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Generative models have become a cornerstone of modern machine learning. While many com-
puter scientists and engineers are actively researching this field, their notations and proofs, often
stemming from different conventions and mathematical training, can be ambiguous to mathemati-
cians and statisticians. Common examples include writing expectations without explicitly stating
the underlying distribution or using the same notation (e.g., ;) to represent both a random variable
and its realization. Furthermore, abbreviations are frequently employed without their corresponding
full terms being defined, adding to the ambiguity.

This handbook aims to bridge this gap by providing mathematically rigorous (at least formally)
formulations of generative models. It also elucidates the theoretical justifications for why minimizing
their associated loss functions leads to high-quality sample generation.

In this setup, we consider a target distribution 7(z) on R? which is typically accessible only
through a set of given samples {X;}¥; drawn from it. The goal of a generative model is to produce
new samples that follow 7(x), or equivalently, samples that are statistically indistinguishable from
the provided data {X;} ;.

A common strategy to achieve this is to define a simple, tractable base distribution po(z) on R?
(e.g., a standard Gaussian) and then find an underlying dynamical process that gradually transports
po(x) to a terminal distribution pr(x) that approximates the target, pr(x) = w(z). This process
is characterized by a flow of distributions {p:(x)}o<i<r. The underlying dynamics can be either
deterministic or stochastic. The principal methods include:

e Normalizing Flow [1, 2, 3]
e Flow Matching [4]

e Score-Based Diffusion [5]

This handbook does not include Denoising Diffusion Probabilistic Models (DDPM) [6]. While
DDPM remains a foundational benchmark, its methodology is largely encompassed and generalized
by the Score-Based Diffusion framework, which is covered in detail. Furthermore, the exposition in
the original DDPM paper presents notational and formal ambiguities that are difficult to reconcile
with the standards of mathematical rigor this text aims to uphold.
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Figure 1: A flowchart of modern generative models.



1 Normalizing Flow

We aim to find an deterministic and invertible map f : R¢ — R? such that f transports the base
distribution py to approximate the target 7, namely,

fapomm = po~ [T

For notational convenience, we let z and x be the variables for po(z) and m(z), respectively. The
change of variables formula implies the density of fupg is

_ po(z) _
(fpo)(z) = m, x = f(2). (1)

Here, J, f(z) € R%*? denotes the Jacobian matrix of the map f(z).
Next, a natural idea is to minimize the KL divergence between fyupo(x) and 7(z):

Dl fym) = [ (o) log (fgg)(x)dx

= const — /Rd m(x) log(fupo)(x)dx

= const — /]Rd W(:E)(logpo (f—l(m)) — log | det sz(f—l(x)) ’)dx,

where we have applied the logarithm to (1) and substituted z = f~!(x). Therefore, minimizing
this KL divergence is equivalent to maximizing the functional

—L[f] = /Rd (@) (log o (f ! (2)) — log| det L. £ (£ (x))] ) da. 2)

In practice, the expectation with respect to 7(x) is approximated by an empirical average over the
samples {X;}~ ,, and f is parameterized by a neural network. The quantity in (2) is also called
the Evidence Lower Bound (ELBO), although I do not favor this name.

We now introduce how to parameterize this map f using a neural network. A crucial requirement
for this parameterization is that the Jacobian matrix J, f(z) must be explicitly computable with
respect to the network parameters.

1.1 Realization in coupling flow

A simple approach to parameterize f is to write f as the composition

f="Ffxo-ofi, ®3)

where each fi, : R — R? is an invertible map designed such that the determinant of its Jacobian,
J fi, is efficiently computable. Letting zp = z and z; = fr(zx—1) for k = 1,..., K, the chain rule
for determinants implies

K
log |det J. f(2)| = Y _log|det J., _, fr(zk1)
k=1

: (4)



A simple and widely-used choice for fj is the coupling flow.

