
Handbook of Generative Models for Mathematicians

Xuda Ye

Purdue University

December 13, 2025

Generative models have become a cornerstone of modern machine learning. While many com-
puter scientists and engineers are actively researching this field, their notations and proofs, often
stemming from different conventions and mathematical training, can be ambiguous to mathemati-
cians and statisticians. Common examples include writing expectations without explicitly stating
the underlying distribution or using the same notation (e.g., xt) to represent both a random variable
and its realization. Furthermore, abbreviations are frequently employed without their corresponding
full terms being defined, adding to the ambiguity.

This handbook aims to bridge this gap by providing mathematically rigorous (at least formally)
formulations of generative models. It also elucidates the theoretical justifications for why minimizing
their associated loss functions leads to high-quality sample generation.

In this setup, we consider a target distribution π(x) on Rd, which is typically accessible only
through a set of given samples {Xi}Ni=1 drawn from it. The goal of a generative model is to produce
new samples that follow π(x), or equivalently, samples that are statistically indistinguishable from
the provided data {Xi}Ni=1.

A common strategy to achieve this is to define a simple, tractable base distribution p0(x) on Rd

(e.g., a standard Gaussian) and then find an underlying dynamical process that gradually transports
p0(x) to a terminal distribution pT (x) that approximates the target, pT (x) ≈ π(x). This process
is characterized by a flow of distributions {pt(x)}0⩽t⩽T . The underlying dynamics can be either
deterministic or stochastic. The principal methods include:

• Normalizing Flow [1, 2, 3]

• Flow Matching [4]

• Score-Based Diffusion [5]

This handbook does not include Denoising Diffusion Probabilistic Models (DDPM) [6]. While
DDPM remains a foundational benchmark, its methodology is largely encompassed and generalized
by the Score-Based Diffusion framework, which is covered in detail. Furthermore, the exposition in
the original DDPM paper presents notational and formal ambiguities that are difficult to reconcile
with the standards of mathematical rigor this text aims to uphold.

1

p0(x)
(Simple Base Distribution)

Underlying Dynamics {pt(x)}0⩽t⩽T

pT (x) ≈ π(x)
(Target Distribution)

Given Samples
{Xi}Ni=1

Deterministic

Normalizing Flow

Flow Matching

Stochastic

Score-Based Diffusion

known via

Figure 1: A flowchart of modern generative models.

2

1 Normalizing Flow

We aim to find an deterministic and invertible map f : Rd → Rd such that f transports the base
distribution p0 to approximate the target π, namely,

f#p0 ≈ π ⇐⇒ p0 ≈ f−1
π.

For notational convenience, we let z and x be the variables for p0(z) and π(x), respectively. The
change of variables formula implies the density of f#p0 is

(f#p0)(x) =
p0(z)

| detJzf(z)|
, x = f(z). (1)

Here, Jzf(z) ∈ Rd×d denotes the Jacobian matrix of the map f(z).
Next, a natural idea is to minimize the KL divergence between f#p0(x) and π(x):

DKL(π∥f#p0) =
∫
Rd

π(x) log
π(x)

(f#p0)(x)
dx

= const−
∫
Rd

π(x) log(f#p0)(x)dx

= const−
∫
Rd

π(x)
(
log p0

(
f−1(x)

)
− log

∣∣det Jzf(f−1(x)
)∣∣)dx,

where we have applied the logarithm to (1) and substituted z = f−1(x). Therefore, minimizing
this KL divergence is equivalent to maximizing the functional

−L[f] =
∫
Rd

π(x)
(
log p0

(
f−1(x)

)
− log

∣∣det Jzf(f−1(x)
)∣∣)dx. (2)

In practice, the expectation with respect to π(x) is approximated by an empirical average over the
samples {Xi}Ni=1, and f is parameterized by a neural network. The quantity in (2) is also called
the Evidence Lower Bound (ELBO), although I do not favor this name.

We now introduce how to parameterize this map f using a neural network. A crucial requirement
for this parameterization is that the Jacobian matrix Jzf(z) must be explicitly computable with
respect to the network parameters.

1.1 Realization in coupling flow

A simple approach to parameterize f is to write f as the composition

f = fK ◦ · · · ◦ f1, (3)

where each fk : Rd → Rd is an invertible map designed such that the determinant of its Jacobian,
Jfk, is efficiently computable. Letting z0 = z and zk = fk(zk−1) for k = 1, . . . ,K, the chain rule
for determinants implies

log |det Jzf(z)| =
K∑

k=1

log |det Jzk−1
fk(zk−1)|. (4)

3

A simple and widely-used choice for fk is the coupling flow.
The core idea of a coupling flow is to partition the input vector and transform one part using

parameters generated by the other part. This construction yields a block-triangular Jacobian
matrix, for which the determinant is trivial to compute.

