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1 Problem Statement

Let X and Y be finite sample spaces with |X| = M and |Y| = N. Assume we are given the
probability distributions u € P(X) and v € P(}), represented by the probability vectors

M M N N
= ()it eRY, v =(y))L, eRY.

Furthermore, let Q) = (Q”)%ivl € P(X x Y) be a given reference probability distribution. We aim
to find a new distribution P = (Pl])%ivl € P(X x Y) that looks like (), but which has the specified
marginal distributions p and v.

More precisely, we aim to solve the following optimization problem, which seeks the distribution
P closest to @ in relative entropy while matching the marginals:

Peg(li);lxy) D1, (P||Q) subject to Py = p and Py = v. (1)

Here, Py and Py denote the marginal distributions of P on X and )Y, respectively, and the relative
entropy (Kullback—Leibler divergence) Dkr,(P||Q) is defined via

DxL(P||Q) = Z

Equivalently, (1) can be reformulated in terms of the components P;;:

N M
no Z ZP” log / subject to ZPU = p; and Zpij = ;. (2)
]R X j

(Pi; )E i=1 j=1 j=1 i=1

Clearly, (2) is a convex optimization problem with linear constraints.

In this paper, we introduce the Iterative Proportional Fitting (IPF) algorithm, a simple
and efficient method for solving the optimization problem (1). Interestingly, the IPF algorithm was
originally proposed by W. Edwards Deming and Frederick F. Stephan in 1940 to solve a practical
problem involving the adjustment of contingency tables. Its application in information theory,
particularly for solving the optimization problem (1), was discovered much later, after the 1970s.



2 Iterative Proportional Fitting

The Iterative Proportional Fitting algorithm is designed as follows:

Algorithm 1: Iterative Proportional Fitting (IPF)

Input: Marginal distributions u € P(X), v € P(Y); Reference distribution Q € P(X x Y)
Output: The distribution P solving the optimization problem (1)

Set PO = Q;

2 for k=0,1,2,... do

// Fit the p marginal (row sums)

3 P»(,k+%) =p® <'ui>, for all 4, j;
>

=

// Fit the v marginal (column sums)
4 Pi(ij) = P,(,’“%) <Vj), for all 4, j;
2

K M k+3
=1 Pz'(/‘ !
= J

Output P = P until convergence.

%]

This algorithm appears deceptively simple, as it merely adjusts row and column scaling factors
alternately. A natural question is how this sequence of distributions P*) can converge to the
solution of the non-linear optimization problem (1).

To gain some insight, observe that the iterates P(*) retain a specific structure relative to the ref-
erence distribution Q. Starting from P(©) = @Q, each subsequent iterate generated by the algorithm
can be expressed in the form:

P = o Qu", 3)

where o®) € Rff and BF) Rf are non-negative scaling vectors. In this sense, P(*) maintains the
underlying structure of @ (i.e., it remains a biproportional scaling), and the algorithm iteratively
updates these scaling vectors a*) and S#).

On the other hand, we can prove that the unique solution P* = (F};) to the optimization
problem (2) has exactly the same biproportional form:

P;} = anijﬁ;, (4)

where a* € R]‘f and B* € Rf are non-negative scaling vectors. This form can be derived formally
using the method of Lagrangian multipliers. Let f = (f;)M, and g = (gj)é\[:1 be the Lagrange mul-
tipliers associated with the row-sum (u;) and column-sum (v;) constraints, respectively. Utilizing
the matrix form (2), we define the Lagrangian £ as

M N P M N N M
£=3 3 Ryt —1) = (R ) - (o)
= j= Jj= i=

i=1 j=1

By setting the partial derivative of £ with respect to P;; to zero at the optimal point, we obtain
the KKT condition satisfied by the optimal solution P*:
oL P*




This matches the form (4) by choosing the non-negative scalings o = efi and B = edi.

The consistency between the iterative form (3) and the optimal form (4) is a key insight. It
demonstrates that the IPF algorithm implicitly searches for the correct scaling factors by producing
a sequence P(®) that always preserves the required structure of the optimal solution.

3 Convergence Analysis

We now present a rigorous convergence analysis for the IPF algorithm. First, we define the con-
cept of an information projection. Let C be a set of probability distributions. The information
projection of a distribution P onto the set C, denoted P, is defined as the distribution in C' that
minimizes the relative entropy from P:

pt .= in D P).
arg min Dir(R||P) (5)

This projection satisfies the following generalized Pythagorean theorem for relative entropy.

Lemma 1 Let C be a conver set of probability distributions, and let P+ be the information projec-
tion of P onto C. Then, for any distribution Q) € C, we have

Dxr(QIIP) > Dxu(Q||P~) + Dxv(P | P). (6)

Proof Expanding the terms in (6), the inequality is equivalent to:

ZQz IOgi ZQz IOg L
<= ZQ1<Iog— ) ZPJ‘log
= ZQZ ZPJ‘log

N PJ_
§ — Pl
<~ Og P7,

We prove (7) by contradiction. Assume the inequality does not hold, i.e.,

L
S(@i— Pylog

i

< 0.

