Introduction to Stochastic Normalizing Flow

Xuda Ye

Purdue University

December 6, 2025

In this note, we introduce the Stochastic Normalizing Flow (SNF) [1] for sampling a Boltzmann
distribution 7(z) o< e=Y*), where U(z) is a possibly nonconvex potential function defined on R%.
We begin by reviewing the Boltzmann generator realized with Normalizing Flows (NF) [2]. The
SNF can be viewed as a generalization of the NF achieved by inserting additional diffusion steps.
The goal of these diffusion steps is to overcome the restrictions imposed by the diffeomorphic nature
of the NF and to increase the representation capacity of the model. The numerical results in this
note are directly cited from [1].

The primary motivation for this note is that [1], being a conference paper, does not fully detail
the mathematical intricacies of the method. While a subsequent study [3] provides a rigorous
probabilistic perspective, its abstract and general setting may obscure the underlying mathematical
intuition. Consequently, this note aims to provide an intuitive and comprehensive derivation of the
SNF framework, with particular emphasis on the loss function. We also establish a direct connection
between SNF and classical NF by adopting a consistent notation system. Furthermore, by initiating
the discussion with a simplified setup, we introduce the method from a pedagogical viewpoint.

1 Problem Statement

Efficiently sampling from a Boltzmann distribution of the form 7(z) oc e=V(*) is a central problem
in computational statistical physics. Assume that U(x) is a confining potential function on R? with

Z = f]Rd e~U@)dx < 400, such that the target distribution 7(z) can be written as
m(z) = le*U@), r € R (1)
Classically, the Langevin dynamics serves as a standard approach to sample from 7(z):
dzy = —VU(x)dt + V2dB;, (2)
where B; denotes a standard Brownian motion. However, this method often suffers from the high
computational cost associated with the discretization of the Langevin dynamics (2). The seminal

work [2] proposes a revolutionary approach, known as the Boltzmann generator, to directly sample
from 7(z). Specifically, assume there exists a simple reference distribution 7 (2) oc e=Y0(*) | where



Up(z) is a confining potential on RY. By defining the constant Z, = fRd e~Y(*)dz < 400, the
reference distribution mo(z) can be written as

1
mo(z) = =—e U0z e RY (3)
Zy
The reference my(z) is typically chosen as the standard normal distribution A (0, I;). The Boltzmann
generator aims to construct a mapping T : R? — R? satisfying

Tymy =T. (4)

Consequently, for any random variable Z ~ 7, one need only apply the map 7" to obtain samples
T(Z) distributed according to . This procedure requires only sampling from the reference distri-
bution 7y and evaluating the map T, thereby bypassing the need to simulate Langevin dynamics.

The SNF generalizes this framework by formulating 7' : R? — P(R?) as a Markov transition
kernel. This kernel assigns to each state z € R? a conditional probability measure T(z,-) € P(R?).
In this context, the condition Tumy = 7 in (4) is understood in the distributional sense: if Z is
a random variable distributed according to 7, and X is sampled conditionally such that X|Z ~
T(Z,-), then the marginal distribution of X satisfies X ~ .

2 Normalizing Flow as Boltzmann Generators

2.1 Derivation of loss function

The mapping T : R — R? transforms the reference distribution 7o(2) into the target distribution
7(x). Let JT : R* — R4 denote the Jacobian matrix of 7. Under the change of variable z = T'(2),
the density function of the push-forward distribution Tl m, is given by

mo(2) 1 exp(—Uy(2))

(Tymo)(x) = m = va r="T(z). (5)

The KL divergence between Tmy and 7 is then computed as

DKL(T#WOHW) = /Rd (T#WO)(:c) log Wdz

= WZOWZ et xr = z
_/I;d O( )lg T(T(Z)) d (St T( ))

= mo(2) lo LM lex — z z ubstitute
= [ moterton (5 SRERE) /Lo (— v )a: (substiate 5)
= /Rd wo(z)(U(T(z)) — Up(z) —log | det JT(Z)|>dz + log Zéo

=Ezen, [U(T(Z)) —Up(Z) — log| det JT(Z)\} + log Zio + constant.