The core idea of a coupling flow is to partition the input vector and transform one part using
parameters generated by the other part. This construction yields a block-triangular Jacobian
matrix, for which the determinant is trivial to compute.

Formally, for each layer fj, we partition its input z,_; € R? into two disjoint parts. Let ds < d,
dp = d — d4, and let the partition be z;_; = (z4,2B), where z4 € R% and zp € R%. The
coupling flow fj computes its output zy = (xa,xp) by leaving one part unchanged (an identity)
and applying a simple invertible transformation to the other.

Specifically, an affine coupling layer is defined as:

A = 2ZA
rp = zp ©exp(S(2a)) + T(2a)

where ® denotes element-wise multiplication, and S,7 : R% — R? are neural networks (e.g.,
MLPs) parameterized by 6. The exponential function is used to ensure the scaling factors exp(S(z4))
are strictly positive, guaranteeing invertibility.

The critical advantage of this construction is its Jacobian determinant. The Jacobian matrix of
fr with respect to zx_1 has a block-lower-triangular structure:

8SUA 3:CA I 0
_ 8ZA aZB _
o) = dr O | =\ 22 diag(exp(S(2a)
82,4
aZA 323

The determinant of a triangular matrix is the product of its diagonal entries. Therefore, the log-
determinant is simply the sum of the outputs of the scaling network S:

dg dp
log | det J, _, fr(zk—1)| = log (H exp(S(zA))i> = ZS(ZA)Z'. (5)

i=1 i=1
This value is computationally efficient, as it is a direct output of the network. To ensure the entire
map f is expressive and that all variables can be transformed, the partition is typically alternated
or permuted between subsequent layers (e.g., fr41 transforms the part that fi left as an identity).
In practice, the coupling flow requires an input dimension d > 2. To ensure the entire map
is expressive and that all variables are eventually transformed, the partition (z4,zp) must be
alternated or permuted between subsequent layers. For example, common strategies to define z4

and zp include using a “checkerboard” pattern or splitting by “channel”.

1.2 Continuous dynamics parameterization

Although the coupling flow construction is straightforward, its expressive power is often limited by
the simple functional form of the coupling layers. A more popular and flexible approach, known as
a continuous normalizing flow, is to define f as the flow map of an ODE.

This involves parameterizing a time-dependent velocity field u(z,t) on R? x [0,7]. The final
map f is then defined as the time-T map z — x(T; z), where {z(¢; 2) }ogt<r is the solution to the

initial value problem:
d
2 2) = ula(t2), 1),

z(0; 2) = 2.

(6)



A crucial property of this ODE-based parameterization is that the logarithm of the Jacobian de-
terminant can be computed efficiently. Using the instantaneous change of volume formula (a con-
sequence of Jacobi’s formula), we have

log | det J. f(2)| = /O ' tr(Joula(t:2).0)d. (™)

As a consequence, the required log-determinant can be conveniently computed by integrating the
trace of the velocity field’s Jacobian, tr(J,u), along the trajectory of the ODE (6). This is typically
solved numerically by augmenting the original ODE system.

A proof of the equality (7) can be established as follows. Taking the gradient with respect to z in
the ODE (6), we obtain the sensitivity equation satisfied by the Jacobian matrix J,x(t; z) € R4*4:

%sz(t; z) = Jpu(x(t; 2),t)Jx(t; ),

sz(O, Z) = Id.

By Jacobi’s formula, which gives the derivative of the determinant, we obtain

d
T log|det J.z(t; z)| = tr(Jzu(x(t; z), t))
Integrating this expression over the time interval [0, 7] and using the initial condition log | det J,z(0; z)| =
log | det I4] = 0 produces the desired result (7).