Formally, for each layer fk, we partition its input zk−1 ∈ Rd into two disjoint parts. Let dA < d,
dB = d − dA, and let the partition be zk−1 = (zA, zB), where zA ∈ RdA and zB ∈ RdB . The
coupling flow fk computes its output zk = (xA, xB) by leaving one part unchanged (an identity)
and applying a simple invertible transformation to the other.

Specifically, an affine coupling layer is defined as:

xA = zA

xB = zB ⊙ exp(S(zA)) + T (zA)

where ⊙ denotes element-wise multiplication, and S, T : RdA → RdB are neural networks (e.g.,
MLPs) parameterized by θk. The exponential function is used to ensure the scaling factors exp(S(zA))
are strictly positive, guaranteeing invertibility.

The critical advantage of this construction is its Jacobian determinant. The Jacobian matrix of
fk with respect to zk−1 has a block-lower-triangular structure:

Jzk−1
fk(zk−1) =

∂xA

∂zA

∂xA

∂zB
∂xB

∂zA

∂xB

∂zB

 =

 I 0
∂xB

∂zA
diag(exp(S(zA)))


The determinant of a triangular matrix is the product of its diagonal entries. Therefore, the log-
determinant is simply the sum of the outputs of the scaling network S:

log |det Jzk−1
fk(zk−1)| = log

(
dB∏
i=1

exp(S(zA))i

)
=

dB∑
i=1

S(zA)i. (5)

This value is computationally efficient, as it is a direct output of the network. To ensure the entire
map f is expressive and that all variables can be transformed, the partition is typically alternated
or permuted between subsequent layers (e.g., fk+1 transforms the part that fk left as an identity).

In practice, the coupling flow requires an input dimension d ⩾ 2. To ensure the entire map
is expressive and that all variables are eventually transformed, the partition (zA, zB) must be
alternated or permuted between subsequent layers. For example, common strategies to define zA
and zB include using a “checkerboard” pattern or splitting by “channel”.

1.2 Continuous dynamics parameterization

Although the coupling flow construction is straightforward, its expressive power is often limited by
the simple functional form of the coupling layers. A more popular and flexible approach, known as
a continuous normalizing flow, is to define f as the flow map of an ODE.

This involves parameterizing a time-dependent velocity field u(x, t) on Rd × [0, T]. The final
map f is then defined as the time-T map z 7→ x(T ; z), where {x(t; z)}0⩽t⩽T is the solution to the
initial value problem: 

d

dt
x(t; z) = u(x(t; z), t),

x(0; z) = z.
(6)

4

A crucial property of this ODE-based parameterization is that the logarithm of the Jacobian de-
terminant can be computed efficiently. Using the instantaneous change of volume formula (a con-
sequence of Jacobi’s formula), we have

log |det Jzf(z)| =
∫ T

0

tr
(
Jxu(x(t; z), t)

)
dt. (7)

As a consequence, the required log-determinant can be conveniently computed by integrating the
trace of the velocity field’s Jacobian, tr(Jxu), along the trajectory of the ODE (6). This is typically
solved numerically by augmenting the original ODE system.

A proof of the equality (7) can be established as follows. Taking the gradient with respect to z in
the ODE (6), we obtain the sensitivity equation satisfied by the Jacobian matrix Jzx(t; z) ∈ Rd×d:

d

dt
Jzx(t; z) = Jxu(x(t; z), t)Jzx(t; z),

Jzx(0; z) = Id.

By Jacobi’s formula, which gives the derivative of the determinant, we obtain

d

dt
log |det Jzx(t; z)| = tr

(
Jxu(x(t; z), t)

)
.

Integrating this expression over the time interval [0, T] and using the initial condition log |det Jzx(0; z)| =
log |det Id| = 0 produces the desired result (7).

