
Introduction to Stochastic Normalizing Flow

Xuda Ye

Purdue University

December 6, 2025

In this note, we introduce the Stochastic Normalizing Flow (SNF) [1] for sampling a Boltzmann
distribution π(x) ∝ e−U(x), where U(x) is a possibly nonconvex potential function defined on Rd.
We begin by reviewing the Boltzmann generator realized with Normalizing Flows (NF) [2]. The
SNF can be viewed as a generalization of the NF achieved by inserting additional diffusion steps.
The goal of these diffusion steps is to overcome the restrictions imposed by the diffeomorphic nature
of the NF and to increase the representation capacity of the model. The numerical results in this
note are directly cited from [1].

The primary motivation for this note is that [1], being a conference paper, does not fully detail
the mathematical intricacies of the method. While a subsequent study [3] provides a rigorous
probabilistic perspective, its abstract and general setting may obscure the underlying mathematical
intuition. Consequently, this note aims to provide an intuitive and comprehensive derivation of the
SNF framework, with particular emphasis on the loss function. We also establish a direct connection
between SNF and classical NF by adopting a consistent notation system. Furthermore, by initiating
the discussion with a simplified setup, we introduce the method from a pedagogical viewpoint.

1 Problem Statement

Efficiently sampling from a Boltzmann distribution of the form π(x) ∝ e−U(x) is a central problem
in computational statistical physics. Assume that U(x) is a confining potential function on Rd with
Z =

∫
Rd e

−U(x)dx < +∞, such that the target distribution π(x) can be written as

π(x) =
1

Z
e−U(x), x ∈ Rd. (1)

Classically, the Langevin dynamics serves as a standard approach to sample from π(x):

dxt = −∇U(xt)dt+
√
2dBt, (2)

where Bt denotes a standard Brownian motion. However, this method often suffers from the high
computational cost associated with the discretization of the Langevin dynamics (2). The seminal
work [2] proposes a revolutionary approach, known as the Boltzmann generator, to directly sample
from π(x). Specifically, assume there exists a simple reference distribution π0(z) ∝ e−U0(z), where

1

U0(z) is a confining potential on Rd. By defining the constant Z0 =
∫
Rd e

−U0(z)dz < +∞, the
reference distribution π0(z) can be written as

π0(z) =
1

Z0
e−U0(z), z ∈ Rd. (3)

The reference π0(z) is typically chosen as the standard normal distributionN (0, Id). The Boltzmann
generator aims to construct a mapping T : Rd → Rd satisfying

T#π0 = π. (4)

Consequently, for any random variable Z ∼ π0, one need only apply the map T to obtain samples
T (Z) distributed according to π. This procedure requires only sampling from the reference distri-
bution π0 and evaluating the map T , thereby bypassing the need to simulate Langevin dynamics.

The SNF generalizes this framework by formulating T : Rd → P(Rd) as a Markov transition
kernel. This kernel assigns to each state z ∈ Rd a conditional probability measure T (z, ·) ∈ P(Rd).
In this context, the condition T#π0 = π in (4) is understood in the distributional sense: if Z is
a random variable distributed according to π0, and X is sampled conditionally such that X|Z ∼
T (Z, ·), then the marginal distribution of X satisfies X ∼ π.

2 Normalizing Flow as Boltzmann Generators

2.1 Derivation of loss function

The mapping T : Rd → Rd transforms the reference distribution π0(z) into the target distribution
π(x). Let JT : Rd → Rd×d denote the Jacobian matrix of T . Under the change of variable x = T (z),
the density function of the push-forward distribution T#π0 is given by

(T#π0)(x) =
π0(z)

| detJT (z)|
=

1

Z0

exp(−U0(z))

| detJT (z)|
, x = T (z). (5)

The KL divergence between T#π0 and π is then computed as

DKL(T#π0∥π) =
∫
Rd

(T#π0)(x) log
(T#π0)(x)

π(x)
dx

=

∫
Rd

π0(z) log
(T#π0)(T (z))

π(T (z))
dz (Set x = T (z))

=

∫
Rd

π0(z) log

(
1

Z0

exp(−U0(z))

| detJT (z)|

/
1

Z
exp

(
− U(T (z))

))
dz (Substitute (5))

=

∫
Rd

π0(z)
(
U(T (z))− U0(z)− log |det JT (z)|

)
dz + log

Z
Z0

= EZ∼π0

[
U(T (Z))− U0(Z)− log | det JT (Z)|

]
+ log

Z
Z0

+ constant.