Substituting the log-determinant formula (7) into the loss function (2), we obtain the objective
for the continuous normalizing flow, expressed in terms of the velocity field u(z,t):

L] = /R ﬂ(x)(logpo(fl(x)) - /OT tr(Jzu(x(t; FY(z)), t))dt) da. (8)

While this loss functional (8) appears complex, the procedure to compute its stochastic approxi-
mation (i.e., the Monte Carlo estimate using the dataset {X;}X ) is straightforward:

1. Sample z, from the data distribution 7(x) (or the dataset {X;}¥ ).

2. Compute z, = f~!(z.) by solving the ODE (6) backward in time from ¢t = T to t = 0, using
2. = x(T; z4) as the terminal condition.

3. Compute the integrand of (8) (the “sample loss”) for this x,:

log po(z«) — /OT tr(qu(:v(t; z*),t)>dt,

where the integral is computed by solving the ODE (6) forward in time, starting from z,, to
obtain the full trajectory {x(¢; z«) bo<t<r-

For numerical implementation, the ODEs in steps 2 and 3 must be solved using a numerical time-
discretization scheme.



2 Flow Matching

Flow matching is arguably one of the most popular generative models at present, primarily because
it combines a relatively simple formulation with straightforward training. Let po(z) and p;(x) be
the base and target distributions on R?, respectively. The objective is to construct a time-dependent
velocity field u(x,t) on R? x [0, 1] such that the flow generated by the ODE

d
d—f = u(z,t)
transports po(x) to p1(z).

Let zo and 7 be independent random variables sampled from po(z) and p;(x), respectively. We
then consider the following simple loss function:

Llu] = /0 Ezo,z1 “u((l —t)xo + tm1,t) —(z1 — xo)ﬂ dt. (9)

Here, the loss minimizes the expected squared difference between the parameterized velocity field
u(z,t) and the constant velocity vector (z1 — xg) along the linear path z; = (1 — t)zg + t;.

We will now demonstrate that the minimizer of L£[u] in (9) indeed induces the flow that transports
po(x) to p1(x). On one hand, the optimal velocity field u(z,t) that minimizes (9) is given by the
conditional expectation:

w(@,t) = Eypp o, [ml — 9 | txy + (1 —t)zg = x] (10)

This means u(z,t) is the conditional expectation of z; — xo given that tzq + (1 — t)xg = z. On the
other hand, we define the probability flow {p;(z)}o<i<1 by

pi(z) = Egy oy [(5(33 —tx; — (1 — t)xo)}, (11)

namely, p;(z) is the marginal distribution of the interpolation point tz1 + (1 — t)zo at time t. As a
consequence, u(x,t) can be equivalently written as

w(z,t) = ——Eqy 0, [(zl — 20)d( — tay — (1 — t)xg)].

pe(x)
In what follows, we show that u(x,t) exactly generates the probability flow p;(x), i.e., it satisfies

the continuity equation:
Ope(x)

ot

We prove (12) in the sense of distributions. By choosing a test function ¢(z) with compact support
in R, equation (12) is equivalent to its weak form:

+ V- (pu(@)u(z, ) = 0. (12)

%/Rd pe(z)¢(z)dz = /Rd pe()u(z, t) - Vo(x)da. (13)



We compute the LHS and RHS of (13) separately. For the LHS of (13), we have:

d d

dt /Rd pi(@)p(x)dr = Eqp o, K _/Rd §(z —toy — (1 - t)xo)d)(x)dx]

= ]E:Eo,ﬂcl _C(litd)(txl —+ (1 — t)xo):|

= ]EIO-,CM :(.’[1 - wo) . V¢(tx1 + (1 - t)l'o):| .

For the RHS of (13), we use pi(x)u(z,t) = Eyy 0, [(x1 — 20)0(z — tz1 — (1 — t)x0)):

/Rd pe(x)u(z,t) - Vo(z)dx = /d Ezo.zq [(;vl — xo)é(x —txy — (1 — t)xo)} -Vo(x)dz

R

=Ezp . {(ml — zq) - /]Rd §(z —tay — (1 - t)xo)V¢(a:)dx]
=Eq 2, [(:cl — o) - Vo (ta + (1 — t)xo)].

