∑
i=1

|ei
n|2 + (1 + τ)(2L2

0 + 8L2
1)

N∑
i=1

∫ tn+1

tn
|Yi

t − Ỹ i
n|2 dt. (A.22)

Using the same strategy in the case of the IPS (1.1), we have

E|Yi
t − Ỹ i

n|2 � Cτ + 2E|ei
n|2. (A.23)

Taking the expectation in (A.22) then gives

N∑
i=1

E|ei
n+1|2 � (1 + τ)

N∑
i=1

E|ei
n|2 + C(1 + τ)

(
Nτ 2 + τ

N∑
i=1

E|ei
n|2

)

� (1 + Cτ)

N∑
i=1

E|ei
n|2 + CNτ 2, (A.24)

which is exactly the same with (A.17). The rest part of the proof is completely the same. �

Proof of Lemma 3.10. 1. First we estimate |f (x, τ)|2. Using Assumptions 3.1 and 3.9, we have

|f (x, τ)|2 = |x + b(x)τ |2

= |x|2 + 2x · b(x)τ + |b(x)|2τ 2

� |x|2 + 2(θ − α|x|2)τ + 2L2
0(|x|2 + 1)τ 2 (A.25)

= (1 + 2L2
0τ

2 − 2ατ)|x|2 + 2θτ + 2L2
0τ

2. (A.26)

Since τ < α/(2L2
0), (A.26) implies

|f (x, τ)|2 � (1 − ατ)|x|2 + (α + 2θ)τ . (A.27)

To estimate |f (x, τ)|4, square both sides of (A.27) and utilize τ < 1/(2α), then

|f (x, τ)|4 � (1 − ατ)2|x|4 + 2(α + 2θ)|x|2τ + (α + 2θ)2τ 2

� (1 − ατ)2|x|4 +
(

kτ |x|4 + (α + 2θ)2

k
τ
)

+ (α + 2θ)2τ 2

� (1 − 2ατ + α2τ 2 + kτ)|x|4 + (α + 2θ)2

k
τ + (α + 2θ)2τ 2

=
(

1 − 3ατ

2
+ kτ

)
|x|4 + O(τ ), (A.28)
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where k > 0 is an O(1) parameter to be determined. Choose k = α/2 in (A.28), then

|f (x, τ)|4 � (1 − ατ)|x|4 + O(τ ), (A.29)

hence (3.26) holds. 2. By direct calculation,

|f (x, τ) + γ τ |2 � |f (x, τ)|2 + 2|f (x, τ)|L1τ + L2
1τ

2

� |f (x, τ)|2 +
(
|f (x, τ)|2kτ + L2

1

k
τ
)

+ L2
1τ

2

= (1 + kτ)|f (x, τ)|2 + O(τ ),

where k > 0 is an O(1) parameter to be determined. By (3.26), we choose k = α/2 and

|f (x, τ) + γ τ |2 �
(

1 + ατ

2

)
|f (x, τ)|2 + O(τ )

�
(

1 + ατ

2

)(
(1 − ατ)|x|2 + O(τ )

)
+ O(τ )

�
(

1 − ατ

2

)
|x|2 + O(τ ). (A.30)

Squaring both sides of (A.30), one obtains

|f (x, τ) + γ τ |4 �
((

1 − ατ

2

)
|x|2 + Cτ

)2

=
(

1 − ατ + α2τ 2

4

)
|x|4 + 2C|x|2τ + O(τ 2)

�
(

1 − 3ατ

4

)
|x|4 +

(
kτ |x|4 + C2τ

k

)
+ O(τ 2)

=
(

1 − 3ατ

4
+ kτ

)
|x|4 + O(τ ),

where k > 0 is a O(1) parameter. By choosing k = α/4, (3.27) becomes true. �

Proof of Theorem 3.11. The update scheme of the discrete IPS trajectory X̃i
n is given by

X̃i
n+1 = X̃i

n + b(X̃i
n)τ + γ i(X̃n)τ + σWi

τ , (A.31)

where Wi
τ ∼ N (0, τ), and γ i is defined in (3.8). With f (x, τ) = x + b(x)τ , we can write (A.31) as

X̃i
n+1 = f (X̃i

n, τ) + γ i(X̃n)τ + σWi
τ . (A.32)
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1696 X.YE AND Z. ZHOU

Note that the random variable Wi
τ is independent of X̃n, we have

E|X̃i
n+1|4 = E|f (X̃i

n, τ) + γ i(X̃n)τ |4 + 6E|f (X̃i
n, τ) + γ i(X̃n)τ |2 E|σWi

τ |2 + E|σWi
τ |4

= E|f (X̃i
n, τ) + γ i(X̃n)τ |4 + 6E|f (X̃i

n, τ) + γ i(X̃n)τ |2dσ 2τ + 3d2σ 4τ 2

� E|f (X̃i
n, τ) + γ i(X̃n)τ |4 +

(
kτ E|f (X̃i

n, τ) + γ i(X̃n)τ |4 + 9d2σ 4τ 2

k

)
+ 3d2σ 4τ 2

= (1 + kτ)E|f (X̃i
n, τ) + γ i(X̃n)τ |4 + O(τ 2), (A.33)

where k > 0 is an O(1) parameter to be determined. Since γ i(X̃n) is uniformly bounded by L1, by
Lemma 3.10 we have