Here, we explicitly distinguish the random variable Z sampled from 7y from the integration variable
z. Consequently, the loss function (with respect to the map T) is defined as

LIT) = Eznny |U(T(Z)) = Up(Z) ~ log | det JT(Z)]]. (6)



By minimizing £[T] with respect to T', we obtain the desired map satisfying condition (4).

We emphasize that the map satisfying condition (4) is generally non-unique. For instance,
when the mapping T is constructed via an ODE flow, the loss function Dy, (T4 mo||7) constrains only
the marginal distribution at the terminal state, without imposing restrictions on the intermediate
dynamics of the flow. This phenomenon is analogous to the framework of Flow Matching [4], where
distinct couplings between the reference and target distributions yield different ODE flows.

2.2 Coupling flow parameterization of T’

Next, we detail the parameterization of the mapping 7' : R — R%. Employing the classical discrete
coupling flow approach, we select a positive integer K and decompose T as

T=frgo---ofi,

where { f;}5_, are invertible maps on R? (representing the layers of the coupling flow). These maps
can be effectively implemented using RealNVP [5]. We can express the mapping chain z = T'(z) as

_ J1 f2 fx B
Yo =2 Y1 Y2 YK -1 Yk =, (7)

where we have introduced the sequence of intermediate states {yj}/, for clarity. By the chain

rule, the Jacobian matrix J71' evaluated at yo = z is given by

K

K
JT (yo) = H J fr(Yr—1) = det JT(yo) = H det J fi (yr—1)-
k=1 k=1

In the construction of the coupling flow, we require that each layer f, on R? has a positive Jacobian
determinant. This allows us to write

K

log det JT (yo) = Z log det J fi.(yr—1)- (8)
k=1

Substituting (8) into the loss function (6), we obtain the loss function in terms of {fix}&_;:

K

LHAHL] = Brorm [U(Yie) = Uo(¥0) = Y log det J fi(¥i-1), (9)
k=1

where the random variables {Yk}ffzo are defined recursively by Yy ~ mp and Yy = fi(Yi—1) for
k=1,---, K. We visualize the chain of random variables corresponding to (7) as follows:

f2 fx

YO ~ 0 A Y1 Y2 YK,1 YK ~ Tr. (10)
Upon minimizing the loss function (9), any input Yy ~ 7o is expected to yield an output Yy

distributed according to m, thereby enabling efficient sampling from the target distribution 7(z).



Reference Layer 1 Layer 2 Layer K Target
Yy ~e Y0 Yi = 1Y) Yo = fo(Yh) Yk = fe(Yr-1) Yi ~e Y

Y Y Y

NF Loss Function (KL Divergence)

E[{fk}?:l} =Evynr, |U(Yk) — Uo(Yo) — ZlogdetJfk(Yk 1)

k=1

Figure 1: Normalizing Flow as Boltzmann Generators.

3 Stochastic Normalizing Flow

Normalizing Flows (NF) have proven to be a successful method for sampling from a target dis-
tribution 7(x). However, their performance is sometimes hindered by the inherent restrictions of
diffeomorphisms, which strictly preserve the topology of the support. Drawing upon the success of
Score-Based Diffusion models [6], it is widely acknowledged that incorporating stochastic diffusion
into the generative dynamics can significantly expand the representational capacity of the model.
Therefore, a natural motivation for the Stochastic Normalizing Flow (SNF) is to introduce artificial
diffusion steps to augment the expressivity of standard NFs.

