
Iterative Proportional Fitting

Xuda Ye

Purdue University

November 13, 2025

1 Problem Statement

Let X and Y be finite sample spaces with |X | = M and |Y| = N . Assume we are given the
probability distributions µ ∈ P(X ) and ν ∈ P(Y), represented by the probability vectors

µ = (µi)
M
i=1 ∈ RM

+ , ν = (νj)
N
j=1 ∈ RN

+ .

Furthermore, let Q = (Qij)
M,N
i,j=1 ∈ P(X ×Y) be a given reference probability distribution. We aim

to find a new distribution P = (Pij)
M,N
i,j=1 ∈ P(X ×Y) that looks like Q, but which has the specified

marginal distributions µ and ν.
More precisely, we aim to solve the following optimization problem, which seeks the distribution

P closest to Q in relative entropy while matching the marginals:

min
P∈P(X×Y)

DKL(P∥Q) subject to PX = µ and PY = ν. (1)

Here, PX and PY denote the marginal distributions of P on X and Y, respectively, and the relative
entropy (Kullback–Leibler divergence) DKL(P∥Q) is defined via

DKL(P∥Q) =
∑
i,j

Pij log
Pij

Qij
.

Equivalently, (1) can be reformulated in terms of the components Pij :

min
(Pij)∈RM×N

+

M∑
i=1

N∑
j=1

Pij log
Pij

Qij
subject to

N∑
j=1

Pij = µi and

M∑
i=1

Pij = νj . (2)

Clearly, (2) is a convex optimization problem with linear constraints.
In this paper, we introduce the Iterative Proportional Fitting (IPF) algorithm, a simple

and efficient method for solving the optimization problem (1). Interestingly, the IPF algorithm was
originally proposed by W. Edwards Deming and Frederick F. Stephan in 1940 to solve a practical
problem involving the adjustment of contingency tables. Its application in information theory,
particularly for solving the optimization problem (1), was discovered much later, after the 1970s.
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2 Iterative Proportional Fitting

The Iterative Proportional Fitting algorithm is designed as follows:

Algorithm 1: Iterative Proportional Fitting (IPF)

Input: Marginal distributions µ ∈ P(X ), ν ∈ P(Y); Reference distribution Q ∈ P(X × Y)
Output: The distribution P solving the optimization problem (1)

1 Set P (0) = Q;
2 for k = 0, 1, 2, . . . do

// Fit the µ marginal (row sums)

3 P
(k+ 1

2 )
ij = P

(k)
ij

(
µi∑N

j′=1 P
(k)
ij′

)
, for all i, j;

// Fit the ν marginal (column sums)

4 P
(k+1)
ij = P

(k+ 1
2 )

ij

(
νj∑M

i′=1 P
(k+ 1

2 )

i′j

)
, for all i, j;

5 Output P = P (k) until convergence.

This algorithm appears deceptively simple, as it merely adjusts row and column scaling factors
alternately. A natural question is how this sequence of distributions P (k) can converge to the
solution of the non-linear optimization problem (1).

To gain some insight, observe that the iterates P (k) retain a specific structure relative to the ref-
erence distribution Q. Starting from P (0) = Q, each subsequent iterate generated by the algorithm
can be expressed in the form:

P
(k)
ij = α

(k)
i Qijβ

(k)
j , (3)

where α(k) ∈ RM
+ and β(k) ∈ RN

+ are non-negative scaling vectors. In this sense, P (k) maintains the
underlying structure of Q (i.e., it remains a biproportional scaling), and the algorithm iteratively
updates these scaling vectors α(k) and β(k).

On the other hand, we can prove that the unique solution P ∗ = (P ∗
ij) to the optimization

problem (2) has exactly the same biproportional form:

P ∗
ij = α∗

iQijβ
∗
j , (4)

where α∗ ∈ RM
+ and β∗ ∈ RN

+ are non-negative scaling vectors. This form can be derived formally
using the method of Lagrangian multipliers. Let f = (fi)

M
i=1 and g = (gj)

N
j=1 be the Lagrange mul-

tipliers associated with the row-sum (µi) and column-sum (νj) constraints, respectively. Utilizing
the matrix form (2), we define the Lagrangian L as

L =

M∑
i=1

N∑
j=1

Pij

(
log

Pij

Qij
− 1

)
−

M∑
i=1

fi

( N∑
j=1

Pij − µi

)
−

N∑
j=1

gj

( M∑
i=1

Pij − νj

)
.