Substituting the log-determinant formula (7) into the loss function (2), we obtain the objective
for the continuous normalizing flow, expressed in terms of the velocity field u(x, t):

−L[u] =
∫
Rd

π(x)

(
log p0

(
f−1(x)

)
−
∫ T

0

tr
(
Jxu

(
x(t; f−1(x)), t

))
dt

)
dx. (8)

While this loss functional (8) appears complex, the procedure to compute its stochastic approxi-
mation (i.e., the Monte Carlo estimate using the dataset {Xi}Ni=1) is straightforward:

1. Sample x∗ from the data distribution π(x) (or the dataset {Xi}Ni=1).

2. Compute z∗ = f−1(x∗) by solving the ODE (6) backward in time from t = T to t = 0, using
x∗ = x(T ; z∗) as the terminal condition.

3. Compute the integrand of (8) (the “sample loss”) for this x∗:

log p0(z∗)−
∫ T

0

tr
(
Jxu(x(t; z∗), t)

)
dt,

where the integral is computed by solving the ODE (6) forward in time, starting from z∗, to
obtain the full trajectory {x(t; z∗)}0⩽t⩽T .

For numerical implementation, the ODEs in steps 2 and 3 must be solved using a numerical time-
discretization scheme.

5

2 Flow Matching

Flow matching is arguably one of the most popular generative models at present, primarily because
it combines a relatively simple formulation with straightforward training. Let p0(x) and p1(x) be
the base and target distributions on Rd, respectively. The objective is to construct a time-dependent
velocity field u(x, t) on Rd × [0, 1] such that the flow generated by the ODE

dx

dt
= u(x, t)

transports p0(x) to p1(x).
Let x0 and x1 be independent random variables sampled from p0(x) and p1(x), respectively. We

then consider the following simple loss function:

L[u] =
∫ 1

0

Ex0,x1

[∣∣u((1− t)x0 + tx1, t
)
− (x1 − x0)

∣∣2]dt. (9)

Here, the loss minimizes the expected squared difference between the parameterized velocity field
u(x, t) and the constant velocity vector (x1 − x0) along the linear path xt = (1− t)x0 + tx1.

We will now demonstrate that the minimizer of L[u] in (9) indeed induces the flow that transports
p0(x) to p1(x). On one hand, the optimal velocity field u(x, t) that minimizes (9) is given by the
conditional expectation:

u(x, t) = Ex0,x1

[
x1 − x0

∣∣ tx1 + (1− t)x0 = x
]
. (10)

This means u(x, t) is the conditional expectation of x1 − x0 given that tx1 + (1− t)x0 = x. On the
other hand, we define the probability flow {pt(x)}0⩽t⩽1 by

pt(x) = Ex0,x1

[
δ
(
x− tx1 − (1− t)x0

)]
, (11)

namely, pt(x) is the marginal distribution of the interpolation point tx1 + (1− t)x0 at time t. As a
consequence, u(x, t) can be equivalently written as

u(x, t) =
1

pt(x)
Ex0,x1

[
(x1 − x0)δ

(
x− tx1 − (1− t)x0

)]
.

In what follows, we show that u(x, t) exactly generates the probability flow pt(x), i.e., it satisfies
the continuity equation:

∂pt(x)

∂t
+∇ · (pt(x)u(x, t)) = 0. (12)

We prove (12) in the sense of distributions. By choosing a test function ϕ(x) with compact support
in Rd, equation (12) is equivalent to its weak form:

d

dt

∫
Rd

pt(x)ϕ(x)dx =

∫
Rd

pt(x)u(x, t) · ∇ϕ(x)dx. (13)

6

We compute the LHS and RHS of (13) separately. For the LHS of (13), we have:

d

dt

∫
Rd

pt(x)ϕ(x)dx = Ex0,x1

[
d

dt

∫
Rd

δ
(
x− tx1 − (1− t)x0

)
ϕ(x)dx

]
= Ex0,x1

[
d

dt
ϕ
(
tx1 + (1− t)x0

)]
= Ex0,x1

[
(x1 − x0) · ∇ϕ

(
tx1 + (1− t)x0

)]
.

For the RHS of (13), we use pt(x)u(x, t) = Ex0,x1
[(x1 − x0)δ(x− tx1 − (1− t)x0)]:∫

Rd

pt(x)u(x, t) · ∇ϕ(x)dx =

∫
Rd

Ex0,x1

[
(x1 − x0)δ

(
x− tx1 − (1− t)x0

)]
· ∇ϕ(x)dx

= Ex0,x1

[
(x1 − x0) ·

∫
Rd

δ
(
x− tx1 − (1− t)x0

)
∇ϕ(x)dx

]
= Ex0,x1

[
(x1 − x0) · ∇ϕ

(
tx1 + (1− t)x0

)]
.