3.1 Revisiting the chain structure

In the standard NF framework, the sequence of random variables {Y;}£  in (10) is propagated
via K invertible maps {fi}_ ;. We now introduce K additional Markov transition steps {gj}%_,,
where each gy, is characterized by a conditional probability kernel gi(z,-). These Markovian ker-
nels {g;}X_, are fixed prior to training, such that only the invertible mappings {f}X ; remain
parameterized. The resulting chain is constructed as

Yo ~omg Loy, S0Py iy IR Oy (11)

More precisely, the random variables {Yk}kK:O are generated recursively by sampling Yy ~ m9 and
Yi ~ g (fk(Yk,l), ) for kK = 1,---, K. In this framework, the joint probability density of the
trajectory (Yp, Yy, -, Yk) is given by

K
P(Yos Y1, YK) = mo(Yo H (fr(yr—1), yx)- (12)

Consequently, the marginal distribution of the final state Yk is expressed as

K
Kk (yK) = /RdK m0(Yo) H 9 (fr(Ye—1) yr)dyo - - dyr—1. (13)

k=1

Intuitively, one might select the KL divergence between the marginal distribution px and the
target distribution 7 as the loss function. However, the expression for px in (13) involves a high-



dimensional integral, rendering the explicit evaluation of the KL divergence computationally in-
tractable. Instead, it is advantageous to analyze the distribution of the entire trajectory {Yk}fzo,
whose joint density (12) explicitly incorporates all intermediate states. To this end, we introduce a
sequence of guiding distributions {m }/<, interpolating between the reference distribution my and
the target distribution 7w = w. Furthermore, we require that each Markov kernel g preserves 7y
as its invariant distribution, i.e.,

[ m@ante iz = (o). (14)

Consequently, we impose a stronger objective on the random variable chain defined in (11):

YQNWO%Y:[NWl%}/QNﬂ-QQYK_lNﬂ-K_]_M)YKNTFK:TF, (15)
which necessitates control over the marginal distributions of the intermediate states {Y;}5_,. A
challenge arises here: while the joint distribution of the generated path (Y, Y1, -+ ,Yk) is explic-
itly given by (12), a corresponding joint distribution for the target sequence (mg, w1, , k) is
undefined, as the optimal coupling between these marginals is unknown.
Nevertheless, the chain depicted in (15) encapsulates a precise mathematical objective:

Given a sequence of guiding distributions {Wk}i(zo and the corresponding invariant Markov
kernels {gi }_,, we aim to train the invertible maps {fi}_, such that for the Markov
chain {Yk}fzo generated by Yy ~ my and Y, ~ gy (fk(Yk_l), -), there hold fr(Yr—1) ~ 7k
forallk=1,--- K.

We observe that since gy preserves 7y as the invariant distribution as specified in (14), the condition
& (Yi—1) ~ m immediately implies Yy ~ 7, which aligns with the chain requirements in (15).
A natural choice for the guiding distributions {ﬂ'k}i,(:o is given by

k K-k

T (x) x exp (— KU(J:) - KUo(x)>, z € RY, (16)

which functions as a linear interpolation of the potential function. The specific choice of the Markov
kernels {g; } 2, will be detailed in subsequent sections.

3.2 Loss function over forward and backward chains

A key innovation of the SNF framework [3] is the introduction of a backward chain of random
variables {Y/}X_ | which facilitates the formulation of the loss function. We begin by recalling the
forward chain structure defined in (15):

Forward chain {V;}X |

Y()Nﬂ'o%Yl ~ T %YQN?‘FQ %YK—l ~TK_1 %YKNTFK.
This chain is governed by the invertible maps {fi}7, and the Markov kernels {g; }%_,.

Subsequently, we introduce a set of backward Markov kernels {hy}% | to define the backward
chain {Y/}E



Backward chain {Y/}£

_ -1 1
frlohk fr_1hK—1 fitohs
Li3 Y[/{le/ﬂ-KfléyK 0~ TK— 2—)Y1N7T14>Y0N7T0

YI/< ~TK
More precisely, the generative processes for the random variables {Y; }H< ; and {V/}£_, are defined
as follows:

e Forward: Initialize Yy ~ mg. For k= 1,--- | K, sample Y} ~ gi (fk(Yk_l), )

e Backward: Initialize Y}, ~ mx. For k = K,---,1, sample an intermediate variable from
hi(Y{,-) and apply f, ! to obtain Y;_,. Equivalently, this implies fi,(Y{_ ;) ~ hx(Y/,").