Since the LHS and RHS of (13) are equal, the continuity equation (12) is satisfied. This implies
that the optimal velocity field u(x,t) learned from the loss function (9) correctly generates the
probability flow p;(x) that transports po(x) to pi(x).

In principle, the random variables xy and z; do not need to be sampled independently from
po(x) and pi(x). In fact, let v € II(pg, p1) be an arbitrary coupling (joint distribution) between
po(z) and p;(x). We can find a velocity field u by minimizing the more general loss functional:

Llu] = /01 E, “u((l — B + ta, t) — (21 — xo)ﬂdt,

The optimal velocity field u from this minimization generates a flow map ¢;. This flow, in turn,
induces a new coupling 7' (e.g., ¥/ = (Id, ¢1)%po). This framework, known as Rectified Flow,
defines an operator that maps one coupling v to another v'. It has been shown that iterating this
procedure can lead to quadratic convergence to the optimal transport map [7].

3 Score-Based Diffusion

Score-based diffusion models are a foundational class of generative models. The methodology
consists of two complementary processes. First, a forward process {q:(z)}ogi<r is defined to
gradually transform the target distribution go(x) = m(x) into a tractable base distribution gr(x).
Second, a reverse process {p;(x)}o<i<r is constructed to approximate the time-reversal of the
forward process. This reverse process, which starts from ¢r(x) and aims to recover go(z), is char-
acterized by the score function Vloggq;(z) of the forward process. The core task is to learn this
score function, typically via a neural network. Once learned, simulating the reverse process allows
for the generation of new samples approximating the target distribution.

Specifically, the forward diffusion process is defined by the stochastic differential equation (SDE):



where B, is the standard Brownian motion in R%. This SDE induces a flow of distributions
{@(x) }o<i<r, which evolves according to the corresponding Fokker—Planck equation:

0qi ()
ot

= V- () + 50702, e [0.T] (15)
This process is designed to transform the initial data distribution go(z) = 7(z) into a simple,
tractable base distribution gr(z).

The objective is to construct a reverse process, whose probability flow {p;(x)}o<i<r satisfies
the time-reversibility condition p;(x) = gr_¢(x). By replacing t — T — ¢ and substituting p;(z) =
gr—+(z) into the Fokker—Planck equation, we find that p;(z) must satisfy the following PDE:

Opi(x)
ot

=V. (f(l’,T - t)pt(ﬂf)) - %QQ(T - t)Apt(x)’ te [07T] (16)

This equation, however, is ill-posed. The negative sign on the diffusion term, f% g*(T —t), makes
it an instance of the backward heat equation, which is notoriously unstable to solve numerically.
In general, it is impossible to directly reverse a diffusion process via its Fokker—Planck equation
without additional information.

A stable reverse process can be constructed by incorporating the score function. Using the
identity p:(x) = gr—_¢(x), we have the equality:

V. (92(T —t)Vlog qr—¢(x)pi(x)) =V - (92(T —0)Var—i(z)) = (T — t)Apy(z).

This identity allows us to rewrite the ill-posed equation (16) by manipulating its diffusion term.
An algebraic rearrangement (effectively adding and subtracting terms related to the score) yields

Ipe(z)
ot
This equation is now a well-posed forward Fokker—Planck equation. Therefore, with explicit knowl-

edge of the score function Vlogq:(z) for t € [0,T7], one can simulate the reverse process by solving
the corresponding SDE:

=V ((f(‘ra T—t)— 92(T —t)Vlog QTft(x))pt(w)> + %QQ(T —t)Apy(z). (17)

dey = (= f(ze, T —t) + g*(T = )Vloggr—i(x;))dt + g(T = t)dB;, t€[0,T].|  (18)

where By is a standard Brownian motion. Alternatively, by rearranging the terms, the ill-posed
equation (16) can be expressed in the equivalent form of a pure continuity equation:

Ope(x)
ot

=V- ((f(a:, T—t)— %gQ(T —t)Vlog QT—t(x))pt(x))- (19)