By setting the partial derivative of L with respect to Pij to zero at the optimal point, we obtain
the KKT condition satisfied by the optimal solution P ∗:

∂L
∂Pij

= log
P ∗
ij

Qij
− fi − gj = 0 =⇒ P ∗

ij = efiQije
gj .
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This matches the form (4) by choosing the non-negative scalings α∗
i = efi and β∗

j = egj .
The consistency between the iterative form (3) and the optimal form (4) is a key insight. It

demonstrates that the IPF algorithm implicitly searches for the correct scaling factors by producing
a sequence P (k) that always preserves the required structure of the optimal solution.

3 Convergence Analysis

We now present a rigorous convergence analysis for the IPF algorithm. First, we define the con-
cept of an information projection. Let C be a set of probability distributions. The information
projection of a distribution P onto the set C, denoted P⊥, is defined as the distribution in C that
minimizes the relative entropy from P :

P⊥ := arg min
R∈C

DKL(R∥P ). (5)

This projection satisfies the following generalized Pythagorean theorem for relative entropy.

Lemma 1 Let C be a convex set of probability distributions, and let P⊥ be the information projec-
tion of P onto C. Then, for any distribution Q ∈ C, we have

DKL(Q∥P ) ⩾ DKL(Q∥P⊥) +DKL(P
⊥∥P ). (6)

Proof Expanding the terms in (6), the inequality is equivalent to:∑
i

Qi log
Qi

Pi
⩾

∑
i

Qi log
Qi

P⊥
i

+
∑
i

P⊥
i log

P⊥
i

Pi

⇐⇒
∑
i

Qi

(
log

Qi

Pi
− log

Qi

P⊥
i

)
⩾

∑
i

P⊥
i log

P⊥
i

Pi

⇐⇒
∑
i

Qi log
P⊥
i

Pi
⩾

∑
i

P⊥
i log

P⊥
i

Pi

⇐⇒
∑
i

(Qi − P⊥
i ) log

P⊥
i

Pi
⩾ 0. (7)

We prove (7) by contradiction. Assume the inequality does not hold, i.e.,∑
i

(Qi − P⊥
i ) log

P⊥
i

Pi
< 0.

Since C is convex, for any t ∈ [0, 1], the distribution P t = (1− t)P⊥+ tQ is also in C. In particular,
P 0 = P⊥ is the projection. Next, we compute the derivative of DKL(P

t∥P ) with respect to t:

d

dt
DKL(P

t∥P ) =
d

dt

∑
i

P t
i

(
log

P t
i

Pi
− 1

)
=

∑
i

(Qi − P⊥
i ) log

P t
i

Pi
.

Evaluating this derivative at t = 0 (where P 0
i = P⊥

i ), we have

d

dt
DKL(P

t∥P )

∣∣∣∣
t=0

=
∑
i

(Qi − P⊥
i ) log

P⊥
i

Pi
< 0.
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This implies that for small t > 0, we have DKL(P
t∥P ) < DKL(P

0∥P ) = DKL(P
⊥∥P ). However,

P t ∈ C, and this contradicts the definition of P⊥ as the unique minimizer of DKL(R∥P ) over all
R ∈ C. Therefore, the inequality (7) must hold. ■

Next, we define the two sets of distributions that satisfy one of the two marginal constraints:

Cµ =

{
P ∈ RM×N

+ :

N∑
j=1

Pij = µi, for all i

}
, Cν =

{
P ∈ RM×N

+ :

M∑
i=1

Pij = νj , for all j

}
. (8)

It is clear that Cµ and Cν are convex sets, as they are defined by linear equality constraints. The key
insight is that the IPF algorithm is geometrically equivalent to performing alternating information
projections onto these two sets.

Lemma 2 The IPF algorithm (Algorithm 1) is equivalent to the alternating projection sequence:

P (k+ 1
2 ) = arg min

R∈Cµ

DKL(R∥P (k)), P (k+1) = arg min
R∈Cν

DKL(R∥P (k+ 1
2 )). (9)

Proof By symmetry, we only need to verify the first step: the projection of P (k) onto Cµ. By

definition, this projection P (k+ 1
2 ) is the solution R to the optimization problem:

min
R∈RM×N

+

DKL(R∥P (k)) subject to

N∑
j=1

Rij = µi, for all i.

This problem is separable and can be solved independently for each row i:

min
(Rij)Nj=1∈RN

+

N∑
j=1

Rij log
Rij

P
(k)
ij

subject to

N∑
j=1

Rij = µi.

Using the same Lagrangian multiplier approach as before (introducing fi for the constraint on row
i), the optimality condition is

∂

∂Rij

[
Rij

(
log

Rij

P
(k)
ij

− 1

)
− fi(Rij)

]
= 0 =⇒ log

Rij

P
(k)
ij

− fi = 0.