Since C is convex, for any ¢ € [0, 1], the distribution P* = (1 —¢)P+ +tQ is also in C. In particular,
PY = Pt is the projection. Next, we compute the derivative of Dk, (P*||P) with respect to t:

d t t 1 P)’Lt
FPaPIP) = SR (o8 —1) = 3@, - P tes -

2

Evaluating this derivative at t = 0 (where P? = P:-), we have

d
— Dk (P*||P)

PL
= . _ pt Zi
5 = (Qi = P)log - <.

t=0 i %




This implies that for small ¢ > 0, we have Dkp,(P'||P) < Dkr(P°||P) = Dk (P*|P). However,
P! € C, and this contradicts the definition of PL as the unique minimizer of Dxy,(R||P) over all
R € C. Therefore, the inequality (7) must hold. [ |

Next, we define the two sets of distributions that satisfy one of the two marginal constraints:

N M
CH:{PERTXN:ZPM:M, for alli}, Oyz{PefoN;ZPijzyj, for allj}. (8)

=1 i=1

It is clear that C,, and C), are convex sets, as they are defined by linear equality constraints. The key
insight is that the IPF algorithm is geometrically equivalent to performing alternating information
projections onto these two sets.

Lemma 2 The IPF algorithm (Algorithm 1) is equivalent to the alternating projection sequence:

(k+3) — : (k) (k+1) — ; (k+3)
pira argérell(j,r{LDKL(RllP ), P arg min Dyp,(R|PT2). (9)

Proof By symmetry, we only need to verify the first step: the projection of P*) onto C,. By
definition, this projection P(+3) s the solution R to the optimization problem:

N
min Dk (R]|| P subject to R;; = p;, for all 4.
non i ke (B[ PH) ] ; i=

This problem is separable and can be solved independently for each row i:
N R N
min R;ilog —% subject to Rii = ;.
(Rij);vzl GRf ; “ Pz(jk) ; *J !

Using the same Lagrangian multiplier approach as before (introducing f; for the constraint on row
i), the optimality condition is

9
8Rij

R
=0 = log (g)—fl:o.
P.

ij

R..
Ri'<10g o _1)_fi R;;
J P(k) ( J)

j

1 1 Ly
This implies the solution P%**2) must have the form Pijk+2) = efi Pl(jk), which is exactly the first

,

update step in Algorithm 1. An identical argument holds for the projection onto C, (which is
separable by columns j), thus verifying the equivalence (9). |

Since the objective function in (2) is strictly convex over the constraint set, there exists a
unique optimal solution, which we denote by P*. The following theorem establishes that the IPF
algorithm’s iterates monotonically approach this solution in the sense of relative entropy.

Theorem 1 The sequence P*) generated by the IPF algorithm (Algorithm 1) satisfies
D, (P[P*HD) < Dy, (P*[|[PEF2)) < Der, (P7(|P™).

Moreover, klim Dk (P*||P®) = 0.
—00



Proof P*+2) is the information projection of P*) onto the convex set C}.. Since P* is the optimal
solution, it must satisfy the marginal constraints, which implies P* € C,. We can now apply the
Pythagorean theorem (Lemma 1) to obtain

Dy (PY|P) > Dict (P [PUF2)) + Dicy (PEF) [ PO). (10)
Since Dgp,(P*+2)||P(®)) > 0, equation (10) immediately implies the first inequality
Dicr (P7[[PF2)) < Dyt (P P™).

The second inequality, Dxr,(P*||[P* 1)) < Dyp,(P*||P%*+2)), holds true for an identical reason by
considering the projection onto C, (which also contains P*).

Thus, the sequence Dgr,(P*||P*)) is monotonically decreasing in k and bounded below by 0.
It must therefore converge to a limit, a > 0:

lim Dy (P*||P™) = a. (11)
k— o0
Next, we prove a = 0. Note that the results (10) and (11) imply
lim Dgp(P#+2)||P*) = 0.
k— o0

A similar argument shows klim DKL(P(’““)HP(’”%)) =0.
—00

In Algorithm 1, the entries of Pi(jk) are bounded by 1, hence the sequence {P("C)}zcz1 is bounded.
By the Bolzano—Weierstrass theorem, there exists a convergent subsequence. Let R* be the limit

of such a subsequence:

R* =lim P,
kel

where I is an infinite subset of N. Denote the information projection onto C), by

Proj,(P) := arg}%relicr} Dxy(R|P).
I

Then P*+2) = ProjH(P(k)). By the continuity of the projection and the KL divergence, we take
the limit along the subsequence I:

DKL (PI‘OjN (R* )

7) -

D (Prof, (P P9) o,

which implies Proj #(R*) = R* or R* € C},. In other words, the subsequence limit R* satisfies the
marginal constraint for ;. By a similar argument using the second half-step, we also have R* € C,,.

Furthermore, as a consequence of the biproportional form (3), the subsequence limit R* must
also have the form

R = a7 Qij 55

for some scaling vectors a* and *. Since R* has the biproportional form and also has marginal
distributions p and v (R* € C,,NC,), it satisfies the KKT conditions for the optimization problem
(2). For this convex optimization problem with a strictly convex objective, the solution satisfying
the KKT conditions is unique. Therefore, R* is nothing but the unique optimal solution P*. By
the continuity of the KL divergence, we obtain

a= lim Dgy(P*||[P™) = Dgp(P*| lim P®) = Dy (P*|P*) =0,
kel ,k— oo k—oco

which confirms a = 0, thus completing the proof. |



4 Numerical Test

We implement a simple numerical test of the IPF algorithm. We set the marginals p and v to be
8-dimensional probability vectors (i.e., M = N = 8) and compute the optimal 8 x 8 probability
matrix. The resulting distribution, along with the target marginals, is visualized as follows.

Marginal v;

Target 1 ..l...--
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1 2 3 4 5 6 7 8
Computed Distribution Pj;

The source codes can be found at the following link: https://xuda-ye.wordpress.com/wp-content/
uploads/2025/11/ipf .zip


https://xuda-ye.wordpress.com/wp-content/uploads/2025/11/ipf.zip
https://xuda-ye.wordpress.com/wp-content/uploads/2025/11/ipf.zip
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