This formulation describes a deterministic probability flow. Therefore, the reverse process can also
be constructed by solving the corresponding ODE, which defines the characteristic curves:

dz, = (_ Flag, T —t) + %gQ(T - t)Vloqu_t(xt))dt, te[0,T]. (20)

In summary, the central task is to learn the score function {V log ¢ (x)}o<i<r. Once this function
is estimated (typically via a neural network), one can simulate either the reverse SDE (18) or



the reverse ODE (20). This procedure, initiated by sampling from the base distribution gr(x),
transforms these samples into new samples that approximate the desired data distribution 7(z).

We now describe how the score function s(x,t) = Vlog ¢ (x) is learned. For notational clarity,
let Qyo(|yo) denote the conditional probability distribution of y; given yo, which we distinguish
from the marginal probability flow ¢;(x). The score function s(x,t) is trained by minimizing the
following L2-loss functional, commonly known as a score-matching objective:

T
2
s = / By yeunlooy | |50 1) — V10g Quio (welyo) 2| A, (21)
0

where A(t) is a positive weighting function. The expectation is taken over the initial data yo ~
qo(-) = m(-) and the corresponding state y; at time ¢ generated from yo by the forward SDE (14).
This objective trains the network s(z,t) to match the true score of the conditional transition kernel.

Finally, we must verify that the minimizer of (21) coincides with the true score function,
Vlogq:(x). In fact, the minimizer s(z,t) of the L2-loss (21) is the conditional expectation of
the target given the input, which is readily given by

s(xz,t) = By, [V1og Quo(zlyo) |ye = x| = /Rd Vi 1log Qyo(|yo) Qoj¢ (yolx) dyo. (22)

Here, Qo|¢(yolx) is the posterior distribution of the initial state yo given the observation y; = .
According to Bayes’ theorem,

Quje(olz) = Qtlo(quio;)%(yo) _ Qt|0(2?z(;))7r(y0).

Therefore, substituting this into (22), the optimal s(z,t) of L[s] is
B V2 Quo(|yo) \ [ Qejo(x]yo)T(%o)
S(:E, t) - dyO
Rd Qt\o(x|y0) qt(z)

/Rd 7(Y0) V2 Qujo(z|yo)dyo

(23)

“
= ﬁvz (/Rd W(yo)Qt|o($|y0)dyo>

1
—V.q(zx) =V, 1o T),
(@) qi(z) g qi(x)

where we have used the definition of the marginal distribution () = [ 7(yo)Qqjo(2|yo)dyo. This
confirms that the minimizer of (21) is indeed the true score function.

4 Numerical Tests

In this section, we evaluate the performance of Normalizing Flow, Flow Matching, and Score-Based
Diffusion on three simple 2D distributions: a Gaussian mixture, an I-beam, and an annulus. The
target distributions are visualized in Figure 2. The sample trajectories, illustrating the evolu-
tion from a standard Gaussian distribution to each target, are presented for Normalizing Flow in
Figure 3, Flow Matching in Figure 4, and Score-Based Diffusion in Figure 5.

The source codes for this project can be found at the following link: https://xuda-ye.
wordpress . com/wp-content/uploads/2025/11/handbook-of-generative-models.zip


https://xuda-ye.wordpress.com/wp-content/uploads/2025/11/handbook-of-generative-models.zip
https://xuda-ye.wordpress.com/wp-content/uploads/2025/11/handbook-of-generative-models.zip

Overview of Generated 2D Datasets (5000 samples each)
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Figure 2: Target distributions: Gaussian mixture, I-beam and annulus.
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Normalizing Flow Trajectory: Gaussian mixture
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Figure 3: Sample trajectories of Normalizing Flow.




Flow Matching Trajectory: Gaussian mixture
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Figure 4: Sample trajectories of Flow Matching.



Score-Based Diffusion Trajectory: Gaussian mixture
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Figure 5: Sample trajectories of Score-Based Diffusion.
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