This implies the solution P (k+ 1
2 ) must have the form P

(k+ 1
2 )

ij = efiP
(k)
ij , which is exactly the first

update step in Algorithm 1. An identical argument holds for the projection onto Cν (which is
separable by columns j), thus verifying the equivalence (9). ■

Since the objective function in (2) is strictly convex over the constraint set, there exists a
unique optimal solution, which we denote by P ∗. The following theorem establishes that the IPF
algorithm’s iterates monotonically approach this solution in the sense of relative entropy.

Theorem 1 The sequence P (k) generated by the IPF algorithm (Algorithm 1) satisfies

DKL(P
∗∥P (k+1)) ⩽ DKL(P

∗∥P (k+ 1
2 )) ⩽ DKL(P

∗∥P (k)).

Moreover, lim
k→∞

DKL(P
∗∥P (k)) = 0.
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Proof P (k+ 1
2 ) is the information projection of P (k) onto the convex set Cµ. Since P

∗ is the optimal
solution, it must satisfy the marginal constraints, which implies P ∗ ∈ Cµ. We can now apply the
Pythagorean theorem (Lemma 1) to obtain

DKL(P
∗∥P (k)) ⩾ DKL(P

∗∥P (k+ 1
2 )) +DKL(P

(k+ 1
2 )∥P (k)). (10)

Since DKL(P
(k+ 1

2 )∥P (k)) ⩾ 0, equation (10) immediately implies the first inequality

DKL(P
∗∥P (k+ 1

2 )) ⩽ DKL(P
∗∥P (k)).

The second inequality, DKL(P
∗∥P (k+1)) ⩽ DKL(P

∗∥P (k+ 1
2 )), holds true for an identical reason by

considering the projection onto Cν (which also contains P ∗).
Thus, the sequence DKL(P

∗∥P (k)) is monotonically decreasing in k and bounded below by 0.
It must therefore converge to a limit, a ⩾ 0:

lim
k→∞

DKL(P
∗∥P (k)) = a. (11)

Next, we prove a = 0. Note that the results (10) and (11) imply

lim
k→∞

DKL(P
(k+ 1

2 )∥P (k)) = 0.

A similar argument shows lim
k→∞

DKL(P
(k+1)∥P (k+ 1

2 )) = 0.

In Algorithm 1, the entries of P
(k)
ij are bounded by 1, hence the sequence {P (k)}∞k=1 is bounded.

By the Bolzano–Weierstrass theorem, there exists a convergent subsequence. Let R∗ be the limit
of such a subsequence:

R∗ = lim
k∈I

P (k),

where I is an infinite subset of N. Denote the information projection onto Cµ by

Projµ(P ) := arg min
R∈Cµ

DKL(R∥P ).

Then P (k+ 1
2 ) = Projµ(P

(k)). By the continuity of the projection and the KL divergence, we take
the limit along the subsequence I:

DKL

(
Projµ(R

∗)
∥∥R∗) = lim

k∈I,k→∞
DKL

(
Projµ(P

(k))
∥∥P (k)

)
= 0,

which implies Projµ(R
∗) = R∗ or R∗ ∈ Cµ. In other words, the subsequence limit R∗ satisfies the

marginal constraint for µ. By a similar argument using the second half-step, we also have R∗ ∈ Cν .
Furthermore, as a consequence of the biproportional form (3), the subsequence limit R∗ must

also have the form
R∗

ij = α∗
iQijβ

∗
j

for some scaling vectors α∗ and β∗. Since R∗ has the biproportional form and also has marginal
distributions µ and ν (R∗ ∈ Cµ ∩Cν), it satisfies the KKT conditions for the optimization problem
(2). For this convex optimization problem with a strictly convex objective, the solution satisfying
the KKT conditions is unique. Therefore, R∗ is nothing but the unique optimal solution P ∗. By
the continuity of the KL divergence, we obtain

a = lim
k∈I,k→∞

DKL(P
∗∥P (k)) = DKL(P

∗∥ lim
k→∞

P (k)) = DKL(P
∗∥P ∗) = 0,

which confirms a = 0, thus completing the proof. ■
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4 Numerical Test

We implement a simple numerical test of the IPF algorithm. We set the marginals µ and ν to be
8-dimensional probability vectors (i.e., M = N = 8) and compute the optimal 8 × 8 probability
matrix. The resulting distribution, along with the target marginals, is visualized as follows.

Computed Distribution Pij

1 2 3 4 5 6 7 8

i

1

2

3

4

5

6

7

8

0.005

0.01

0.015

0.02

0.025

0.03

Marginal 8j

Target 7i

The source codes can be found at the following link: https://xuda-ye.wordpress.com/wp-content/
uploads/2025/11/ipf.zip
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