Here, we explicitly distinguish the random variable Z sampled from π0 from the integration variable
z. Consequently, the loss function (with respect to the map T) is defined as

L[T] = EZ∼π0

[
U(T (Z))− U0(Z)− log |det JT (Z)|

]
. (6)

2

By minimizing L[T] with respect to T , we obtain the desired map satisfying condition (4).
We emphasize that the map satisfying condition (4) is generally non-unique. For instance,

when the mapping T is constructed via an ODE flow, the loss functionDKL(T#π0∥π) constrains only
the marginal distribution at the terminal state, without imposing restrictions on the intermediate
dynamics of the flow. This phenomenon is analogous to the framework of Flow Matching [4], where
distinct couplings between the reference and target distributions yield different ODE flows.

2.2 Coupling flow parameterization of T

Next, we detail the parameterization of the mapping T : Rd → Rd. Employing the classical discrete
coupling flow approach, we select a positive integer K and decompose T as

T = fK ◦ · · · ◦ f1,

where {fk}Kk=1 are invertible maps on Rd (representing the layers of the coupling flow). These maps
can be effectively implemented using RealNVP [5]. We can express the mapping chain x = T (z) as

y0 = z
f1−−→ y1

f2−−→ y2
···−−→ yK−1

fK−−−→ yK = x, (7)

where we have introduced the sequence of intermediate states {yk}Kk=0 for clarity. By the chain
rule, the Jacobian matrix JT evaluated at y0 = z is given by

JT (y0) =

K∏
k=1

Jfk(yk−1) =⇒ detJT (y0) =

K∏
k=1

det Jfk(yk−1).

In the construction of the coupling flow, we require that each layer fk on Rd has a positive Jacobian
determinant. This allows us to write

log detJT (y0) =

K∑
k=1

log detJfk(yk−1). (8)

Substituting (8) into the loss function (6), we obtain the loss function in terms of {fk}Kk=1:

L
[
{fk}Kk=1

]
= EY0∼π0

[
U(YK)− U0(Y0)−

K∑
k=1

log detJfk(Yk−1)
]
, (9)

where the random variables {Yk}Kk=0 are defined recursively by Y0 ∼ π0 and Yk = fk(Yk−1) for
k = 1, · · · ,K. We visualize the chain of random variables corresponding to (7) as follows:

Y0 ∼ π0
f1−−→ Y1

f2−−→ Y2
···−−→ YK−1

fK−−−→ YK ∼ π. (10)

Upon minimizing the loss function (9), any input Y0 ∼ π0 is expected to yield an output YK

distributed according to π, thereby enabling efficient sampling from the target distribution π(x).

3

Reference

Y0 ∼ e−U0

Layer 1

Y1 = f1(Y0)

Layer 2

Y2 = f2(Y1)
. . .

Layer K

YK = fK(YK−1)

Target

YK ∼ e−U

NF Loss Function (KL Divergence)

L
[
{fk}Kk=1

]
= EY0∼π0

[
U(YK)− U0(Y0)−

K∑
k=1

log det Jfk(Yk−1)

]

Figure 1: Normalizing Flow as Boltzmann Generators.

3 Stochastic Normalizing Flow

Normalizing Flows (NF) have proven to be a successful method for sampling from a target dis-
tribution π(x). However, their performance is sometimes hindered by the inherent restrictions of
diffeomorphisms, which strictly preserve the topology of the support. Drawing upon the success of
Score-Based Diffusion models [6], it is widely acknowledged that incorporating stochastic diffusion
into the generative dynamics can significantly expand the representational capacity of the model.
Therefore, a natural motivation for the Stochastic Normalizing Flow (SNF) is to introduce artificial
diffusion steps to augment the expressivity of standard NFs.

3.1 Revisiting the chain structure

In the standard NF framework, the sequence of random variables {Yk}Kk=0 in (10) is propagated
via K invertible maps {fk}Kk=1. We now introduce K additional Markov transition steps {gk}Kk=1,
where each gk is characterized by a conditional probability kernel gk(x, ·). These Markovian ker-
nels {gk}Kk=1 are fixed prior to training, such that only the invertible mappings {fk}Kk=1 remain
parameterized. The resulting chain is constructed as

Y0 ∼ π0
g1◦f1−−−−→ Y1

g2◦f2−−−−→ Y2
···−−→ YK−1

gK◦fK−−−−−→ YK ∼ π. (11)

More precisely, the random variables {Yk}Kk=0 are generated recursively by sampling Y0 ∼ π0 and
Yk ∼ gk

(
fk(Yk−1), ·

)
for k = 1, · · · ,K. In this framework, the joint probability density of the

trajectory (Y0, Y1, · · · , YK) is given by

p(y0, y1, · · · , yK) = π0(y0)