Accordingly, the joint probability density of the forward trajectory (Yp,Y1,---,Yk), previously
introduced in (12), is denoted by p/:

K
pf(yanlv"' YK) = mo(Yo) H fk (Ye—1 yk) (17)

Similarly, we formulate the joint probability density p® for the backward chain {Y/}X  as:

K
P’ (o, y1, -+ yx) = m(yx H (vks fro(yr—1)) - det J fi(yr—1)- (18)

Note that the Jacobian determinants appear in (18) due to the change of variables induced by
applying the inverse maps f, ! to the samples generated by the kernels {hk}kkzl.

The guiding philosophy in designing the loss function is to match the forward and backward
probability densities, p/ and p®. This objective implies a crucial relationship between the two
Markov chains {Y;}< , and {V/}E_,, specifically regarding reversibility. For the deterministic
transport steps, the reverse of f; is naturally given by its inverse map f, ! For the Markov
transition steps, we require that the forward kernel g, and the backward kernel hj satisfy the
following reversibility condition with respect to the guiding distribution m:

me(@)gr(2,y) = T (Y)hi(y, z), =,y € R% (19)

We observe that the invariant distribution property in (14) is a direct consequence of (19), obtained
by integrating both sides of the equation with respect to x. Consequently, when the mappings
{ fk}szl are trained such that the forward probability p/ and the backward probability p® align
perfectly, the marginal distribution of the forward chain’s output Y coincides with that of the
backward chain’s initialization Y},, which is precisely the target distribution 7.

To this end, we define the loss function as the KL divergence between the forward probability
density pf and the backward probability density p®. The density ratio of p/ and p? is given by

K K
mo(o) [ [ gr (fe(wr—1), u) mo(yo) [ [ me(fr(yr—1))
pf(y05y17"' 7yK) _ k=1 k=1

pb(y()ayla"' ayK) B -
k(Urs fr(yr—1)) - det J fr(ye—1)  7(yx)

)

T (yx) - det J fr(yr—1)

u::]N
>

k

1



where we have applied the reversibility condition stated in (19). Consequently, the log-density ratio
is derived as

K

K
= U(yr)=Uo(yo)+ Y (Us(ys)=Us(fr(yx-1)))—>_ logdet J fx(ys—1)+constant.
k=1 k=1

pf(y07yla"' ayK)
pb(y()»ylv T ayK)

log

(20)
Therefore, the KL divergence between pf and p’ is expressed as

Dy (p’ ) =/ p (Yo, y1, -+ yr)dyodys - - - dyx x
RA(K+1)

K K
(U(yK) — Up(yo) + Z (Us(yr) — Un(fe(yr-1))) — Z log det Jfk(ykl)) + constant.
=1 =1

Remarkably, this final expression for Dy, (p/|p?) does not explicitly depend on the Markov tran-
sition kernels {gy}5_, and {h;}_,, implying that the only constraint on these kernels is the re-
versibility condition (19). Finally, the loss function is formally constructed as

K K
L[{fitie1] =E,» {U( — Uo(Yo) + Y (Ux(Ye) = Uk(fx(Ye-1))) — Y _ logdet Jfk(Yk,l)} 4@
k=1 k=1
Reference Layer 1 Layer 2 Layer K Target
Yo ~e o Y1 ~g1(f1(Y0)) Ya~g2(f2(Y1)) Y ~gx (fx(Yi-1)) Y ~ve V
A
A A A A A
A A A A \
\
Reference Layer 1 Layer 2 Layer K Target
’ = Rl / / i / / U / / i / —-U
Yy ~emto f1(Yg)~ha (YY) f2(Y{)~ha(Y3) fre(Yie—1)~hk(Yi) Yi~e
Y Y Y Y A
NF Loss Function (KL Divergence)
K K
5[{fk}1§:1] =E,r |U(Yx) — Uo(Yo) + Z (U (Ye) = Uk (fr(Yr-1))) — ZIOg det J fr.(Yi—1)
k=1 k=1

Figure 2: Stochastic Normalizing Flow.