E|f (X̃i
n) + γ i(X̃n)τ |4 �

(
1 − ατ

2

)
E|X̃i

n|4 + Cτ . (A.34)

Hence, (A.33) implies

E|X̃i
n+1|4 � (1 + kτ)

((
1 − ατ

2

)
E|X̃i

n|4 + Cτ

)
+ O(τ 2)

�
(

1 −
(α

2
− k

)
τ

)
E|X̃i

n|4 + O(τ ). (A.35)

Now we can choose k = α/4 in (A.35) to obtain

E|X̃i
n+1|4 �

(
1 − ατ

4

)
E|X̃i

n|4 + Cτ , (A.36)

and thus by the discrete Gronwall’s inequality,

sup
n�0

E|X̃i
n|4 � max

{
M4,

4C

α

}
. (A.37)

For the discrete RB–IPS (1.4), the proof is completely the same because we still have |γ i(x)| � L1, and
thus the recurrence relation

E|Ỹ i
n+1|4 �

(
1 − ατ

4

)
E|Ỹ i

n|4 + Cτ (A.38)

becomes true. �
Proof of Lemma 3.18. By induction on the integer s � 1, it is easy to verify if n � sm, then

an � ε
1 − qs

1 − q
+ qsan−sm. (A.39)

For any integer n � 0, let n = sm + r for some integer s � 0 and r ∈ {0, 1, · · · , m − 1}. Then

an � ε

1 − q
+ Mqs � ε

1 − q
+ Mq

n
m −1, (A.40)

yielding (3.40). �
Proof of Theorem 4.6. Given the probability distributions μ, ν ∈ P(Rd), by Theorem 3.15 we have

W1(μ
⊗Npt, ν

⊗Npt) � Ce−βtW1(μ
⊗N , ν⊗N) = Ce−βtW1(μ, ν). (A.41)
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ERROR ANALYSIS OF TIME-DISCRETE RBM 1697

Here, (pt)t�0 is the semigroup of the IPS (1.1) in R
Nd. Recall that W1 on the LHS is the normalized

Wasserstein-1 distance in R
Nd defined in (3.23), and W1 on the RHS is the classical Wasserstein-1

distance in R
d. Using the triangle inequality, we have

W1(μp̄t, νp̄t) = W1(μ
⊗Np̄⊗N

t , ν⊗Np̄⊗N
t )

� W1(μ
⊗Np̄⊗N

t , μ⊗Npt) + W1(ν
⊗Np̄⊗N

t , ν⊗Npt) + W1(μ
⊗Npt, ν

⊗Npt)

� W1(μ
⊗Np̄⊗N

t , μ⊗Npt) + W1(ν
⊗Np̄⊗N

t , ν⊗Npt) + Ce−βtW1(μ, ν).

By Theorem 4.1, for given t > 0, there exists a constant C0 = C0(κ , L0, σ , t) such that

W1(μ
⊗Np̄⊗N

t , μ⊗Npt) � C0

N
. (A.42)

Hence, we obtain

W1(μp̄t, νp̄t) � 2C0√
N

+ Ce−βtW1(μ, ν). (A.43)

Fix t > 0 and let N → ∞, we obtain

W1(μp̄t, νp̄t) � Ce−βtW1(μ, ν), (A.44)

which is the desired result. �

Proof of Corollary 4.7. First we prove the existence of the invariant distribution π̄ ∈ P1(R
d) of the

MVP (1.2). Since (p̄t)t�0 is a nonlinear semigroup, we cannot use the same technique as in the linear
case. Our proof below is partially inspired from Theorem 5.1 of Cañizo & Mischler (2021). Choose the
constant T , which satisfies Ce−βT = 1/2, then we have

W1(μp̄T , νp̄T) � 1

2
W1(μ, ν) (A.45)

for any probability distributions μ, ν ∈ P1(R
d). Hence, the mapping μ �→ μp̄T is contractive in the

complete metric space (P1(R
d),W1(·, ·)). Using the Banach fixed point theorem, there exists a unique

fixed point π̄ ∈ P1(R
d) such that

π̄ p̄T = π̄ . (A.46)

Since (p̄t)t�0 forms a semigroup, for any t � 0, we have
(
π̄ p̄t

)
p̄T = π̄ p̄t, (A.47)

which implies π̄ p̄t ∈ P1(R
d) is the invariant distribution of the operator p̄T . Due to the uniqueness of

the invariant distribution π̄ for the operator p̄T , we obtain

π̄ p̄t = π̄ , ∀t � 0, (A.48)

hence π̄ ∈ P1(R
d) is the invariant distribution of the semigroup (p̄t)t�0.

Next we estimate the difference between the invariant distributions π , π̄ ∈ P1(R
d). We still choose

the constant T according to Ce−βT = 1/2. Using the triangle inequality, there exists a constant
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C = C(κ , L0, σ) such that

W1(π̄
⊗N , π) = W1(π̄

⊗Np̄⊗N
T , πpT)

� W1(π̄
⊗Np̄⊗N

T , π̄⊗NpT) + W1(π̄
⊗NpT , πpT)

� C√
N

+ Ce−βTW1(π̄
⊗N , π)

= C√
N

+ 1

2
W1(π̄

⊗N , π).

Then W1(π̄
⊗N , π) � C/

√
N. �
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