K∏
k=1

gk
(
fk(yk−1), yk

)
. (12)

Consequently, the marginal distribution of the final state YK is expressed as

pK(yK) =

∫
RdK

π0(y0)

K∏
k=1

gk
(
fk(yk−1), yk

)
dy0 · · · dyK−1. (13)

Intuitively, one might select the KL divergence between the marginal distribution pK and the
target distribution π as the loss function. However, the expression for pK in (13) involves a high-

4

dimensional integral, rendering the explicit evaluation of the KL divergence computationally in-
tractable. Instead, it is advantageous to analyze the distribution of the entire trajectory {Yk}Kk=0,
whose joint density (12) explicitly incorporates all intermediate states. To this end, we introduce a
sequence of guiding distributions {πk}Kk=0 interpolating between the reference distribution π0 and
the target distribution πK = π. Furthermore, we require that each Markov kernel gk preserves πk

as its invariant distribution, i.e., ∫
Rd

πk(x)gk(x, y)dx = πk(y). (14)

Consequently, we impose a stronger objective on the random variable chain defined in (11):

Y0 ∼ π0
g1◦f1−−−−→ Y1 ∼ π1

g2◦f2−−−−→ Y2 ∼ π2
···−−→ YK−1 ∼ πK−1

gK◦fK−−−−−→ YK ∼ πK = π, (15)

which necessitates control over the marginal distributions of the intermediate states {Yk}Kk=0. A
challenge arises here: while the joint distribution of the generated path (Y0, Y1, · · · , YK) is explic-
itly given by (12), a corresponding joint distribution for the target sequence (π0, π1, · · · , πK) is
undefined, as the optimal coupling between these marginals is unknown.

Nevertheless, the chain depicted in (15) encapsulates a precise mathematical objective:

Given a sequence of guiding distributions {πk}Kk=0 and the corresponding invariant Markov
kernels {gk}Kk=1, we aim to train the invertible maps {fk}Kk=1 such that for the Markov
chain {Yk}Kk=0 generated by Y0 ∼ π0 and Yk ∼ gk

(
fk(Yk−1), ·

)
, there hold fk(Yk−1) ∼ πk

for all k = 1, · · · ,K.

We observe that since gk preserves πk as the invariant distribution as specified in (14), the condition
fk(Yk−1) ∼ πk immediately implies Yk ∼ πk, which aligns with the chain requirements in (15).

A natural choice for the guiding distributions {πk}Kk=0 is given by

πk(x) ∝ exp

(
− k

K
U(x)− K − k

K
U0(x)

)
, x ∈ Rd, (16)

which functions as a linear interpolation of the potential function. The specific choice of the Markov
kernels {gk}Kk=1 will be detailed in subsequent sections.

3.2 Loss function over forward and backward chains

A key innovation of the SNF framework [3] is the introduction of a backward chain of random
variables {Y ′

k}Kk=0, which facilitates the formulation of the loss function. We begin by recalling the
forward chain structure defined in (15):

Forward chain {Yk}Kk=0

Y0 ∼ π0
g1◦f1−−−−→ Y1 ∼ π1

g2◦f2−−−−→ Y2 ∼ π2
···−−→ YK−1 ∼ πK−1

gK◦fK−−−−−→ YK ∼ πK .

This chain is governed by the invertible maps {fk}Kk=1 and the Markov kernels {gk}Kk=1.
Subsequently, we introduce a set of backward Markov kernels {hk}Kk=1 to define the backward

chain {Y ′
k}Kk=0:

5

Backward chain {Y ′
k}Kk=0

Y ′
K ∼ πK

f−1
K ◦hK−−−−−−→ Y ′

K−1 ∼ πK−1

f−1
K−1◦hK−1

−−−−−−−−→ Y ′
K−2 ∼ πK−2

···−−→ Y ′
1 ∼ π1

f−1
1 ◦h1−−−−−→ Y ′

0 ∼ π0.

More precisely, the generative processes for the random variables {Yk}Kk=0 and {Y ′
k}Kk=0 are defined

as follows:

• Forward: Initialize Y0 ∼ π0. For k = 1, · · · ,K, sample Yk ∼ gk
(
fk(Yk−1), ·

)
.

• Backward: Initialize Y ′
K ∼ πK . For k = K, · · · , 1, sample an intermediate variable from

hk(Y
′
k, ·) and apply f−1

k to obtain Y ′
k−1. Equivalently, this implies fk(Y

′
k−1) ∼ hk(Y

′
k, ·).

