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1 Introduction

Let M and N be smooth manifolds of dimension m and n respectively, and let F : M → N be
a smooth mapping between them. Recall that a smooth manifold is a topological space that is
locally homeomorphic to Euclidean space, equipped with a smooth structure (a maximal atlas of
compatible charts) that allows for calculus to be performed globally. A map F is called smooth if
its representation in local coordinates is infinitely differentiable.

Crucial to the study of smooth maps is the linearization of the manifold itself. At every point
p ∈ M , we associate a vector space known as the tangent space, denoted by TpM . Intuitively, TpM
represents the best linear approximation of the manifold at p, consisting of all possible direction
vectors tangent to M at that point. Formally, it can be defined as the space of equivalence classes
of curves passing through p, or algebraically as the space of derivations (linear operators obeying
the Leibniz rule) on smooth functions at p.

A central concept in differential geometry is the differential of F at a point p ∈ M , denoted
by dFp (or sometimes F∗,p). Just as F maps points from M to N , the differential maps the local
linear structure of M to that of N . Specifically, it is a linear map from the tangent space of M at
p to the tangent space of N at F (p):

dFp : TpM → TF (p)N.

This map serves as the intrinsic generalization of the Jacobian matrix in multivariable calculus. To
truly understand dFp, one must look beyond a single definition. Below, we explore four comple-
mentary perspectives that illuminate the geometric, analytic, algebraic, and computational nature
of this map.
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2 Four Perspectives on the Differential

2.1 Geometric Perspective: Pushforward of Curves

This is perhaps the most intuitive way to visualize the differential. We view tangent vectors in
TpM as velocities of curves passing through p. Let v ∈ TpM be a tangent vector. We can choose a
smooth curve γ : (−ϵ, ϵ) → M such that γ(0) = p and γ′(0) = v. The map F sends this curve to a
new curve F ◦ γ in N . The differential dFp(v) is defined as the velocity vector of this image curve
at t = 0:

dFp(v) =
d

dt

∣∣∣∣
t=0

(F ◦ γ(t)). (1)

In this sense, dFp “pushes forward” the infinitesimal motion from M to N .

Figure 1: Geometric Perspective: The differential dFp maps the velocity vector of a curve γ on
M to the velocity vector of the image curve F ◦ γ on N .
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2.2 Analytic Perspective: Best Linear Approximation

In multivariable calculus, the derivative is often understood as a linear map that approximates a
non-linear function locally. The same principle applies to manifolds. Although M and N may
be curved globally, their tangent spaces TpM and TF (p)N act as “flat” local linear models. The
differential dFp captures the first-order behavior of F near p. Heuristically, for a small displacement
vector h ∈ TpM , we have:

F (p+ h) ≈ F (p) + dFp(h). (2)

It ignores higher-order terms (curvature) and provides the optimal linearization of the map F at
the point p.

Figure 2: Analytic Perspective: dFp serves as the best linear approximation of the map F
between the tangent spaces, linearizing the geometry locally.
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2.3 Algebraic Perspective: Action as Derivations

Modern differential geometry often defines tangent vectors as derivations—linear operators that
satisfy the Leibniz rule (product rule) when acting on smooth functions. Let C∞(N) denote the
set of smooth real-valued functions on N . For a vector v ∈ TpM and a function g ∈ C∞(N), the
vector dFp(v) ∈ TF (p)N acts on g by:

(dFp(v))(g) = v(g ◦ F ). (3)

Here, g ◦ F is a function on M , so v can differentiate it. This definition highlights the duality
between the pushforward of vectors (dF ) and the pullback of functions (F ∗ : g 7→ g ◦ F ).

Figure 3: Algebraic Perspective: The differential is defined by its action on smooth functions.
It measures the rate of change of the pulled-back function g ◦ F along v.
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2.4 Coordinate Perspective: The Jacobian Matrix

To compute dFp explicitly, we introduce local charts. Let (x1, . . . , xm) be coordinates near p on M ,
and (y1, . . . , yn) be coordinates near F (p) on N . In these coordinates, F is given by n component
functions yα = Fα(x1, . . . , xm). The differential dFp is represented by the Jacobian matrix JF :

JF =


∂F 1

∂x1 · · · ∂F 1

∂xm

...
. . .

...
∂Fn

∂x1 · · · ∂Fn

∂xm

 . (4)

This matrix transforms the basis vectors ∂
∂xi of TpM into linear combinations of the basis vectors

∂
∂yα of TF (p)N .

Figure 4: Coordinate Perspective: In local coordinates, the abstract linear map dFp becomes
the Jacobian matrix, linking the partial derivatives of the coordinate representations.

3 Conclusion

The differential dF is a manifestation of functoriality in geometry. It is a bundle map from the
tangent bundle TM to TN that translates the infinitesimal linear structure of M to that of N . Mas-
tering these four perspectives—geometric curves, analytic linearization, algebraic derivations, and
coordinate matrices—provides a complete understanding of how smooth maps transmit geometric
information.
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