We note that the loss function (21) exhibits a close connection to the standard NF case (9).
When the forward and backward kernels are chosen as Dirac distributions, i.e., gx(x,y) = hi(x,y) =
0(x — y), the reversibility condition (19) is automatically satisfied, and the SNF loss function
(21) reduces to (9). In this sense, the SNF framework serves as a direct generalization of NF.
However, regarding computational complexity, SNF incurs an additional cost due to the evaluation
of U (Yy) — Up(fx(Yi—1)) for the intermediate random variables {Y;}£ . Therefore, for complex
potential functions, training an SNF model may be more computationally expensive.



3.3 Choice of Markov kernels via detailed balance

We discuss the selection of the forward and backward transition kernels, denoted by gi and hy,
respectively. Following the approach suggested in [3], we set gr = hg, thereby utilizing the same
transition kernel for both the forward and backward chains. Consequently, the reversibility condi-
tion simplifies to

()9 (2,y) = T (Y)9x (y, ), (22)
which is commonly referred to as the detailed balance condition in the study of Markov Chain
Monte Carlo (MCMC). A standard construction of gx(z,y) is provided by the Metropolis—Hastings
algorithm. We first select a symmetric proposal kernel gy (x,y) satisfying qr(z,y) = qx(y, ), and
subsequently define gy (z,y) as

gk, y) = qr(z, y)ar(z,y) + 6(z — y)(1 — ax(w,y)), (23)

where §(z — y) denotes the Dirac distribution, and the acceptance probability ay(x,y) is given by

an(z,y) = min {1, () } (24)

()

Provided that the proposal kernel ¢x(x,y) is diffusive (e.g., a standard heat kernel), the resulting
transition kernel gi(z,y) will exhibit diffusion effects.

4 Numerical Experiment

In this section, we present a numerical experiment originally detailed in [1] to demonstrate the
superior expressive capacity of SNF compared to standard NF. The objective is to construct a
generative map that transforms a unimodal standard Gaussian reference distribution 9 = N (0,1)
into a complex target distribution 7(x) oc e~U(*) characterized by a double-well potential U(x).
This target distribution features two distinct modes separated by a energy barrier.

Figure 3: Comparison of generated samples on a double-well potential. a. NF output. b. SNF
output. c. Ground truth target distribution.



The results, illustrated in the figure above, highlight a fundamental topological limitation of
NFs. As shown in panel a, the output of the NF exhibits an artificial “bridge” connecting the
two modes. This phenomenon arises because NFs are constructed as diffeomorphisms—continuous,
differentiable, and invertible maps. A diffeomorphism must strictly preserve the topology of the
support; therefore, it cannot transform a connected domain (the single-mode Gaussian) into a
disconnected or effectively separated domain (the double-well target) without stretching probability
mass across the void.

In contrast, the SNF (panel b) successfully reproduces the separated bimodal structure of the
target distribution (panel ¢). By incorporating stochastic Markov transition kernels {gy}5_, be-
tween the invertible layers, the SNF relaxes the strict topological constraints of the diffeomorphism.
The stochastic diffusion steps allow probability mass to “jump” across the energy barrier, enabling
the model to accurately capture multimodal distributions without introducing spurious connections
between components.

5 Summary

In this note, we introduced the Stochastic Normalizing Flow (SNF) as a generalization of the
Boltzmann generator, combining invertible flows with stochastic transitions.

The primary advantage of SNF over NF is topological flexibility. NFs are limited by diffeo-
morphisms and often create artificial “bridges” between separated modes. SNF overcomes this via
stochastic jumps, allowing accurate modeling of multimodal targets. Additionally, the reversibility
condition on the path level enhances expressivity.

Conversely, SNF is computationally more demanding. It requires evaluating the potential energy
at every intermediate step, whereas NF evaluates it only once. Furthermore, the stochastic nature
renders the exact marginal likelihood intractable, preventing the exact density estimation available
in standard flows.
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