Accordingly, the joint probability density of the forward trajectory (Y0, Y1, · · · , YK), previously
introduced in (12), is denoted by pf :

pf (y0, y1, · · · , yK) = π0(y0)

K∏
k=1

gk
(
fk(yk−1), yk

)
. (17)

Similarly, we formulate the joint probability density pb for the backward chain {Y ′
k}Kk=0 as:

pb(y0, y1, · · · , yK) = π(yK)

K∏
k=1

hk

(
yk, fk(yk−1)

)
· det Jfk(yk−1). (18)

Note that the Jacobian determinants appear in (18) due to the change of variables induced by
applying the inverse maps f−1

k to the samples generated by the kernels {hk}Kk=1.
The guiding philosophy in designing the loss function is to match the forward and backward

probability densities, pf and pb. This objective implies a crucial relationship between the two
Markov chains {Yk}Kk=0 and {Y ′

k}Kk=0, specifically regarding reversibility. For the deterministic
transport steps, the reverse of fk is naturally given by its inverse map f−1

k . For the Markov
transition steps, we require that the forward kernel gk and the backward kernel hk satisfy the
following reversibility condition with respect to the guiding distribution πk:

πk(x)gk(x, y) = πk(y)hk(y, x), x, y ∈ Rd. (19)

We observe that the invariant distribution property in (14) is a direct consequence of (19), obtained
by integrating both sides of the equation with respect to x. Consequently, when the mappings
{fk}Kk=1 are trained such that the forward probability pf and the backward probability pb align
perfectly, the marginal distribution of the forward chain’s output YK coincides with that of the
backward chain’s initialization Y ′

K , which is precisely the target distribution π.
To this end, we define the loss function as the KL divergence between the forward probability

density pf and the backward probability density pb. The density ratio of pf and pb is given by

pf (y0, y1, · · · , yK)

pb(y0, y1, · · · , yK)
=

π0(y0)

K∏
k=1

gk
(
fk(yk−1), yk

)
π(yK)

K∏
k=1

hk

(
yk, fk(yk−1)

)
· det Jfk(yk−1)

=

π0(y0)

K∏
k=1

πk(fk(yk−1))

π(yK)

K∏
k=1

πk(yk) · det Jfk(yk−1)

,

6

where we have applied the reversibility condition stated in (19). Consequently, the log-density ratio
is derived as

log
pf (y0, y1, · · · , yK)

pb(y0, y1, · · · , yK)
= U(yK)−U0(y0)+

K∑
k=1

(
Uk(yk)−Uk(fk(yk−1))

)
−

K∑
k=1

log detJfk(yk−1)+constant.

(20)
Therefore, the KL divergence between pf and pb is expressed as

DKL(p
f∥pb) =

∫
Rd(K+1)

pf (y0, y1, · · · , yK)dy0dy1 · · · dyK ×(
U(yK)− U0(y0) +

K∑
k=1

(
Uk(yk)− Uk(fk(yk−1))

)
−

K∑
k=1

log detJfk(yk−1)

)
+ constant.

Remarkably, this final expression for DKL(p
f∥pb) does not explicitly depend on the Markov tran-

sition kernels {gk}Kk=1 and {hk}Kk=1, implying that the only constraint on these kernels is the re-
versibility condition (19). Finally, the loss function is formally constructed as

L
[
{fk}Kk=1

]
= Epf

[
U(YK)− U0(Y0) +

K∑
k=1

(
Uk(Yk)− Uk(fk(Yk−1))

)
−

K∑
k=1

log det Jfk(Yk−1)

]
. (21)

Reference

Y0 ∼ e−U0

Layer 1

Y1∼g1(f1(Y0))

Layer 2

Y2∼g2(f2(Y1))
. . .

Layer K

YK∼gK(fK(YK−1))

Target

YK ∼ e−U

Target

Y ′
K ∼ e−U

Layer K

fK(Y ′
K−1)∼hK(Y ′

K)
. . .

Layer 2

f2(Y
′
1)∼h2(Y

′
2)

Layer 1

f1(Y
′
0)∼h1(Y

′
1)

Reference

Y ′
0 ∼ e−U0

NF Loss Function (KL Divergence)

L
[
{fk}Kk=1

]
= Epf

[
U(YK)− U0(Y0) +

K∑
k=1

(
Uk(Yk)− Uk(fk(Yk−1))

)
−

K∑
k=1

log det Jfk(Yk−1)

]

Figure 2: Stochastic Normalizing Flow.