Since the LHS and RHS of (13) are equal, the continuity equation (12) is satisfied. This implies
that the optimal velocity field u(x, t) learned from the loss function (9) correctly generates the
probability flow pt(x) that transports p0(x) to p1(x).

In principle, the random variables x0 and x1 do not need to be sampled independently from
p0(x) and p1(x). In fact, let γ ∈ Π(p0, p1) be an arbitrary coupling (joint distribution) between
p0(x) and p1(x). We can find a velocity field u by minimizing the more general loss functional:

L[u] =
∫ 1

0

Eγ

[∣∣u((1− t)x0 + tx1, t
)
− (x1 − x0)

∣∣2]dt,
The optimal velocity field u from this minimization generates a flow map ϕt. This flow, in turn,
induces a new coupling γ′ (e.g., γ′ = (Id, ϕ1)#p0). This framework, known as Rectified Flow,
defines an operator that maps one coupling γ to another γ′. It has been shown that iterating this
procedure can lead to quadratic convergence to the optimal transport map [7].

3 Score-Based Diffusion

Score-based diffusion models are a foundational class of generative models. The methodology
consists of two complementary processes. First, a forward process {qt(x)}0⩽t⩽T is defined to
gradually transform the target distribution q0(x) = π(x) into a tractable base distribution qT (x).
Second, a reverse process {pt(x)}0⩽t⩽T is constructed to approximate the time-reversal of the
forward process. This reverse process, which starts from qT (x) and aims to recover q0(x), is char-
acterized by the score function ∇ log qt(x) of the forward process. The core task is to learn this
score function, typically via a neural network. Once learned, simulating the reverse process allows
for the generation of new samples approximating the target distribution.

Specifically, the forward diffusion process is defined by the stochastic differential equation (SDE):

dyt = f(yt, t)dt+ g(t)dBt, (14)

7

where Bt is the standard Brownian motion in Rd. This SDE induces a flow of distributions
{qt(x)}0⩽t⩽T , which evolves according to the corresponding Fokker–Planck equation:

∂qt(x)

∂t
= −∇ ·

(
f(x, t)qt(x)

)
+

1

2
g2(t)∆qt(x), t ∈ [0, T]. (15)

This process is designed to transform the initial data distribution q0(x) = π(x) into a simple,
tractable base distribution qT (x).

The objective is to construct a reverse process, whose probability flow {pt(x)}0⩽t⩽T satisfies
the time-reversibility condition pt(x) = qT−t(x). By replacing t → T − t and substituting pt(x) =
qT−t(x) into the Fokker–Planck equation, we find that pt(x) must satisfy the following PDE:

∂pt(x)

∂t
= ∇ ·

(
f(x, T − t)pt(x)

)
− 1

2
g2(T − t)∆pt(x), t ∈ [0, T]. (16)

This equation, however, is ill-posed. The negative sign on the diffusion term, − 1
2g

2(T − t), makes
it an instance of the backward heat equation, which is notoriously unstable to solve numerically.
In general, it is impossible to directly reverse a diffusion process via its Fokker–Planck equation
without additional information.

A stable reverse process can be constructed by incorporating the score function. Using the
identity pt(x) = qT−t(x), we have the equality:

∇ ·
(
g2(T − t)∇ log qT−t(x)pt(x)

)
= ∇ ·

(
g2(T − t)∇qT−t(x)

)
= g2(T − t)∆pt(x).

This identity allows us to rewrite the ill-posed equation (16) by manipulating its diffusion term.
An algebraic rearrangement (effectively adding and subtracting terms related to the score) yields

∂pt(x)

∂t
= ∇ ·

((
f(x, T − t)− g2(T − t)∇ log qT−t(x)

)
pt(x)

)
+

1

2
g2(T − t)∆pt(x). (17)

This equation is now a well-posed forward Fokker–Planck equation. Therefore, with explicit knowl-
edge of the score function ∇ log qt(x) for t ∈ [0, T], one can simulate the reverse process by solving
the corresponding SDE:

dxt =
(
− f(xt, T − t) + g2(T − t)∇ log qT−t(xt)

)
dt+ g(T − t)dB̄t, t ∈ [0, T]. (18)

where B̄t is a standard Brownian motion. Alternatively, by rearranging the terms, the ill-posed
equation (16) can be expressed in the equivalent form of a pure continuity equation:

∂pt(x)

∂t
= ∇ ·

((
f(x, T − t)− 1

2
g2(T − t)∇ log qT−t(x)

)
pt(x)

)
. (19)

This formulation describes a deterministic probability flow. Therefore, the reverse process can also
be constructed by solving the corresponding ODE, which defines the characteristic curves:

dxt =
(
− f(xt, T − t) +

1

2
g2(T − t)∇ log qT−t(xt)

)
dt, t ∈ [0, T]. (20)

In summary, the central task is to learn the score function {∇ log qt(x)}0⩽t⩽T . Once this function
is estimated (typically via a neural network), one can simulate either the reverse SDE (18) or

8

the reverse ODE (20). This procedure, initiated by sampling from the base distribution qT (x),
transforms these samples into new samples that approximate the desired data distribution π(x).