We note that the loss function (21) exhibits a close connection to the standard NF case (9).
When the forward and backward kernels are chosen as Dirac distributions, i.e., gk(x, y) = hk(x, y) =
δ(x − y), the reversibility condition (19) is automatically satisfied, and the SNF loss function
(21) reduces to (9). In this sense, the SNF framework serves as a direct generalization of NF.
However, regarding computational complexity, SNF incurs an additional cost due to the evaluation
of Uk(Yk) − Uk(fk(Yk−1)) for the intermediate random variables {Yk}Kk=1. Therefore, for complex
potential functions, training an SNF model may be more computationally expensive.

7

3.3 Choice of Markov kernels via detailed balance

We discuss the selection of the forward and backward transition kernels, denoted by gk and hk,
respectively. Following the approach suggested in [3], we set gk = hk, thereby utilizing the same
transition kernel for both the forward and backward chains. Consequently, the reversibility condi-
tion simplifies to

πk(x)gk(x, y) = πk(y)gk(y, x), (22)

which is commonly referred to as the detailed balance condition in the study of Markov Chain
Monte Carlo (MCMC). A standard construction of gk(x, y) is provided by the Metropolis–Hastings
algorithm. We first select a symmetric proposal kernel qk(x, y) satisfying qk(x, y) = qk(y, x), and
subsequently define gk(x, y) as

gk(x, y) = qk(x, y)αk(x, y) + δ(x− y)(1− αk(x, y)), (23)

where δ(x− y) denotes the Dirac distribution, and the acceptance probability αk(x, y) is given by

αk(x, y) = min

{
1,

πk(y)

πk(x)

}
. (24)

Provided that the proposal kernel qk(x, y) is diffusive (e.g., a standard heat kernel), the resulting
transition kernel gk(x, y) will exhibit diffusion effects.

4 Numerical Experiment

In this section, we present a numerical experiment originally detailed in [1] to demonstrate the
superior expressive capacity of SNF compared to standard NF. The objective is to construct a
generative map that transforms a unimodal standard Gaussian reference distribution π0 = N (0, I)
into a complex target distribution π(x) ∝ e−U(x) characterized by a double-well potential U(x).
This target distribution features two distinct modes separated by a energy barrier.

Figure 3: Comparison of generated samples on a double-well potential. a. NF output. b. SNF
output. c. Ground truth target distribution.

8

The results, illustrated in the figure above, highlight a fundamental topological limitation of
NFs. As shown in panel a, the output of the NF exhibits an artificial “bridge” connecting the
two modes. This phenomenon arises because NFs are constructed as diffeomorphisms—continuous,
differentiable, and invertible maps. A diffeomorphism must strictly preserve the topology of the
support; therefore, it cannot transform a connected domain (the single-mode Gaussian) into a
disconnected or effectively separated domain (the double-well target) without stretching probability
mass across the void.

In contrast, the SNF (panel b) successfully reproduces the separated bimodal structure of the
target distribution (panel c). By incorporating stochastic Markov transition kernels {gk}Kk=1 be-
tween the invertible layers, the SNF relaxes the strict topological constraints of the diffeomorphism.
The stochastic diffusion steps allow probability mass to “jump” across the energy barrier, enabling
the model to accurately capture multimodal distributions without introducing spurious connections
between components.

5 Summary

In this note, we introduced the Stochastic Normalizing Flow (SNF) as a generalization of the
Boltzmann generator, combining invertible flows with stochastic transitions.

The primary advantage of SNF over NF is topological flexibility. NFs are limited by diffeo-
morphisms and often create artificial “bridges” between separated modes. SNF overcomes this via
stochastic jumps, allowing accurate modeling of multimodal targets. Additionally, the reversibility
condition on the path level enhances expressivity.

Conversely, SNF is computationally more demanding. It requires evaluating the potential energy
at every intermediate step, whereas NF evaluates it only once. Furthermore, the stochastic nature
renders the exact marginal likelihood intractable, preventing the exact density estimation available
in standard flows.

References

[1] Hao Wu, Jonas Köhler, and Frank Noé. Stochastic normalizing flows. Advances in neural
information processing systems, 33:5933–5944, 2020.

[2] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equi-
librium states of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

[3] Paul Hagemann, Johannes Hertrich, and Gabriele Steidl. Stochastic normalizing flows for inverse
problems: A markov chains viewpoint. SIAM/ASA Journal on Uncertainty Quantification,
10(3):1162–1190, 2022.

[4] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow match-
ing for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

9

[6] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–1428,
2021.

10

	Problem Statement
	Normalizing Flow as Boltzmann Generators
	Derivation of loss function
	Coupling flow parameterization of T

	Stochastic Normalizing Flow
	Revisiting the chain structure
	Loss function over forward and backward chains
	Choice of Markov kernels via detailed balance

	Numerical Experiment
	Summary