We now describe how the score function s(x, t) = ∇ log qt(x) is learned. For notational clarity,
let Qt|0(·|y0) denote the conditional probability distribution of yt given y0, which we distinguish
from the marginal probability flow qt(x). The score function s(x, t) is trained by minimizing the
following L2-loss functional, commonly known as a score-matching objective:

L[s] =
∫ T

0

Ey0∼π,yt∼Qt|0(·|y0)

[∣∣s(yt, t)−∇ logQt|0(yt|y0)
∣∣2]λ(t)dt, (21)

where λ(t) is a positive weighting function. The expectation is taken over the initial data y0 ∼
q0(·) = π(·) and the corresponding state yt at time t generated from y0 by the forward SDE (14).
This objective trains the network s(x, t) to match the true score of the conditional transition kernel.

Finally, we must verify that the minimizer of (21) coincides with the true score function,
∇ log qt(x). In fact, the minimizer s(x, t) of the L2-loss (21) is the conditional expectation of
the target given the input, which is readily given by

s(x, t) = Ey0

[
∇ logQt|0(x|y0) | yt = x

]
=

∫
Rd

∇x logQt|0(x|y0)Q0|t(y0|x) dy0. (22)

Here, Q0|t(y0|x) is the posterior distribution of the initial state y0 given the observation yt = x.
According to Bayes’ theorem,

Q0|t(y0|x) =
Qt|0(x|y0) q0(y0)

qt(x)
=

Qt|0(x|y0)π(y0)
qt(x)

. (23)

Therefore, substituting this into (22), the optimal s(x, t) of L[s] is

s(x, t) =

∫
Rd

(∇xQt|0(x|y0)
Qt|0(x|y0)

)(
Qt|0(x|y0)π(y0)

qt(x)

)
dy0

=
1

qt(x)

∫
Rd

π(y0)∇xQt|0(x|y0)dy0

=
1

qt(x)
∇x

(∫
Rd

π(y0)Qt|0(x|y0)dy0
)

=
1

qt(x)
∇xqt(x) = ∇x log qt(x),

where we have used the definition of the marginal distribution qt(x) =
∫
π(y0)Qt|0(x|y0)dy0. This

confirms that the minimizer of (21) is indeed the true score function.

4 Numerical Tests

In this section, we evaluate the performance of Normalizing Flow, Flow Matching, and Score-Based
Diffusion on three simple 2D distributions: a Gaussian mixture, an I-beam, and an annulus. The
target distributions are visualized in Figure 2. The sample trajectories, illustrating the evolu-
tion from a standard Gaussian distribution to each target, are presented for Normalizing Flow in
Figure 3, Flow Matching in Figure 4, and Score-Based Diffusion in Figure 5.

The source codes for this project can be found at the following link: https://xuda-ye.

wordpress.com/wp-content/uploads/2025/11/handbook-of-generative-models.zip

9

https://xuda-ye.wordpress.com/wp-content/uploads/2025/11/handbook-of-generative-models.zip
https://xuda-ye.wordpress.com/wp-content/uploads/2025/11/handbook-of-generative-models.zip

Figure 2: Target distributions: Gaussian mixture, I-beam and annulus.

References

[1] Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction
and review of current methods. IEEE transactions on pattern analysis and machine intelligence,
43(11):3964–3979, 2020.

[2] Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Advances in
neural information processing systems, 33:2503–2515, 2020.

[3] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021.

[4] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow match-
ing for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[5] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–1428,
2021.

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[7] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

10

Figure 3: Sample trajectories of Normalizing Flow.

11

Figure 4: Sample trajectories of Flow Matching.

12

Figure 5: Sample trajectories of Score-Based Diffusion.

13

	Normalizing Flow
	Realization in coupling flow
	Continuous dynamics parameterization

	Flow Matching
	Score-Based Diffusion
	Numerical Tests

